vhost: use buffer vectors in dequeue path
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18 #include <rte_spinlock.h>
19 #include <rte_malloc.h>
20
21 #include "iotlb.h"
22 #include "vhost.h"
23
24 #define MAX_PKT_BURST 32
25
26 #define MAX_BATCH_LEN 256
27
28 static  __rte_always_inline bool
29 rxvq_is_mergeable(struct virtio_net *dev)
30 {
31         return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
32 }
33
34 static bool
35 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
36 {
37         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
38 }
39
40 static __rte_always_inline struct vring_desc *
41 alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
42                                          struct vring_desc *desc)
43 {
44         struct vring_desc *idesc;
45         uint64_t src, dst;
46         uint64_t len, remain = desc->len;
47         uint64_t desc_addr = desc->addr;
48
49         idesc = rte_malloc(__func__, desc->len, 0);
50         if (unlikely(!idesc))
51                 return 0;
52
53         dst = (uint64_t)(uintptr_t)idesc;
54
55         while (remain) {
56                 len = remain;
57                 src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
58                                 VHOST_ACCESS_RO);
59                 if (unlikely(!src || !len)) {
60                         rte_free(idesc);
61                         return 0;
62                 }
63
64                 rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
65
66                 remain -= len;
67                 dst += len;
68                 desc_addr += len;
69         }
70
71         return idesc;
72 }
73
74 static __rte_always_inline void
75 free_ind_table(struct vring_desc *idesc)
76 {
77         rte_free(idesc);
78 }
79
80 static __rte_always_inline void
81 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
82                           uint16_t to, uint16_t from, uint16_t size)
83 {
84         rte_memcpy(&vq->used->ring[to],
85                         &vq->shadow_used_ring[from],
86                         size * sizeof(struct vring_used_elem));
87         vhost_log_cache_used_vring(dev, vq,
88                         offsetof(struct vring_used, ring[to]),
89                         size * sizeof(struct vring_used_elem));
90 }
91
92 static __rte_always_inline void
93 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
94 {
95         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
96
97         if (used_idx + vq->shadow_used_idx <= vq->size) {
98                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
99                                           vq->shadow_used_idx);
100         } else {
101                 uint16_t size;
102
103                 /* update used ring interval [used_idx, vq->size] */
104                 size = vq->size - used_idx;
105                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
106
107                 /* update the left half used ring interval [0, left_size] */
108                 do_flush_shadow_used_ring(dev, vq, 0, size,
109                                           vq->shadow_used_idx - size);
110         }
111         vq->last_used_idx += vq->shadow_used_idx;
112
113         rte_smp_wmb();
114
115         vhost_log_cache_sync(dev, vq);
116
117         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
118         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
119                 sizeof(vq->used->idx));
120 }
121
122 static __rte_always_inline void
123 update_shadow_used_ring(struct vhost_virtqueue *vq,
124                          uint16_t desc_idx, uint16_t len)
125 {
126         uint16_t i = vq->shadow_used_idx++;
127
128         vq->shadow_used_ring[i].id  = desc_idx;
129         vq->shadow_used_ring[i].len = len;
130 }
131
132 static inline void
133 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
134 {
135         struct batch_copy_elem *elem = vq->batch_copy_elems;
136         uint16_t count = vq->batch_copy_nb_elems;
137         int i;
138
139         for (i = 0; i < count; i++) {
140                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
141                 vhost_log_cache_write(dev, vq, elem[i].log_addr, elem[i].len);
142                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
143         }
144 }
145
146 static inline void
147 do_data_copy_dequeue(struct vhost_virtqueue *vq)
148 {
149         struct batch_copy_elem *elem = vq->batch_copy_elems;
150         uint16_t count = vq->batch_copy_nb_elems;
151         int i;
152
153         for (i = 0; i < count; i++)
154                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
155 }
156
157 /* avoid write operation when necessary, to lessen cache issues */
158 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
159         if ((var) != (val))                     \
160                 (var) = (val);                  \
161 } while (0)
162
163 static __rte_always_inline void
164 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
165 {
166         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
167
168         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
169                 csum_l4 |= PKT_TX_TCP_CKSUM;
170
171         if (csum_l4) {
172                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
173                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
174
175                 switch (csum_l4) {
176                 case PKT_TX_TCP_CKSUM:
177                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
178                                                 cksum));
179                         break;
180                 case PKT_TX_UDP_CKSUM:
181                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
182                                                 dgram_cksum));
183                         break;
184                 case PKT_TX_SCTP_CKSUM:
185                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
186                                                 cksum));
187                         break;
188                 }
189         } else {
190                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
191                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
192                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
193         }
194
195         /* IP cksum verification cannot be bypassed, then calculate here */
196         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
197                 struct ipv4_hdr *ipv4_hdr;
