862ca5e1aff6f60c81581f076975fdff9d68bfc6
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18 #include <rte_spinlock.h>
19 #include <rte_malloc.h>
20
21 #include "iotlb.h"
22 #include "vhost.h"
23
24 #define MAX_PKT_BURST 32
25
26 #define MAX_BATCH_LEN 256
27
28 static  __rte_always_inline bool
29 rxvq_is_mergeable(struct virtio_net *dev)
30 {
31         return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
32 }
33
34 static bool
35 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
36 {
37         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
38 }
39
40 static __rte_always_inline void
41 do_flush_shadow_used_ring_split(struct virtio_net *dev,
42                         struct vhost_virtqueue *vq,
43                         uint16_t to, uint16_t from, uint16_t size)
44 {
45         rte_memcpy(&vq->used->ring[to],
46                         &vq->shadow_used_split[from],
47                         size * sizeof(struct vring_used_elem));
48         vhost_log_cache_used_vring(dev, vq,
49                         offsetof(struct vring_used, ring[to]),
50                         size * sizeof(struct vring_used_elem));
51 }
52
53 static __rte_always_inline void
54 flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
55 {
56         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
57
58         if (used_idx + vq->shadow_used_idx <= vq->size) {
59                 do_flush_shadow_used_ring_split(dev, vq, used_idx, 0,
60                                           vq->shadow_used_idx);
61         } else {
62                 uint16_t size;
63
64                 /* update used ring interval [used_idx, vq->size] */
65                 size = vq->size - used_idx;
66                 do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size);
67
68                 /* update the left half used ring interval [0, left_size] */
69                 do_flush_shadow_used_ring_split(dev, vq, 0, size,
70                                           vq->shadow_used_idx - size);
71         }
72         vq->last_used_idx += vq->shadow_used_idx;
73
74         rte_smp_wmb();
75
76         vhost_log_cache_sync(dev, vq);
77
78         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
79         vq->shadow_used_idx = 0;
80         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
81                 sizeof(vq->used->idx));
82 }
83
84 static __rte_always_inline void
85 update_shadow_used_ring_split(struct vhost_virtqueue *vq,
86                          uint16_t desc_idx, uint32_t len)
87 {
88         uint16_t i = vq->shadow_used_idx++;
89
90         vq->shadow_used_split[i].id  = desc_idx;
91         vq->shadow_used_split[i].len = len;
92 }
93
94 static __rte_always_inline void
95 flush_shadow_used_ring_packed(struct virtio_net *dev,
96                         struct vhost_virtqueue *vq)
97 {
98         int i;
99         uint16_t used_idx = vq->last_used_idx;
100         uint16_t head_idx = vq->last_used_idx;
101         uint16_t head_flags = 0;
102
103         /* Split loop in two to save memory barriers */
104         for (i = 0; i < vq->shadow_used_idx; i++) {
105                 vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id;
106                 vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len;
107
108                 used_idx += vq->shadow_used_packed[i].count;
109                 if (used_idx >= vq->size)
110                         used_idx -= vq->size;
111         }
112
113         rte_smp_wmb();
114
115         for (i = 0; i < vq->shadow_used_idx; i++) {
116                 uint16_t flags;
117
118                 if (vq->shadow_used_packed[i].len)
119                         flags = VRING_DESC_F_WRITE;
120                 else
121                         flags = 0;
122
123                 if (vq->used_wrap_counter) {
124                         flags |= VRING_DESC_F_USED;
125                         flags |= VRING_DESC_F_AVAIL;
126                 } else {
127                         flags &= ~VRING_DESC_F_USED;
128                         flags &= ~VRING_DESC_F_AVAIL;
129                 }
130
131                 if (i > 0) {
132                         vq->desc_packed[vq->last_used_idx].flags = flags;
133
134                         vhost_log_cache_used_vring(dev, vq,
135                                         vq->last_used_idx *
136                                         sizeof(struct vring_packed_desc),
137                                         sizeof(struct vring_packed_desc));
138                 } else {
139                         head_idx = vq->last_used_idx;
140                         head_flags = flags;
141                 }
142
143                 vq->last_used_idx += vq->shadow_used_packed[i].count;
144                 if (vq->last_used_idx >= vq->size) {
145                         vq->used_wrap_counter ^= 1;
146                         vq->last_used_idx -= vq->size;
147                 }
148         }
149
150         vq->desc_packed[head_idx].flags = head_flags;
151
152         vhost_log_cache_used_vring(dev, vq,
153                                 head_idx *
154                                 sizeof(struct vring_packed_desc),
155                                 sizeof(struct vring_packed_desc));
156
157         vq->shadow_used_idx = 0;
158         vhost_log_cache_sync(dev, vq);
159 }
160
161 static __rte_always_inline void
162 update_shadow_used_ring_packed(struct vhost_virtqueue *vq,
163                          uint16_t desc_idx, uint32_t len, uint16_t count)
164 {
165         uint16_t i = vq->shadow_used_idx++;
166
167         vq->shadow_used_packed[i].id  = desc_idx;
168         vq->shadow_used_packed[i].len = len;
169         vq->shadow_used_packed[i].count = count;
170 }
171
172 static inline void
173 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
174 {
175         struct batch_copy_elem *elem = vq->batch_copy_elems;
176         uint16_t count = vq->batch_copy_nb_elems;
177         int i;
178
179         for (i = 0; i < count; i++) {
180                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
181                 vhost_log_cache_write(dev, vq, elem[i].log_addr, elem[i].len);
182                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
183         }
184
185         vq->batch_copy_nb_elems = 0;
186 }
187
188 static inline void
189 do_data_copy_dequeue(struct vhost_virtqueue *vq)
190 {
191         struct batch_copy_elem *elem = vq->batch_copy_elems;
192         uint16_t count = vq->batch_copy_nb_elems;
193         int i;
194
195         for (i = 0; i < count; i++)
196                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
197
198         vq->batch_copy_nb_elems = 0;
199 }
200
201 /* avoid write operation when necessary, to lessen cache issues */
202 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
203         if ((var) != (val))                     \
204                 (var) = (val);                  \
205 } while (0)
206
207 static __rte_always_inline void
208 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
209 {
210         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
211
212         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
213                 csum_l4 |= PKT_TX_TCP_CKSUM;
214
215         if (csum_l4) {
216                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
217                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
218
219                 switch (csum_l4) {
220                 case PKT_TX_TCP_CKSUM:
221                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
222                                                 cksum));
223                         break;
224                 case PKT_TX_UDP_CKSUM:
225                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
226                                                 dgram_cksum));
227                         break;
228                 case PKT_TX_SCTP_CKSUM:
229                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
230                                                 cksum));
231                         break;
232                 }
233         } else {
234                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
235                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
236                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
237         }
238
239         /* IP cksum verification cannot be bypassed, then calculate here */