198
199                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
200                                                    m_buf->l2_len);
201                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
202         }
203
204         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
205                 if (m_buf->ol_flags & PKT_TX_IPV4)
206                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
207                 else
208                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
209                 net_hdr->gso_size = m_buf->tso_segsz;
210                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
211                                         + m_buf->l4_len;
212         } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
213                 net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
214                 net_hdr->gso_size = m_buf->tso_segsz;
215                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
216                         m_buf->l4_len;
217         } else {
218                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
219                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
220                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
221         }
222 }
223
224 static __rte_always_inline int
225 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
226                          uint32_t avail_idx, uint32_t *vec_idx,
227                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
228                          uint16_t *desc_chain_len, uint8_t perm)
229 {
230         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
231         uint32_t vec_id = *vec_idx;
232         uint32_t len    = 0;
233         uint64_t dlen, desc_avail, desc_iova;
234         struct vring_desc *descs = vq->desc;
235         struct vring_desc *idesc = NULL;
236
237         *desc_chain_head = idx;
238
239         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
240                 dlen = vq->desc[idx].len;
241                 descs = (struct vring_desc *)(uintptr_t)
242                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
243                                                 &dlen,
244                                                 VHOST_ACCESS_RO);
245                 if (unlikely(!descs))
246                         return -1;
247
248                 if (unlikely(dlen < vq->desc[idx].len)) {
249                         /*
250                          * The indirect desc table is not contiguous
251                          * in process VA space, we have to copy it.
252                          */
253                         idesc = alloc_copy_ind_table(dev, vq, &vq->desc[idx]);
254                         if (unlikely(!idesc))
255                                 return -1;
256
257                         descs = idesc;
258                 }
259
260                 idx = 0;
261         }
262
263         while (1) {
264                 if (unlikely(idx >= vq->size)) {
265                         free_ind_table(idesc);
266                         return -1;
267                 }
268
269
270                 len += descs[idx].len;
271                 desc_avail = descs[idx].len;
272                 desc_iova = descs[idx].addr;
273
274                 while (desc_avail) {
275                         uint64_t desc_addr;
276                         uint64_t desc_chunck_len = desc_avail;
277
278                         if (unlikely(vec_id >= BUF_VECTOR_MAX)) {
279                                 free_ind_table(idesc);
280                                 return -1;
281                         }
282
283                         desc_addr = vhost_iova_to_vva(dev, vq,
284                                         desc_iova,
285                                         &desc_chunck_len,
286                                         perm);
287                         if (unlikely(!desc_addr)) {
288                                 free_ind_table(idesc);
289                                 return -1;
290                         }
291
292                         buf_vec[vec_id].buf_iova = desc_iova;
293                         buf_vec[vec_id].buf_addr = desc_addr;
294                         buf_vec[vec_id].buf_len  = desc_chunck_len;
295                         buf_vec[vec_id].desc_idx = idx;
296
297                         desc_avail -= desc_chunck_len;
298                         desc_iova += desc_chunck_len;
299                         vec_id++;
300                 }
301
302                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
303                         break;
304
305                 idx = descs[idx].next;
306         }
307
308         *desc_chain_len = len;
309         *vec_idx = vec_id;
310
311         if (unlikely(!!idesc))
312                 free_ind_table(idesc);
313
314         return 0;
315 }
316
317 /*
318  * Returns -1 on fail, 0 on success
319  */
320 static inline int
321 reserve_avail_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
322                                 uint32_t size, struct buf_vector *buf_vec,
323                                 uint16_t *num_buffers, uint16_t avail_head,
324                                 uint16_t *nr_vec)
325 {
326         uint16_t cur_idx;
327         uint32_t vec_idx = 0;
328         uint16_t max_tries, tries = 0;
329
330         uint16_t head_idx = 0;
331         uint16_t len = 0;
332
333         *num_buffers = 0;
334         cur_idx  = vq->last_avail_idx;
335
336         if (rxvq_is_mergeable(dev))
337                 max_tries = vq->size;
338         else
339                 max_tries = 1;
340
341         while (size > 0) {
342                 if (unlikely(cur_idx == avail_head))
343                         return -1;
344
345                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
346                                                 &head_idx, &len,
347                                                 VHOST_ACCESS_RW) < 0))
348                         return -1;
349                 len = RTE_MIN(len, size);
350                 update_shadow_used_ring(vq, head_idx, len);
351                 size -= len;
352
353                 cur_idx++;
354                 tries++;
355                 *num_buffers += 1;
356
357                 /*
358                  * if we tried all available ring items, and still
359                  * can't get enough buf, it means something abnormal
360                  * happened.
361                  */
362                 if (unlikely(tries > max_tries))
363                         return -1;
364         }
365
366         *nr_vec = vec_idx;
367
368         return 0;
369 }
370
371 static __rte_always_inline int
372 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
373                             struct rte_mbuf *m, struct buf_vector *buf_vec,
374                             uint16_t nr_vec, uint16_t num_buffers)
375 {
376         uint32_t vec_idx = 0;
377         uint32_t mbuf_offset, mbuf_avail;
378         uint32_t buf_offset, buf_avail;
379         uint64_t buf_addr, buf_iova, buf_len;
380         uint32_t cpy_len;
381         uint64_t hdr_addr;
382         struct rte_mbuf *hdr_mbuf;
383         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
384         struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
385         int error = 0;
386
387         if (unlikely(m == NULL)) {
388                 error = -1;
389                 goto out;
390         }
391
392         buf_addr = buf_vec[vec_idx].buf_addr;
393         buf_iova = buf_vec[vec_idx].buf_iova;
394         buf_len = buf_vec[vec_idx].buf_len;
395
396         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
397                 error = -1;
398                 goto out;
399         }
400
401         hdr_mbuf = m;
402         hdr_addr = buf_addr;
403         if (unlikely(buf_len < dev->vhost_hlen))
404                 hdr = &tmp_hdr;
405         else
406                 hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
407         rte_prefetch0((void *)(uintptr_t)hdr_addr);
408
409         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
410                 dev->vid, num_buffers);
411
412         if (unlikely(buf_len < dev->vhost_hlen)) {
413                 buf_offset = dev->vhost_hlen - buf_len;
414                 vec_idx++;
415                 buf_addr = buf_vec[vec_idx].buf_addr;
416                 buf_iova = buf_vec[vec_idx].buf_iova;
417                 buf_len = buf_vec[vec_idx].buf_len;
418                 buf_avail = buf_len - buf_offset;
419         } else {
420                 buf_offset = dev->vhost_hlen;
421                 buf_avail = buf_len - dev->vhost_hlen;
422         }
423
424         mbuf_avail  = rte_pktmbuf_data_len(m);
425         mbuf_offset = 0;
426         while (mbuf_avail != 0 || m->next != NULL) {
427                 /* done with current buf, get the next one */
428                 if (buf_avail == 0) {
429                         vec_idx++;
430                         if (unlikely(vec_idx >= nr_vec)) {
431                                 error = -1;
432                                 goto out;
433                         }
434
435                         buf_addr = buf_vec[vec_idx].buf_addr;
436                         buf_iova = buf_vec[vec_idx].buf_iova;
437                         buf_len = buf_vec[vec_idx].buf_len;
438
439                         /* Prefetch buffer address. */
440                         rte_prefetch0((void *)(uintptr_t)buf_addr);
441                         buf_offset = 0;
442                         buf_avail  = buf_len;
443                 }
444
445                 /* done with current mbuf, get the next one */
446                 if (mbuf_avail == 0) {
447                         m = m->next;
448
449                         mbuf_offset = 0;
450                         mbuf_avail  = rte_pktmbuf_data_len(m);
451                 }
452
453                 if (hdr_addr) {
454                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
455                         if (rxvq_is_mergeable(dev))
456                                 ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
457                                                 num_buffers);
458
459                         if (unlikely(hdr == &tmp_hdr)) {
460                                 uint64_t len;
461                                 uint64_t remain = dev->vhost_hlen;
462                                 uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
463                                 uint64_t iova = buf_vec[0].buf_iova;
464                                 uint16_t hdr_vec_idx = 0;
465
466                                 while (remain) {
467                                         len = remain;
468                                         dst = buf_vec[hdr_vec_idx].buf_addr;
469                                         rte_memcpy((void *)(uintptr_t)dst,
470                                                         (void *)(uintptr_t)src,
471                                                         len);
472
473                                         PRINT_PACKET(dev, (uintptr_t)dst,
474                                                         (uint32_t)len, 0);
475                                         vhost_log_cache_write(dev, vq,
476                                                         iova, len);
477
478                                         remain -= len;
479                                         iova += len;
480                                         src += len;
481                                         hdr_vec_idx++;
482                                 }
483                         } else {
484                                 PRINT_PACKET(dev, (uintptr_t)hdr_addr,
485                                                 dev->vhost_hlen, 0);
486                                 vhost_log_cache_write(dev, vq,
487                                                 buf_vec[0].buf_iova,
488                                                 dev->vhost_hlen);
489                         }
490
491                         hdr_addr = 0;
492                 }
493
494                 cpy_len = RTE_MIN(buf_len, mbuf_avail);
495
496                 if (likely(cpy_len > MAX_BATCH_LEN ||
497                                         vq->batch_copy_nb_elems >= vq->size)) {