240         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
241                 struct ipv4_hdr *ipv4_hdr;
242
243                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
244                                                    m_buf->l2_len);
245                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
246         }
247
248         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
249                 if (m_buf->ol_flags & PKT_TX_IPV4)
250                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
251                 else
252                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
253                 net_hdr->gso_size = m_buf->tso_segsz;
254                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
255                                         + m_buf->l4_len;
256         } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
257                 net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
258                 net_hdr->gso_size = m_buf->tso_segsz;
259                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
260                         m_buf->l4_len;
261         } else {
262                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
263                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
264                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
265         }
266 }
267
268 static __rte_always_inline int
269 map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
270                 struct buf_vector *buf_vec, uint16_t *vec_idx,
271                 uint64_t desc_iova, uint64_t desc_len, uint8_t perm)
272 {
273         uint16_t vec_id = *vec_idx;
274
275         while (desc_len) {
276                 uint64_t desc_addr;
277                 uint64_t desc_chunck_len = desc_len;
278
279                 if (unlikely(vec_id >= BUF_VECTOR_MAX))
280                         return -1;
281
282                 desc_addr = vhost_iova_to_vva(dev, vq,
283                                 desc_iova,
284                                 &desc_chunck_len,
285                                 perm);
286                 if (unlikely(!desc_addr))
287                         return -1;
288
289                 buf_vec[vec_id].buf_iova = desc_iova;
290                 buf_vec[vec_id].buf_addr = desc_addr;
291                 buf_vec[vec_id].buf_len  = desc_chunck_len;
292
293                 desc_len -= desc_chunck_len;
294                 desc_iova += desc_chunck_len;
295                 vec_id++;
296         }
297         *vec_idx = vec_id;
298
299         return 0;
300 }
301
302 static __rte_always_inline int
303 fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
304                          uint32_t avail_idx, uint16_t *vec_idx,
305                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
306                          uint32_t *desc_chain_len, uint8_t perm)
307 {
308         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
309         uint16_t vec_id = *vec_idx;
310         uint32_t len    = 0;
311         uint64_t dlen;
312         uint32_t nr_descs = vq->size;
313         uint32_t cnt    = 0;
314         struct vring_desc *descs = vq->desc;
315         struct vring_desc *idesc = NULL;
316
317         if (unlikely(idx >= vq->size))
318                 return -1;
319
320         *desc_chain_head = idx;
321
322         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
323                 dlen = vq->desc[idx].len;
324                 nr_descs = dlen / sizeof(struct vring_desc);
325                 if (unlikely(nr_descs > vq->size))
326                         return -1;
327
328                 descs = (struct vring_desc *)(uintptr_t)
329                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
330                                                 &dlen,
331                                                 VHOST_ACCESS_RO);
332                 if (unlikely(!descs))
333                         return -1;
334
335                 if (unlikely(dlen < vq->desc[idx].len)) {
336                         /*
337                          * The indirect desc table is not contiguous
338                          * in process VA space, we have to copy it.
339                          */
340                         idesc = alloc_copy_ind_table(dev, vq,
341                                         vq->desc[idx].addr, vq->desc[idx].len);
342                         if (unlikely(!idesc))
343                                 return -1;
344
345                         descs = idesc;
346                 }
347
348                 idx = 0;
349         }
350
351         while (1) {
352                 if (unlikely(idx >= nr_descs || cnt++ >= nr_descs)) {
353                         free_ind_table(idesc);
354                         return -1;
355                 }
356
357                 len += descs[idx].len;
358
359                 if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
360                                                 descs[idx].addr, descs[idx].len,
361                                                 perm))) {
362                         free_ind_table(idesc);
363                         return -1;
364                 }
365
366                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
367                         break;
368
369                 idx = descs[idx].next;
370         }
371
372         *desc_chain_len = len;
373         *vec_idx = vec_id;
374
375         if (unlikely(!!idesc))
376                 free_ind_table(idesc);
377
378         return 0;
379 }
380
381 /*
382  * Returns -1 on fail, 0 on success
383  */
384 static inline int
385 reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
386                                 uint32_t size, struct buf_vector *buf_vec,
387                                 uint16_t *num_buffers, uint16_t avail_head,
388                                 uint16_t *nr_vec)
389 {
390         uint16_t cur_idx;
391         uint16_t vec_idx = 0;
392         uint16_t max_tries, tries = 0;
393
394         uint16_t head_idx = 0;
395         uint32_t len = 0;
396
397         *num_buffers = 0;
398         cur_idx  = vq->last_avail_idx;
399
400         if (rxvq_is_mergeable(dev))
401                 max_tries = vq->size - 1;
402         else
403                 max_tries = 1;
404
405         while (size > 0) {
406                 if (unlikely(cur_idx == avail_head))
407                         return -1;
408                 /*
409                  * if we tried all available ring items, and still
410                  * can't get enough buf, it means something abnormal
411                  * happened.
412                  */
413                 if (unlikely(++tries > max_tries))
414                         return -1;
415
416                 if (unlikely(fill_vec_buf_split(dev, vq, cur_idx,
417                                                 &vec_idx, buf_vec,
418                                                 &head_idx, &len,
419                                                 VHOST_ACCESS_RW) < 0))
420                         return -1;
421                 len = RTE_MIN(len, size);
422                 update_shadow_used_ring_split(vq, head_idx, len);
423                 size -= len;
424
425                 cur_idx++;
426                 *num_buffers += 1;
427         }
428
429         *nr_vec = vec_idx;
430
431         return 0;
432 }
433
434 static __rte_always_inline int
435 fill_vec_buf_packed_indirect(struct virtio_net *dev,
436                         struct vhost_virtqueue *vq,
437                         struct vring_packed_desc *desc, uint16_t *vec_idx,
438                         struct buf_vector *buf_vec, uint32_t *len, uint8_t perm)
439 {
440         uint16_t i;
441         uint32_t nr_descs;
442         uint16_t vec_id = *vec_idx;
443         uint64_t dlen;
444         struct vring_packed_desc *descs, *idescs = NULL;
445
446         dlen = desc->len;
447         descs = (struct vring_packed_desc *)(uintptr_t)
448                 vhost_iova_to_vva(dev, vq, desc->addr, &dlen, VHOST_ACCESS_RO);
449         if (unlikely(!descs))
450                 return -1;
451
452         if (unlikely(dlen < desc->len)) {
453                 /*
454                  * The indirect desc table is not contiguous
455                  * in process VA space, we have to copy it.