498                         rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)),
499                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
500                                 cpy_len);
501                         vhost_log_cache_write(dev, vq, buf_iova + buf_offset,
502                                         cpy_len);
503                         PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset),
504                                 cpy_len, 0);
505                 } else {
506                         batch_copy[vq->batch_copy_nb_elems].dst =
507                                 (void *)((uintptr_t)(buf_addr + buf_offset));
508                         batch_copy[vq->batch_copy_nb_elems].src =
509                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
510                         batch_copy[vq->batch_copy_nb_elems].log_addr =
511                                 buf_iova + buf_offset;
512                         batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
513                         vq->batch_copy_nb_elems++;
514                 }
515
516                 mbuf_avail  -= cpy_len;
517                 mbuf_offset += cpy_len;
518                 buf_avail  -= cpy_len;
519                 buf_offset += cpy_len;
520         }
521
522 out:
523
524         return error;
525 }
526
527 static __rte_always_inline uint32_t
528 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
529         struct rte_mbuf **pkts, uint32_t count)
530 {
531         struct vhost_virtqueue *vq;
532         uint32_t pkt_idx = 0;
533         uint16_t num_buffers;
534         struct buf_vector buf_vec[BUF_VECTOR_MAX];
535         uint16_t avail_head;
536
537         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
538         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
539                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
540                         dev->vid, __func__, queue_id);
541                 return 0;
542         }
543
544         vq = dev->virtqueue[queue_id];
545
546         rte_spinlock_lock(&vq->access_lock);
547
548         if (unlikely(vq->enabled == 0))
549                 goto out_access_unlock;
550
551         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
552                 vhost_user_iotlb_rd_lock(vq);
553
554         if (unlikely(vq->access_ok == 0))
555                 if (unlikely(vring_translate(dev, vq) < 0))
556                         goto out;
557
558         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
559         if (count == 0)
560                 goto out;
561
562         vq->batch_copy_nb_elems = 0;
563
564         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
565
566         vq->shadow_used_idx = 0;
567         avail_head = *((volatile uint16_t *)&vq->avail->idx);
568         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
569                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
570                 uint16_t nr_vec = 0;
571
572                 if (unlikely(reserve_avail_buf(dev, vq,
573                                                 pkt_len, buf_vec, &num_buffers,
574                                                 avail_head, &nr_vec) < 0)) {
575                         VHOST_LOG_DEBUG(VHOST_DATA,
576                                 "(%d) failed to get enough desc from vring\n",
577                                 dev->vid);
578                         vq->shadow_used_idx -= num_buffers;
579                         break;
580                 }
581
582                 VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
583                         dev->vid, vq->last_avail_idx,
584                         vq->last_avail_idx + num_buffers);
585
586                 if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
587                                                 buf_vec, nr_vec,
588                                                 num_buffers) < 0) {
589                         vq->shadow_used_idx -= num_buffers;
590                         break;
591                 }
592
593                 vq->last_avail_idx += num_buffers;
594         }
595
596         do_data_copy_enqueue(dev, vq);
597
598         if (likely(vq->shadow_used_idx)) {
599                 flush_shadow_used_ring(dev, vq);
600                 vhost_vring_call(dev, vq);
601         }
602
603 out:
604         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
605                 vhost_user_iotlb_rd_unlock(vq);
606
607 out_access_unlock:
608         rte_spinlock_unlock(&vq->access_lock);
609
610         return pkt_idx;
611 }
612
613 uint16_t
614 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
615         struct rte_mbuf **pkts, uint16_t count)
616 {
617         struct virtio_net *dev = get_device(vid);
618
619         if (!dev)
620                 return 0;
621
622         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
623                 RTE_LOG(ERR, VHOST_DATA,
624                         "(%d) %s: built-in vhost net backend is disabled.\n",
625                         dev->vid, __func__);
626                 return 0;
627         }
628
629         return virtio_dev_rx(dev, queue_id, pkts, count);
630 }
631
632 static inline bool
633 virtio_net_with_host_offload(struct virtio_net *dev)
634 {
635         if (dev->features &
636                         ((1ULL << VIRTIO_NET_F_CSUM) |
637                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
638                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
639                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
640                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
641                 return true;
642
643         return false;
644 }
645
646 static void
647 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
648 {
649         struct ipv4_hdr *ipv4_hdr;
650         struct ipv6_hdr *ipv6_hdr;
651         void *l3_hdr = NULL;
652         struct ether_hdr *eth_hdr;
653         uint16_t ethertype;
654
655         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
656
657         m->l2_len = sizeof(struct ether_hdr);
658         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
659
660         if (ethertype == ETHER_TYPE_VLAN) {
661                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
662
663                 m->l2_len += sizeof(struct vlan_hdr);
664                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
665         }
666
667         l3_hdr = (char *)eth_hdr + m->l2_len;
668
669         switch (ethertype) {
670         case ETHER_TYPE_IPv4:
671                 ipv4_hdr = l3_hdr;
672                 *l4_proto = ipv4_hdr->next_proto_id;
673                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
674                 *l4_hdr = (char *)l3_hdr + m->l3_len;
675                 m->ol_flags |= PKT_TX_IPV4;
676                 break;
677         case ETHER_TYPE_IPv6:
678                 ipv6_hdr = l3_hdr;
679                 *l4_proto = ipv6_hdr->proto;
680                 m->l3_len = sizeof(struct ipv6_hdr);
681                 *l4_hdr = (char *)l3_hdr + m->l3_len;
682                 m->ol_flags |= PKT_TX_IPV6;
683                 break;
684         default:
685                 m->l3_len = 0;
686                 *l4_proto = 0;
687                 *l4_hdr = NULL;
688                 break;
689         }
690 }
691
692 static __rte_always_inline void
693 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
694 {
695         uint16_t l4_proto = 0;
696         void *l4_hdr = NULL;
697         struct tcp_hdr *tcp_hdr = NULL;
698
699         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
700                 return;
701
702         parse_ethernet(m, &l4_proto, &l4_hdr);
703         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
704                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
705                         switch (hdr->csum_offset) {
706                         case (offsetof(struct tcp_hdr, cksum)):
707                                 if (l4_proto == IPPROTO_TCP)
708                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
709                                 break;
710                         case (offsetof(struct udp_hdr, dgram_cksum)):
711                                 if (l4_proto == IPPROTO_UDP)
712                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
713                                 break;
714                         case (offsetof(struct sctp_hdr, cksum)):
715                                 if (l4_proto == IPPROTO_SCTP)
716                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
717                                 break;
718                         default:
719                                 break;
720                         }
721                 }
722         }
723
724         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
725                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
726                 case VIRTIO_NET_HDR_GSO_TCPV4:
727                 case VIRTIO_NET_HDR_GSO_TCPV6:
728                         tcp_hdr = l4_hdr;
729                         m->ol_flags |= PKT_TX_TCP_SEG;
730                         m->tso_segsz = hdr->gso_size;
731                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
732                         break;
733                 case VIRTIO_NET_HDR_GSO_UDP:
734                         m->ol_flags |= PKT_TX_UDP_SEG;
735                         m->tso_segsz = hdr->gso_size;
736                         m->l4_len = sizeof(struct udp_hdr);
737                         break;
738                 default:
739                         RTE_LOG(WARNING, VHOST_DATA,
740                                 "unsupported gso type %u.\n", hdr->gso_type);
741                         break;
742                 }
743         }
744 }
745
746 static __rte_always_inline void
747 put_zmbuf(struct zcopy_mbuf *zmbuf)
748 {
749         zmbuf->in_use = 0;
750 }
751
752 static __rte_always_inline int
753 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
754                   struct buf_vector *buf_vec, uint16_t nr_vec,
755                   struct rte_mbuf *m, struct rte_mempool *mbuf_pool)
756 {
757         uint32_t buf_avail, buf_offset;
758         uint64_t buf_addr, buf_iova, buf_len;
759         uint32_t mbuf_avail, mbuf_offset;
760         uint32_t cpy_len;
761         struct rte_mbuf *cur = m, *prev = m;
762         struct virtio_net_hdr tmp_hdr;
763         struct virtio_net_hdr *hdr = NULL;
764         /* A counter to avoid desc dead loop chain */
765         uint16_t vec_idx = 0;
766         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
767         int error = 0;
768
769         buf_addr = buf_vec[vec_idx].buf_addr;
770         buf_iova = buf_vec[vec_idx].buf_iova;
771         buf_len = buf_vec[vec_idx].buf_len;
772
773         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
774                 error = -1;
775                 goto out;
776         }
777
778         if (likely(nr_vec > 1))
779                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
780
781         if (virtio_net_with_host_offload(dev)) {
782                 if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) {
783                         uint64_t len;
784                         uint64_t remain = sizeof(struct virtio_net_hdr);
785                         uint64_t src;
786                         uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr;
787                         uint16_t hdr_vec_idx = 0;
788
789                         /*
790                          * No luck, the virtio-net header doesn't fit
791                          * in a contiguous virtual area.