456                  */
457                 idescs = alloc_copy_ind_table(dev, vq, desc->addr, desc->len);
458                 if (unlikely(!idescs))
459                         return -1;
460
461                 descs = idescs;
462         }
463
464         nr_descs =  desc->len / sizeof(struct vring_packed_desc);
465         if (unlikely(nr_descs >= vq->size)) {
466                 free_ind_table(idescs);
467                 return -1;
468         }
469
470         for (i = 0; i < nr_descs; i++) {
471                 if (unlikely(vec_id >= BUF_VECTOR_MAX)) {
472                         free_ind_table(idescs);
473                         return -1;
474                 }
475
476                 *len += descs[i].len;
477                 if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
478                                                 descs[i].addr, descs[i].len,
479                                                 perm)))
480                         return -1;
481         }
482         *vec_idx = vec_id;
483
484         if (unlikely(!!idescs))
485                 free_ind_table(idescs);
486
487         return 0;
488 }
489
490 static __rte_always_inline int
491 fill_vec_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
492                                 uint16_t avail_idx, uint16_t *desc_count,
493                                 struct buf_vector *buf_vec, uint16_t *vec_idx,
494                                 uint16_t *buf_id, uint32_t *len, uint8_t perm)
495 {
496         bool wrap_counter = vq->avail_wrap_counter;
497         struct vring_packed_desc *descs = vq->desc_packed;
498         uint16_t vec_id = *vec_idx;
499
500         if (avail_idx < vq->last_avail_idx)
501                 wrap_counter ^= 1;
502
503         if (unlikely(!desc_is_avail(&descs[avail_idx], wrap_counter)))
504                 return -1;
505
506         /*
507          * The ordering between desc flags and desc
508          * content reads need to be enforced.
509          */
510         rte_smp_rmb();
511
512         *desc_count = 0;
513         *len = 0;
514
515         while (1) {
516                 if (unlikely(vec_id >= BUF_VECTOR_MAX))
517                         return -1;
518
519                 if (unlikely(*desc_count >= vq->size))
520                         return -1;
521
522                 *desc_count += 1;
523                 *buf_id = descs[avail_idx].id;
524
525                 if (descs[avail_idx].flags & VRING_DESC_F_INDIRECT) {
526                         if (unlikely(fill_vec_buf_packed_indirect(dev, vq,
527                                                         &descs[avail_idx],
528                                                         &vec_id, buf_vec,
529                                                         len, perm) < 0))
530                                 return -1;
531                 } else {
532                         *len += descs[avail_idx].len;
533
534                         if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
535                                                         descs[avail_idx].addr,
536                                                         descs[avail_idx].len,
537                                                         perm)))
538                                 return -1;
539                 }
540
541                 if ((descs[avail_idx].flags & VRING_DESC_F_NEXT) == 0)
542                         break;
543
544                 if (++avail_idx >= vq->size) {
545                         avail_idx -= vq->size;
546                         wrap_counter ^= 1;
547                 }
548         }
549
550         *vec_idx = vec_id;
551
552         return 0;
553 }
554
555 /*
556  * Returns -1 on fail, 0 on success
557  */
558 static inline int
559 reserve_avail_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
560                                 uint32_t size, struct buf_vector *buf_vec,
561                                 uint16_t *nr_vec, uint16_t *num_buffers,
562                                 uint16_t *nr_descs)
563 {
564         uint16_t avail_idx;
565         uint16_t vec_idx = 0;
566         uint16_t max_tries, tries = 0;
567
568         uint16_t buf_id = 0;
569         uint32_t len = 0;
570         uint16_t desc_count;
571
572         *num_buffers = 0;
573         avail_idx = vq->last_avail_idx;
574
575         if (rxvq_is_mergeable(dev))
576                 max_tries = vq->size - 1;
577         else
578                 max_tries = 1;
579
580         while (size > 0) {
581                 /*
582                  * if we tried all available ring items, and still
583                  * can't get enough buf, it means something abnormal
584                  * happened.
585                  */
586                 if (unlikely(++tries > max_tries))
587                         return -1;
588
589                 if (unlikely(fill_vec_buf_packed(dev, vq,
590                                                 avail_idx, &desc_count,
591                                                 buf_vec, &vec_idx,
592                                                 &buf_id, &len,
593                                                 VHOST_ACCESS_RW) < 0))
594                         return -1;
595
596                 len = RTE_MIN(len, size);
597                 update_shadow_used_ring_packed(vq, buf_id, len, desc_count);
598                 size -= len;
599
600                 avail_idx += desc_count;
601                 if (avail_idx >= vq->size)
602                         avail_idx -= vq->size;
603
604                 *nr_descs += desc_count;
605                 *num_buffers += 1;
606         }
607
608         *nr_vec = vec_idx;
609
610         return 0;
611 }
612
613 static __rte_always_inline int
614 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
615                             struct rte_mbuf *m, struct buf_vector *buf_vec,
616                             uint16_t nr_vec, uint16_t num_buffers)
617 {
618         uint32_t vec_idx = 0;
619         uint32_t mbuf_offset, mbuf_avail;
620         uint32_t buf_offset, buf_avail;
621         uint64_t buf_addr, buf_iova, buf_len;
622         uint32_t cpy_len;
623         uint64_t hdr_addr;
624         struct rte_mbuf *hdr_mbuf;
625         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
626         struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
627         int error = 0;
628
629         if (unlikely(m == NULL)) {
630                 error = -1;
631                 goto out;
632         }
633
634         buf_addr = buf_vec[vec_idx].buf_addr;
635         buf_iova = buf_vec[vec_idx].buf_iova;
636         buf_len = buf_vec[vec_idx].buf_len;
637
638         if (nr_vec > 1)
639                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
640
641         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
642                 error = -1;
643                 goto out;
644         }
645
646         hdr_mbuf = m;
647         hdr_addr = buf_addr;
648         if (unlikely(buf_len < dev->vhost_hlen))
649                 hdr = &tmp_hdr;
650         else
651                 hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
652
653         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
654                 dev->vid, num_buffers);
655
656         if (unlikely(buf_len < dev->vhost_hlen)) {
657                 buf_offset = dev->vhost_hlen - buf_len;
658                 vec_idx++;
659                 buf_addr = buf_vec[vec_idx].buf_addr;
660                 buf_iova = buf_vec[vec_idx].buf_iova;
661                 buf_len = buf_vec[vec_idx].buf_len;
662                 buf_avail = buf_len - buf_offset;
663         } else {
664                 buf_offset = dev->vhost_hlen;
665                 buf_avail = buf_len - dev->vhost_hlen;
666         }
667
668         mbuf_avail  = rte_pktmbuf_data_len(m);
669         mbuf_offset = 0;
670         while (mbuf_avail != 0 || m->next != NULL) {
671                 /* done with current buf, get the next one */
672                 if (buf_avail == 0) {
673                         vec_idx++;
674                         if (unlikely(vec_idx >= nr_vec)) {
675                                 error = -1;
676                                 goto out;
677                         }
678
679                         buf_addr = buf_vec[vec_idx].buf_addr;
680                         buf_iova = buf_vec[vec_idx].buf_iova;
681                         buf_len = buf_vec[vec_idx].buf_len;
682
683                         /* Prefetch next buffer address. */
684                         if (vec_idx + 1 < nr_vec)
685                                 rte_prefetch0((void *)(uintptr_t)
686                                                 buf_vec[vec_idx + 1].buf_addr);
687                         buf_offset = 0;