792                          */
793                         while (remain) {
794                                 len = remain;
795                                 src = buf_vec[hdr_vec_idx].buf_addr;
796                                 rte_memcpy((void *)(uintptr_t)dst,
797                                                    (void *)(uintptr_t)src, len);
798
799                                 remain -= len;
800                                 dst += len;
801                                 hdr_vec_idx++;
802                         }
803
804                         hdr = &tmp_hdr;
805                 } else {
806                         hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr);
807                         rte_prefetch0(hdr);
808                 }
809         }
810
811         /*
812          * A virtio driver normally uses at least 2 desc buffers
813          * for Tx: the first for storing the header, and others
814          * for storing the data.
815          */
816         if (unlikely(buf_len < dev->vhost_hlen)) {
817                 buf_offset = dev->vhost_hlen - buf_len;
818                 vec_idx++;
819                 buf_addr = buf_vec[vec_idx].buf_addr;
820                 buf_iova = buf_vec[vec_idx].buf_iova;
821                 buf_len = buf_vec[vec_idx].buf_len;
822                 buf_avail  = buf_len - buf_offset;
823         } else if (buf_len == dev->vhost_hlen) {
824                 if (unlikely(++vec_idx >= nr_vec))
825                         goto out;
826                 buf_addr = buf_vec[vec_idx].buf_addr;
827                 buf_iova = buf_vec[vec_idx].buf_iova;
828                 buf_len = buf_vec[vec_idx].buf_len;
829
830                 buf_offset = 0;
831                 buf_avail = buf_len;
832         } else {
833                 buf_offset = dev->vhost_hlen;
834                 buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
835         }
836
837         rte_prefetch0((void *)(uintptr_t)
838                         (buf_addr + buf_offset));
839
840         PRINT_PACKET(dev,
841                         (uintptr_t)(buf_addr + buf_offset),
842                         (uint32_t)buf_avail, 0);
843
844         mbuf_offset = 0;
845         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
846         while (1) {
847                 uint64_t hpa;
848
849                 cpy_len = RTE_MIN(buf_avail, mbuf_avail);
850
851                 /*
852                  * A desc buf might across two host physical pages that are
853                  * not continuous. In such case (gpa_to_hpa returns 0), data
854                  * will be copied even though zero copy is enabled.
855                  */
856                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
857                                         buf_iova + buf_offset, cpy_len)))) {
858                         cur->data_len = cpy_len;
859                         cur->data_off = 0;
860                         cur->buf_addr =
861                                 (void *)(uintptr_t)(buf_addr + buf_offset);
862                         cur->buf_iova = hpa;
863
864                         /*
865                          * In zero copy mode, one mbuf can only reference data
866                          * for one or partial of one desc buff.
867                          */
868                         mbuf_avail = cpy_len;
869                 } else {
870                         if (likely(cpy_len > MAX_BATCH_LEN ||
871                                    vq->batch_copy_nb_elems >= vq->size ||
872                                    (hdr && cur == m))) {
873                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
874                                                                    mbuf_offset),
875                                            (void *)((uintptr_t)(buf_addr +
876                                                            buf_offset)),
877                                            cpy_len);
878                         } else {
879                                 batch_copy[vq->batch_copy_nb_elems].dst =
880                                         rte_pktmbuf_mtod_offset(cur, void *,
881                                                                 mbuf_offset);
882                                 batch_copy[vq->batch_copy_nb_elems].src =
883                                         (void *)((uintptr_t)(buf_addr +
884                                                                 buf_offset));
885                                 batch_copy[vq->batch_copy_nb_elems].len =
886                                         cpy_len;
887                                 vq->batch_copy_nb_elems++;
888                         }
889                 }
890
891                 mbuf_avail  -= cpy_len;
892                 mbuf_offset += cpy_len;
893                 buf_avail -= cpy_len;
894                 buf_offset += cpy_len;
895
896                 /* This buf reaches to its end, get the next one */
897                 if (buf_avail == 0) {
898                         if (++vec_idx >= nr_vec)
899                                 break;
900
901                         buf_addr = buf_vec[vec_idx].buf_addr;
902                         buf_iova = buf_vec[vec_idx].buf_iova;
903                         buf_len = buf_vec[vec_idx].buf_len;
904
905                         rte_prefetch0((void *)(uintptr_t)buf_addr);
906
907                         buf_offset = 0;
908                         buf_avail  = buf_len;
909
910                         PRINT_PACKET(dev, (uintptr_t)buf_addr,
911                                         (uint32_t)buf_avail, 0);
912                 }
913
914                 /*
915                  * This mbuf reaches to its end, get a new one
916                  * to hold more data.
917                  */
918                 if (mbuf_avail == 0) {
919                         cur = rte_pktmbuf_alloc(mbuf_pool);
920                         if (unlikely(cur == NULL)) {
921                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
922                                         "allocate memory for mbuf.\n");
923                                 error = -1;
924                                 goto out;
925                         }
926                         if (unlikely(dev->dequeue_zero_copy))
927                                 rte_mbuf_refcnt_update(cur, 1);
928
929                         prev->next = cur;
930                         prev->data_len = mbuf_offset;
931                         m->nb_segs += 1;
932                         m->pkt_len += mbuf_offset;
933                         prev = cur;
934
935                         mbuf_offset = 0;
936                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
937                 }
938         }
939
940         prev->data_len = mbuf_offset;
941         m->pkt_len    += mbuf_offset;
942
943         if (hdr)
944                 vhost_dequeue_offload(hdr, m);
945
946 out:
947
948         return error;
949 }
950
951 static __rte_always_inline struct zcopy_mbuf *
952 get_zmbuf(struct vhost_virtqueue *vq)
953 {
954         uint16_t i;
955         uint16_t last;
956         int tries = 0;
957
958         /* search [last_zmbuf_idx, zmbuf_size) */
959         i = vq->last_zmbuf_idx;
960         last = vq->zmbuf_size;
961
962 again:
963         for (; i < last; i++) {
964                 if (vq->zmbufs[i].in_use == 0) {
965                         vq->last_zmbuf_idx = i + 1;
966                         vq->zmbufs[i].in_use = 1;
967                         return &vq->zmbufs[i];
968                 }
969         }
970
971         tries++;
972         if (tries == 1) {
973                 /* search [0, last_zmbuf_idx) */
974                 i = 0;
975                 last = vq->last_zmbuf_idx;
976                 goto again;
977         }
978
979         return NULL;
980 }
981
982 static __rte_always_inline bool
983 mbuf_is_consumed(struct rte_mbuf *m)
984 {
985         while (m) {
986                 if (rte_mbuf_refcnt_read(m) > 1)
987                         return false;
988                 m = m->next;
989         }
990
991         return true;
992 }
993
994 static __rte_always_inline void
995 restore_mbuf(struct rte_mbuf *m)
996 {
997         uint32_t mbuf_size, priv_size;
998
999         while (m) {
1000                 priv_size = rte_pktmbuf_priv_size(m->pool);
1001                 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
1002                 /* start of buffer is after mbuf structure and priv data */
1003
1004                 m->buf_addr = (char *)m + mbuf_size;
1005                 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1006                 m = m->next;
1007         }
1008 }
1009
1010 uint16_t
1011 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1012         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1013 {
1014         struct virtio_net *dev;
1015         struct rte_mbuf *rarp_mbuf = NULL;
1016         struct vhost_virtqueue *vq;
1017         uint32_t i = 0;
1018         uint16_t free_entries;
1019
1020         dev = get_device(vid);
1021         if (!dev)
1022                 return 0;
1023
1024         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
1025                 RTE_LOG(ERR, VHOST_DATA,
1026                         "(%d) %s: built-in vhost net backend is disabled.\n",
1027                         dev->vid, __func__);
1028                 return 0;
1029         }
1030
1031         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1032                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1033                         dev->vid, __func__, queue_id);
1034                 return 0;
1035         }
1036
1037         vq = dev->virtqueue[queue_id];
1038
1039         if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
1040                 return 0;
1041
1042         if (unlikely(vq->enabled == 0))
1043                 goto out_access_unlock;
1044
1045         vq->batch_copy_nb_elems = 0;
1046         vq->shadow_used_idx = 0;
1047
1048         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1049                 vhost_user_iotlb_rd_lock(vq);
1050
1051         if (unlikely(vq->access_ok == 0))
1052                 if (unlikely(vring_translate(dev, vq) < 0))
1053                         goto out;
1054
1055         if (unlikely(dev->dequeue_zero_copy)) {
1056                 struct zcopy_mbuf *zmbuf, *next;
1057                 int nr_updated = 0;
1058
1059                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1060                      zmbuf != NULL; zmbuf = next) {
1061                         next = TAILQ_NEXT(zmbuf, next);
1062
1063                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1064                                 update_shadow_used_ring(vq, zmbuf->desc_idx, 0);
1065                                 nr_updated += 1;
1066
1067                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1068                                 restore_mbuf(zmbuf->mbuf);
1069                                 rte_pktmbuf_free(zmbuf->mbuf);
1070                                 put_zmbuf(zmbuf);
1071                                 vq->nr_zmbuf -= 1;
1072                         }
1073                 }
1074
1075                 flush_shadow_used_ring(dev, vq);
1076                 vhost_vring_call(dev, vq);
1077                 vq->shadow_used_idx = 0;
1078         }
1079
1080         /*
1081          * Construct a RARP broadcast packet, and inject it to the "pkts"
1082          * array, to looks like that guest actually send such packet.