688                         buf_avail  = buf_len;
689                 }
690
691                 /* done with current mbuf, get the next one */
692                 if (mbuf_avail == 0) {
693                         m = m->next;
694
695                         mbuf_offset = 0;
696                         mbuf_avail  = rte_pktmbuf_data_len(m);
697                 }
698
699                 if (hdr_addr) {
700                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
701                         if (rxvq_is_mergeable(dev))
702                                 ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
703                                                 num_buffers);
704
705                         if (unlikely(hdr == &tmp_hdr)) {
706                                 uint64_t len;
707                                 uint64_t remain = dev->vhost_hlen;
708                                 uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
709                                 uint64_t iova = buf_vec[0].buf_iova;
710                                 uint16_t hdr_vec_idx = 0;
711
712                                 while (remain) {
713                                         len = RTE_MIN(remain,
714                                                 buf_vec[hdr_vec_idx].buf_len);
715                                         dst = buf_vec[hdr_vec_idx].buf_addr;
716                                         rte_memcpy((void *)(uintptr_t)dst,
717                                                         (void *)(uintptr_t)src,
718                                                         len);
719
720                                         PRINT_PACKET(dev, (uintptr_t)dst,
721                                                         (uint32_t)len, 0);
722                                         vhost_log_cache_write(dev, vq,
723                                                         iova, len);
724
725                                         remain -= len;
726                                         iova += len;
727                                         src += len;
728                                         hdr_vec_idx++;
729                                 }
730                         } else {
731                                 PRINT_PACKET(dev, (uintptr_t)hdr_addr,
732                                                 dev->vhost_hlen, 0);
733                                 vhost_log_cache_write(dev, vq,
734                                                 buf_vec[0].buf_iova,
735                                                 dev->vhost_hlen);
736                         }
737
738                         hdr_addr = 0;
739                 }
740
741                 cpy_len = RTE_MIN(buf_avail, mbuf_avail);
742
743                 if (likely(cpy_len > MAX_BATCH_LEN ||
744                                         vq->batch_copy_nb_elems >= vq->size)) {
745                         rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)),
746                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
747                                 cpy_len);
748                         vhost_log_cache_write(dev, vq, buf_iova + buf_offset,
749                                         cpy_len);
750                         PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset),
751                                 cpy_len, 0);
752                 } else {
753                         batch_copy[vq->batch_copy_nb_elems].dst =
754                                 (void *)((uintptr_t)(buf_addr + buf_offset));
755                         batch_copy[vq->batch_copy_nb_elems].src =
756                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
757                         batch_copy[vq->batch_copy_nb_elems].log_addr =
758                                 buf_iova + buf_offset;
759                         batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
760                         vq->batch_copy_nb_elems++;
761                 }
762
763                 mbuf_avail  -= cpy_len;
764                 mbuf_offset += cpy_len;
765                 buf_avail  -= cpy_len;
766                 buf_offset += cpy_len;
767         }
768
769 out:
770
771         return error;
772 }
773
774 static __rte_always_inline uint32_t
775 virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
776         struct rte_mbuf **pkts, uint32_t count)
777 {
778         uint32_t pkt_idx = 0;
779         uint16_t num_buffers;
780         struct buf_vector buf_vec[BUF_VECTOR_MAX];
781         uint16_t avail_head;
782
783         avail_head = *((volatile uint16_t *)&vq->avail->idx);
784
785         /*
786          * The ordering between avail index and
787          * desc reads needs to be enforced.
788          */
789         rte_smp_rmb();
790
791         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
792
793         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
794                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
795                 uint16_t nr_vec = 0;
796
797                 if (unlikely(reserve_avail_buf_split(dev, vq,
798                                                 pkt_len, buf_vec, &num_buffers,
799                                                 avail_head, &nr_vec) < 0)) {
800                         VHOST_LOG_DEBUG(VHOST_DATA,
801                                 "(%d) failed to get enough desc from vring\n",
802                                 dev->vid);
803                         vq->shadow_used_idx -= num_buffers;
804                         break;
805                 }
806
807                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
808
809                 VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
810                         dev->vid, vq->last_avail_idx,
811                         vq->last_avail_idx + num_buffers);
812
813                 if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
814                                                 buf_vec, nr_vec,
815                                                 num_buffers) < 0) {
816                         vq->shadow_used_idx -= num_buffers;
817                         break;
818                 }
819
820                 vq->last_avail_idx += num_buffers;
821         }
822
823         do_data_copy_enqueue(dev, vq);
824
825         if (likely(vq->shadow_used_idx)) {
826                 flush_shadow_used_ring_split(dev, vq);
827                 vhost_vring_call_split(dev, vq);
828         }
829
830         return pkt_idx;
831 }
832
833 static __rte_always_inline uint32_t
834 virtio_dev_rx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
835         struct rte_mbuf **pkts, uint32_t count)
836 {
837         uint32_t pkt_idx = 0;
838         uint16_t num_buffers;
839         struct buf_vector buf_vec[BUF_VECTOR_MAX];
840
841         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
842                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
843                 uint16_t nr_vec = 0;
844                 uint16_t nr_descs = 0;
845
846                 if (unlikely(reserve_avail_buf_packed(dev, vq,
847                                                 pkt_len, buf_vec, &nr_vec,
848                                                 &num_buffers, &nr_descs) < 0)) {
849                         VHOST_LOG_DEBUG(VHOST_DATA,
850                                 "(%d) failed to get enough desc from vring\n",
851                                 dev->vid);
852                         vq->shadow_used_idx -= num_buffers;
853                         break;
854                 }
855
856                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
857
858                 VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
859                         dev->vid, vq->last_avail_idx,
860                         vq->last_avail_idx + num_buffers);
861
862                 if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
863                                                 buf_vec, nr_vec,
864                                                 num_buffers) < 0) {
865                         vq->shadow_used_idx -= num_buffers;
866                         break;
867                 }
868
869                 vq->last_avail_idx += nr_descs;
870                 if (vq->last_avail_idx >= vq->size) {
871                         vq->last_avail_idx -= vq->size;
872                         vq->avail_wrap_counter ^= 1;
873                 }
874         }
875
876         do_data_copy_enqueue(dev, vq);
877
878         if (likely(vq->shadow_used_idx)) {
879                 flush_shadow_used_ring_packed(dev, vq);
880                 vhost_vring_call_packed(dev, vq);
881         }
882
883         return pkt_idx;
884 }
885
886 static __rte_always_inline uint32_t
887 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
888         struct rte_mbuf **pkts, uint32_t count)
889 {
890         struct vhost_virtqueue *vq;
891         uint32_t nb_tx = 0;
892
893         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
894         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
895                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
896                         dev->vid, __func__, queue_id);
897                 return 0;
898         }
899
900         vq = dev->virtqueue[queue_id];
901
902         rte_spinlock_lock(&vq->access_lock);
903
904         if (unlikely(vq->enabled == 0))
905                 goto out_access_unlock;
906
907         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
908                 vhost_user_iotlb_rd_lock(vq);
909
910         if (unlikely(vq->access_ok == 0))
911                 if (unlikely(vring_translate(dev, vq) < 0))
912                         goto out;
913
914         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
915         if (count == 0)
916                 goto out;
917
918         if (vq_is_packed(dev))
919                 nb_tx = virtio_dev_rx_packed(dev, vq, pkts, count);
920         else
921                 nb_tx = virtio_dev_rx_split(dev, vq, pkts, count);
922
923 out:
924         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
925                 vhost_user_iotlb_rd_unlock(vq);
926
927 out_access_unlock:
928         rte_spinlock_unlock(&vq->access_lock);
929
930         return nb_tx;
931 }
932
933 uint16_t
934 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
935         struct rte_mbuf **pkts, uint16_t count)
936 {
937         struct virtio_net *dev = get_device(vid);
938
939         if (!dev)
940                 return 0;
941
942         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
943                 RTE_LOG(ERR, VHOST_DATA,
944                         "(%d) %s: built-in vhost net backend is disabled.\n",
945                         dev->vid, __func__);
946                 return 0;
947         }
948
949         return virtio_dev_rx(dev, queue_id, pkts, count);
950 }
951
952 static inline bool
953 virtio_net_with_host_offload(struct virtio_net *dev)
954 {
955         if (dev->features &
956                         ((1ULL << VIRTIO_NET_F_CSUM) |
957                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
958                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
959                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
960                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
961                 return true;
962
963         return false;
964 }
965
966 static void
967 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
968 {
969         struct ipv4_hdr *ipv4_hdr;
970         struct ipv6_hdr *ipv6_hdr;
971         void *l3_hdr = NULL;
972         struct ether_hdr *eth_hdr;
973         uint16_t ethertype;
974
975         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
976
977         m->l2_len = sizeof(struct ether_hdr);
978         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
979
980         if (ethertype == ETHER_TYPE_VLAN) {
981                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
982
983                 m->l2_len += sizeof(struct vlan_hdr);
984                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
985         }
986
987         l3_hdr = (char *)eth_hdr + m->l2_len;
988
989         switch (ethertype) {
990         case ETHER_TYPE_IPv4:
991                 ipv4_hdr = l3_hdr;
992                 *l4_proto = ipv4_hdr->next_proto_id;
993                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
994                 *l4_hdr = (char *)l3_hdr + m->l3_len;
995                 m->ol_flags |= PKT_TX_IPV4;
996                 break;
997         case ETHER_TYPE_IPv6:
998                 ipv6_hdr = l3_hdr;
999                 *l4_proto = ipv6_hdr->proto;
1000                 m->l3_len = sizeof(struct ipv6_hdr);
1001                 *l4_hdr = (char *)l3_hdr + m->l3_len;
1002                 m->ol_flags |= PKT_TX_IPV6;
1003                 break;
1004         default:
1005                 m->l3_len = 0;
1006                 *l4_proto = 0;
1007                 *l4_hdr = NULL;
1008                 break;
1009         }
1010 }
1011
1012 static __rte_always_inline void
1013 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
1014 {
1015         uint16_t l4_proto = 0;
1016         void *l4_hdr = NULL;
1017         struct tcp_hdr *tcp_hdr = NULL;
1018
1019         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
1020                 return;
1021
1022         parse_ethernet(m, &l4_proto, &l4_hdr);
1023         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1024                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
1025                         switch (hdr->csum_offset) {
1026                         case (offsetof(struct tcp_hdr, cksum)):
1027                                 if (l4_proto == IPPROTO_TCP)
1028                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
1029                                 break;
1030                         case (offsetof(struct udp_hdr, dgram_cksum)):
1031                                 if (l4_proto == IPPROTO_UDP)
1032                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
1033                                 break;
1034                         case (offsetof(struct sctp_hdr, cksum)):
1035                                 if (l4_proto == IPPROTO_SCTP)
1036                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
1037                                 break;
1038                         default:
1039                                 break;
1040                         }
1041                 }
1042         }
1043
1044         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
1045                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
1046                 case VIRTIO_NET_HDR_GSO_TCPV4:
1047                 case VIRTIO_NET_HDR_GSO_TCPV6:
1048                         tcp_hdr = l4_hdr;
1049                         m->ol_flags |= PKT_TX_TCP_SEG;
1050                         m->tso_segsz = hdr->gso_size;
1051                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
1052                         break;
1053                 case VIRTIO_NET_HDR_GSO_UDP:
1054                         m->ol_flags |= PKT_TX_UDP_SEG;
1055                         m->tso_segsz = hdr->gso_size;
1056                         m->l4_len = sizeof(struct udp_hdr);
1057                         break;
1058                 default:
1059                         RTE_LOG(WARNING, VHOST_DATA,
1060                                 "unsupported gso type %u.\n", hdr->gso_type);
1061                         break;
1062                 }
1063         }
1064 }
1065
1066 static __rte_always_inline void
1067 put_zmbuf(struct zcopy_mbuf *zmbuf)
1068 {
1069         zmbuf->in_use = 0;
1070 }
1071
1072 static __rte_always_inline int
1073 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
1074                   struct buf_vector *buf_vec, uint16_t nr_vec,
1075                   struct rte_mbuf *m, struct rte_mempool *mbuf_pool)
1076 {
1077         uint32_t buf_avail, buf_offset;
1078         uint64_t buf_addr, buf_iova, buf_len;
1079         uint32_t mbuf_avail, mbuf_offset;
1080         uint32_t cpy_len;
1081         struct rte_mbuf *cur = m, *prev = m;
1082         struct virtio_net_hdr tmp_hdr;
1083         struct virtio_net_hdr *hdr = NULL;
1084         /* A counter to avoid desc dead loop chain */
1085         uint16_t vec_idx = 0;
1086         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
1087         int error = 0;
1088
1089         buf_addr = buf_vec[vec_idx].buf_addr;
1090         buf_iova = buf_vec[vec_idx].buf_iova;
1091         buf_len = buf_vec[vec_idx].buf_len;
1092
1093         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
1094                 error = -1;
1095                 goto out;
1096         }
1097
1098         if (likely(nr_vec > 1))
1099                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
1100
1101         if (virtio_net_with_host_offload(dev)) {
1102                 if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) {
1103                         uint64_t len;
1104                         uint64_t remain = sizeof(struct virtio_net_hdr);
1105                         uint64_t src;
1106                         uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr;
1107                         uint16_t hdr_vec_idx = 0;
1108
1109                         /*
1110                          * No luck, the virtio-net header doesn't fit
1111                          * in a contiguous virtual area.