1083          *
1084          * Check user_send_rarp() for more information.
1085          *
1086          * broadcast_rarp shares a cacheline in the virtio_net structure
1087          * with some fields that are accessed during enqueue and
1088          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1089          * result in false sharing between enqueue and dequeue.
1090          *
1091          * Prevent unnecessary false sharing by reading broadcast_rarp first
1092          * and only performing cmpset if the read indicates it is likely to
1093          * be set.
1094          */
1095
1096         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1097                         rte_atomic16_cmpset((volatile uint16_t *)
1098                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1099
1100                 rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
1101                 if (rarp_mbuf == NULL) {
1102                         RTE_LOG(ERR, VHOST_DATA,
1103                                 "Failed to make RARP packet.\n");
1104                         return 0;
1105                 }
1106                 count -= 1;
1107         }
1108
1109         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1110                         vq->last_avail_idx;
1111         if (free_entries == 0)
1112                 goto out;
1113
1114         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1115
1116         count = RTE_MIN(count, MAX_PKT_BURST);
1117         count = RTE_MIN(count, free_entries);
1118         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1119                         dev->vid, count);
1120
1121         for (i = 0; i < count; i++) {
1122                 struct buf_vector buf_vec[BUF_VECTOR_MAX];
1123                 uint16_t head_idx, dummy_len;
1124                 uint32_t nr_vec = 0;
1125                 int err;
1126
1127                 if (unlikely(fill_vec_buf(dev, vq,
1128                                                 vq->last_avail_idx + i,
1129                                                 &nr_vec, buf_vec,
1130                                                 &head_idx, &dummy_len,
1131                                                 VHOST_ACCESS_RO) < 0))
1132                         break;
1133
1134                 if (likely(dev->dequeue_zero_copy == 0))
1135                         update_shadow_used_ring(vq, head_idx, 0);
1136
1137                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1138                 if (unlikely(pkts[i] == NULL)) {
1139                         RTE_LOG(ERR, VHOST_DATA,
1140                                 "Failed to allocate memory for mbuf.\n");
1141                         break;
1142                 }
1143
1144                 err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
1145                                 mbuf_pool);
1146                 if (unlikely(err)) {
1147                         rte_pktmbuf_free(pkts[i]);
1148                         break;
1149                 }
1150
1151                 if (unlikely(dev->dequeue_zero_copy)) {
1152                         struct zcopy_mbuf *zmbuf;
1153
1154                         zmbuf = get_zmbuf(vq);
1155                         if (!zmbuf) {
1156                                 rte_pktmbuf_free(pkts[i]);
1157                                 break;
1158                         }
1159                         zmbuf->mbuf = pkts[i];
1160                         zmbuf->desc_idx = head_idx;
1161
1162                         /*
1163                          * Pin lock the mbuf; we will check later to see
1164                          * whether the mbuf is freed (when we are the last
1165                          * user) or not. If that's the case, we then could
1166                          * update the used ring safely.
1167                          */
1168                         rte_mbuf_refcnt_update(pkts[i], 1);
1169
1170                         vq->nr_zmbuf += 1;
1171                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1172                 }
1173         }
1174         vq->last_avail_idx += i;
1175
1176         if (likely(dev->dequeue_zero_copy == 0)) {
1177                 do_data_copy_dequeue(vq);
1178                 if (unlikely(i < count))
1179                         vq->shadow_used_idx = i;
1180                 flush_shadow_used_ring(dev, vq);
1181                 vhost_vring_call(dev, vq);
1182         }
1183
1184 out:
1185         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1186                 vhost_user_iotlb_rd_unlock(vq);
1187
1188 out_access_unlock:
1189         rte_spinlock_unlock(&vq->access_lock);
1190
1191         if (unlikely(rarp_mbuf != NULL)) {
1192                 /*
1193                  * Inject it to the head of "pkts" array, so that switch's mac
1194                  * learning table will get updated first.
1195                  */
1196                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1197                 pkts[0] = rarp_mbuf;
1198                 i += 1;
1199         }
1200
1201         return i;
1202 }