1112                          */
1113                         while (remain) {
1114                                 len = RTE_MIN(remain,
1115                                         buf_vec[hdr_vec_idx].buf_len);
1116                                 src = buf_vec[hdr_vec_idx].buf_addr;
1117                                 rte_memcpy((void *)(uintptr_t)dst,
1118                                                    (void *)(uintptr_t)src, len);
1119
1120                                 remain -= len;
1121                                 dst += len;
1122                                 hdr_vec_idx++;
1123                         }
1124
1125                         hdr = &tmp_hdr;
1126                 } else {
1127                         hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr);
1128                         rte_prefetch0(hdr);
1129                 }
1130         }
1131
1132         /*
1133          * A virtio driver normally uses at least 2 desc buffers
1134          * for Tx: the first for storing the header, and others
1135          * for storing the data.
1136          */
1137         if (unlikely(buf_len < dev->vhost_hlen)) {
1138                 buf_offset = dev->vhost_hlen - buf_len;
1139                 vec_idx++;
1140                 buf_addr = buf_vec[vec_idx].buf_addr;
1141                 buf_iova = buf_vec[vec_idx].buf_iova;
1142                 buf_len = buf_vec[vec_idx].buf_len;
1143                 buf_avail  = buf_len - buf_offset;
1144         } else if (buf_len == dev->vhost_hlen) {
1145                 if (unlikely(++vec_idx >= nr_vec))
1146                         goto out;
1147                 buf_addr = buf_vec[vec_idx].buf_addr;
1148                 buf_iova = buf_vec[vec_idx].buf_iova;
1149                 buf_len = buf_vec[vec_idx].buf_len;
1150
1151                 buf_offset = 0;
1152                 buf_avail = buf_len;
1153         } else {
1154                 buf_offset = dev->vhost_hlen;
1155                 buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
1156         }
1157
1158         rte_prefetch0((void *)(uintptr_t)
1159                         (buf_addr + buf_offset));
1160
1161         PRINT_PACKET(dev,
1162                         (uintptr_t)(buf_addr + buf_offset),
1163                         (uint32_t)buf_avail, 0);
1164
1165         mbuf_offset = 0;
1166         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
1167         while (1) {
1168                 uint64_t hpa;
1169
1170                 cpy_len = RTE_MIN(buf_avail, mbuf_avail);
1171
1172                 /*
1173                  * A desc buf might across two host physical pages that are
1174                  * not continuous. In such case (gpa_to_hpa returns 0), data
1175                  * will be copied even though zero copy is enabled.
1176                  */
1177                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
1178                                         buf_iova + buf_offset, cpy_len)))) {
1179                         cur->data_len = cpy_len;
1180                         cur->data_off = 0;
1181                         cur->buf_addr =
1182                                 (void *)(uintptr_t)(buf_addr + buf_offset);
1183                         cur->buf_iova = hpa;
1184
1185                         /*
1186                          * In zero copy mode, one mbuf can only reference data
1187                          * for one or partial of one desc buff.
1188                          */
1189                         mbuf_avail = cpy_len;
1190                 } else {
1191                         if (likely(cpy_len > MAX_BATCH_LEN ||
1192                                    vq->batch_copy_nb_elems >= vq->size ||
1193                                    (hdr && cur == m))) {
1194                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
1195                                                                    mbuf_offset),
1196                                            (void *)((uintptr_t)(buf_addr +
1197                                                            buf_offset)),
1198                                            cpy_len);
1199                         } else {
1200                                 batch_copy[vq->batch_copy_nb_elems].dst =
1201                                         rte_pktmbuf_mtod_offset(cur, void *,
1202                                                                 mbuf_offset);
1203                                 batch_copy[vq->batch_copy_nb_elems].src =
1204                                         (void *)((uintptr_t)(buf_addr +
1205                                                                 buf_offset));
1206                                 batch_copy[vq->batch_copy_nb_elems].len =
1207                                         cpy_len;
1208                                 vq->batch_copy_nb_elems++;
1209                         }
1210                 }
1211
1212                 mbuf_avail  -= cpy_len;
1213                 mbuf_offset += cpy_len;
1214                 buf_avail -= cpy_len;
1215                 buf_offset += cpy_len;
1216
1217                 /* This buf reaches to its end, get the next one */
1218                 if (buf_avail == 0) {
1219                         if (++vec_idx >= nr_vec)
1220                                 break;
1221
1222                         buf_addr = buf_vec[vec_idx].buf_addr;
1223                         buf_iova = buf_vec[vec_idx].buf_iova;
1224                         buf_len = buf_vec[vec_idx].buf_len;
1225
1226                         /*
1227                          * Prefecth desc n + 1 buffer while
1228                          * desc n buffer is processed.
1229                          */
1230                         if (vec_idx + 1 < nr_vec)
1231                                 rte_prefetch0((void *)(uintptr_t)
1232                                                 buf_vec[vec_idx + 1].buf_addr);
1233
1234                         buf_offset = 0;
1235                         buf_avail  = buf_len;
1236
1237                         PRINT_PACKET(dev, (uintptr_t)buf_addr,
1238                                         (uint32_t)buf_avail, 0);
1239                 }
1240
1241                 /*
1242                  * This mbuf reaches to its end, get a new one
1243                  * to hold more data.
1244                  */
1245                 if (mbuf_avail == 0) {
1246                         cur = rte_pktmbuf_alloc(mbuf_pool);
1247                         if (unlikely(cur == NULL)) {
1248                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1249                                         "allocate memory for mbuf.\n");
1250                                 error = -1;
1251                                 goto out;
1252                         }
1253                         if (unlikely(dev->dequeue_zero_copy))
1254                                 rte_mbuf_refcnt_update(cur, 1);
1255
1256                         prev->next = cur;
1257                         prev->data_len = mbuf_offset;
1258                         m->nb_segs += 1;
1259                         m->pkt_len += mbuf_offset;
1260                         prev = cur;
1261
1262                         mbuf_offset = 0;
1263                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1264                 }
1265         }
1266
1267         prev->data_len = mbuf_offset;
1268         m->pkt_len    += mbuf_offset;
1269
1270         if (hdr)
1271                 vhost_dequeue_offload(hdr, m);
1272
1273 out:
1274
1275         return error;
1276 }
1277
1278 static __rte_always_inline struct zcopy_mbuf *
1279 get_zmbuf(struct vhost_virtqueue *vq)
1280 {
1281         uint16_t i;
1282         uint16_t last;
1283         int tries = 0;
1284
1285         /* search [last_zmbuf_idx, zmbuf_size) */
1286         i = vq->last_zmbuf_idx;
1287         last = vq->zmbuf_size;
1288
1289 again:
1290         for (; i < last; i++) {
1291                 if (vq->zmbufs[i].in_use == 0) {
1292                         vq->last_zmbuf_idx = i + 1;
1293                         vq->zmbufs[i].in_use = 1;
1294                         return &vq->zmbufs[i];
1295                 }
1296         }
1297
1298         tries++;
1299         if (tries == 1) {
1300                 /* search [0, last_zmbuf_idx) */
1301                 i = 0;
1302                 last = vq->last_zmbuf_idx;
1303                 goto again;
1304         }
1305
1306         return NULL;
1307 }
1308
1309 static __rte_always_inline bool
1310 mbuf_is_consumed(struct rte_mbuf *m)
1311 {
1312         while (m) {
1313                 if (rte_mbuf_refcnt_read(m) > 1)
1314                         return false;
1315                 m = m->next;
1316         }
1317
1318         return true;
1319 }
1320
1321 static __rte_always_inline uint16_t
1322 virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
1323         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1324 {
1325         uint16_t i;
1326         uint16_t free_entries;
1327
1328         if (unlikely(dev->dequeue_zero_copy)) {
1329                 struct zcopy_mbuf *zmbuf, *next;
1330
1331                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1332                      zmbuf != NULL; zmbuf = next) {
1333                         next = TAILQ_NEXT(zmbuf, next);
1334
1335                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1336                                 update_shadow_used_ring_split(vq,
1337                                                 zmbuf->desc_idx, 0);
1338                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1339                                 restore_mbuf(zmbuf->mbuf);
1340                                 rte_pktmbuf_free(zmbuf->mbuf);
1341                                 put_zmbuf(zmbuf);
1342                                 vq->nr_zmbuf -= 1;
1343                         }
1344                 }
1345
1346                 if (likely(vq->shadow_used_idx)) {
1347                         flush_shadow_used_ring_split(dev, vq);
1348                         vhost_vring_call_split(dev, vq);
1349                 }
1350         }
1351
1352         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1353                         vq->last_avail_idx;
1354         if (free_entries == 0)
1355                 return 0;
1356
1357         /*
1358          * The ordering between avail index and
1359          * desc reads needs to be enforced.
1360          */
1361         rte_smp_rmb();
1362
1363         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
1364
1365         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1366
1367         count = RTE_MIN(count, MAX_PKT_BURST);
1368         count = RTE_MIN(count, free_entries);
1369         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1370                         dev->vid, count);
1371
1372         for (i = 0; i < count; i++) {
1373                 struct buf_vector buf_vec[BUF_VECTOR_MAX];
1374                 uint16_t head_idx;
1375                 uint32_t dummy_len;
1376                 uint16_t nr_vec = 0;
1377                 int err;
1378
1379                 if (unlikely(fill_vec_buf_split(dev, vq,
1380                                                 vq->last_avail_idx + i,
1381                                                 &nr_vec, buf_vec,
1382                                                 &head_idx, &dummy_len,
1383                                                 VHOST_ACCESS_RO) < 0))
1384                         break;
1385
1386                 if (likely(dev->dequeue_zero_copy == 0))
1387                         update_shadow_used_ring_split(vq, head_idx, 0);
1388
1389                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
1390
1391                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1392                 if (unlikely(pkts[i] == NULL)) {
1393                         RTE_LOG(ERR, VHOST_DATA,
1394                                 "Failed to allocate memory for mbuf.\n");
1395                         break;
1396                 }
1397
1398                 err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
1399                                 mbuf_pool);
1400                 if (unlikely(err)) {
1401                         rte_pktmbuf_free(pkts[i]);
1402                         break;
1403                 }
1404
1405                 if (unlikely(dev->dequeue_zero_copy)) {
1406                         struct zcopy_mbuf *zmbuf;
1407
1408                         zmbuf = get_zmbuf(vq);
1409                         if (!zmbuf) {
1410                                 rte_pktmbuf_free(pkts[i]);
1411                                 break;
1412                         }
1413                         zmbuf->mbuf = pkts[i];
1414                         zmbuf->desc_idx = head_idx;
1415
1416                         /*
1417                          * Pin lock the mbuf; we will check later to see
1418                          * whether the mbuf is freed (when we are the last
1419                          * user) or not. If that's the case, we then could
1420                          * update the used ring safely.
1421                          */
1422                         rte_mbuf_refcnt_update(pkts[i], 1);
1423
1424                         vq->nr_zmbuf += 1;
1425                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1426                 }
1427         }
1428         vq->last_avail_idx += i;
1429
1430         if (likely(dev->dequeue_zero_copy == 0)) {
1431                 do_data_copy_dequeue(vq);
1432                 if (unlikely(i < count))
1433                         vq->shadow_used_idx = i;
1434                 if (likely(vq->shadow_used_idx)) {
1435                         flush_shadow_used_ring_split(dev, vq);
1436                         vhost_vring_call_split(dev, vq);
1437                 }
1438         }
1439
1440         return i;
1441 }
1442
1443 static __rte_always_inline uint16_t
1444 virtio_dev_tx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
1445         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1446 {
1447         uint16_t i;
1448
1449         if (unlikely(dev->dequeue_zero_copy)) {
1450                 struct zcopy_mbuf *zmbuf, *next;
1451
1452                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1453                      zmbuf != NULL; zmbuf = next) {
1454                         next = TAILQ_NEXT(zmbuf, next);
1455
1456                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1457                                 update_shadow_used_ring_packed(vq,
1458                                                 zmbuf->desc_idx,
1459                                                 0,
1460                                                 zmbuf->desc_count);
1461
1462                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1463                                 restore_mbuf(zmbuf->mbuf);
1464                                 rte_pktmbuf_free(zmbuf->mbuf);
1465                                 put_zmbuf(zmbuf);
1466                                 vq->nr_zmbuf -= 1;
1467                         }
1468                 }
1469
1470                 if (likely(vq->shadow_used_idx)) {
1471                         flush_shadow_used_ring_packed(dev, vq);
1472                         vhost_vring_call_packed(dev, vq);
1473                 }
1474         }
1475
1476         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1477
1478         count = RTE_MIN(count, MAX_PKT_BURST);
1479         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1480                         dev->vid, count);
1481
1482         for (i = 0; i < count; i++) {
1483                 struct buf_vector buf_vec[BUF_VECTOR_MAX];
1484                 uint16_t buf_id;
1485                 uint32_t dummy_len;
1486                 uint16_t desc_count, nr_vec = 0;
1487                 int err;
1488
1489                 if (unlikely(fill_vec_buf_packed(dev, vq,
1490                                                 vq->last_avail_idx, &desc_count,
1491                                                 buf_vec, &nr_vec,
1492                                                 &buf_id, &dummy_len,
1493                                                 VHOST_ACCESS_RO) < 0))
1494                         break;
1495
1496                 if (likely(dev->dequeue_zero_copy == 0))
1497                         update_shadow_used_ring_packed(vq, buf_id, 0,
1498                                         desc_count);
1499
1500                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
1501
1502                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1503                 if (unlikely(pkts[i] == NULL)) {
1504                         RTE_LOG(ERR, VHOST_DATA,
1505                                 "Failed to allocate memory for mbuf.\n");
1506                         break;
1507                 }
1508
1509                 err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
1510                                 mbuf_pool);
1511                 if (unlikely(err)) {
1512                         rte_pktmbuf_free(pkts[i]);
1513                         break;
1514                 }
1515
1516                 if (unlikely(dev->dequeue_zero_copy)) {
1517                         struct zcopy_mbuf *zmbuf;
1518
1519                         zmbuf = get_zmbuf(vq);
1520                         if (!zmbuf) {
1521                                 rte_pktmbuf_free(pkts[i]);
1522                                 break;
1523                         }
1524                         zmbuf->mbuf = pkts[i];
1525                         zmbuf->desc_idx = buf_id;
1526                         zmbuf->desc_count = desc_count;
1527
1528                         /*
1529                          * Pin lock the mbuf; we will check later to see
1530                          * whether the mbuf is freed (when we are the last
1531                          * user) or not. If that's the case, we then could
1532                          * update the used ring safely.
1533                          */
1534                         rte_mbuf_refcnt_update(pkts[i], 1);
1535
1536                         vq->nr_zmbuf += 1;
1537                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1538                 }
1539
1540                 vq->last_avail_idx += desc_count;
1541                 if (vq->last_avail_idx >= vq->size) {
1542                         vq->last_avail_idx -= vq->size;
1543                         vq->avail_wrap_counter ^= 1;
1544                 }
1545         }
1546
1547         if (likely(dev->dequeue_zero_copy == 0)) {
1548                 do_data_copy_dequeue(vq);
1549                 if (unlikely(i < count))
1550                         vq->shadow_used_idx = i;
1551                 if (likely(vq->shadow_used_idx)) {
1552                         flush_shadow_used_ring_packed(dev, vq);
1553                         vhost_vring_call_packed(dev, vq);
1554                 }
1555         }
1556
1557         return i;
1558 }
1559
1560 uint16_t
1561 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1562         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1563 {
1564         struct virtio_net *dev;
1565         struct rte_mbuf *rarp_mbuf = NULL;
1566         struct vhost_virtqueue *vq;
1567
1568         dev = get_device(vid);
1569         if (!dev)
1570                 return 0;
1571
1572         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
1573                 RTE_LOG(ERR, VHOST_DATA,
1574                         "(%d) %s: built-in vhost net backend is disabled.\n",
1575                         dev->vid, __func__);
1576                 return 0;
1577         }
1578
1579         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1580                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1581                         dev->vid, __func__, queue_id);
1582                 return 0;
1583         }
1584
1585         vq = dev->virtqueue[queue_id];
1586
1587         if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
1588                 return 0;
1589
1590         if (unlikely(vq->enabled == 0)) {
1591                 count = 0;
1592                 goto out_access_unlock;
1593         }
1594
1595         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1596                 vhost_user_iotlb_rd_lock(vq);
1597
1598         if (unlikely(vq->access_ok == 0))
1599                 if (unlikely(vring_translate(dev, vq) < 0)) {
1600                         count = 0;
1601                         goto out;
1602                 }
1603
1604         /*
1605          * Construct a RARP broadcast packet, and inject it to the "pkts"
1606          * array, to looks like that guest actually send such packet.
1607          *
1608          * Check user_send_rarp() for more information.
1609          *
1610          * broadcast_rarp shares a cacheline in the virtio_net structure
1611          * with some fields that are accessed during enqueue and
1612          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1613          * result in false sharing between enqueue and dequeue.
1614          *
1615          * Prevent unnecessary false sharing by reading broadcast_rarp first
1616          * and only performing cmpset if the read indicates it is likely to
1617          * be set.
1618          */
1619         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1620                         rte_atomic16_cmpset((volatile uint16_t *)
1621                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1622
1623                 rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
1624                 if (rarp_mbuf == NULL) {
1625                         RTE_LOG(ERR, VHOST_DATA,
1626                                 "Failed to make RARP packet.\n");
1627                         count = 0;
1628                         goto out;
1629                 }
1630                 count -= 1;
1631         }
1632
1633         if (vq_is_packed(dev))
1634                 count = virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count);
1635         else
1636                 count = virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count);
1637
1638 out:
1639         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1640                 vhost_user_iotlb_rd_unlock(vq);
1641
1642 out_access_unlock:
1643         rte_spinlock_unlock(&vq->access_lock);
1644
1645         if (unlikely(rarp_mbuf != NULL)) {
1646                 /*
1647                  * Inject it to the head of "pkts" array, so that switch's mac
1648                  * learning table will get updated first.
1649                  */
1650                 memmove(&pkts[1], pkts, count * sizeof(struct rte_mbuf *));
1651                 pkts[0] = rarp_mbuf;
1652                 count += 1;
1653         }
1654
1655         return count;
1656 }