b41312b9e37469c028398fc8ffc48b4664b42481
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_virtio_net.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51 #define VHOST_LOG_PAGE  4096
52
53 static inline void __attribute__((always_inline))
54 vhost_log_page(uint8_t *log_base, uint64_t page)
55 {
56         log_base[page / 8] |= 1 << (page % 8);
57 }
58
59 static inline void __attribute__((always_inline))
60 vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
61 {
62         uint64_t page;
63
64         if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) ||
65                    !dev->log_base || !len))
66                 return;
67
68         if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
69                 return;
70
71         /* To make sure guest memory updates are committed before logging */
72         rte_smp_wmb();
73
74         page = addr / VHOST_LOG_PAGE;
75         while (page * VHOST_LOG_PAGE < addr + len) {
76                 vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
77                 page += 1;
78         }
79 }
80
81 static inline void __attribute__((always_inline))
82 vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
83                      uint64_t offset, uint64_t len)
84 {
85         vhost_log_write(dev, vq->log_guest_addr + offset, len);
86 }
87
88 static bool
89 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
90 {
91         return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
92 }
93
94 static void
95 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
96 {
97         if (m_buf->ol_flags & PKT_TX_L4_MASK) {
98                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
99                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
100
101                 switch (m_buf->ol_flags & PKT_TX_L4_MASK) {
102                 case PKT_TX_TCP_CKSUM:
103                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
104                                                 cksum));
105                         break;
106                 case PKT_TX_UDP_CKSUM:
107                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
108                                                 dgram_cksum));
109                         break;
110                 case PKT_TX_SCTP_CKSUM:
111                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
112                                                 cksum));
113                         break;
114                 }
115         }
116
117         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
118                 if (m_buf->ol_flags & PKT_TX_IPV4)
119                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
120                 else
121                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
122                 net_hdr->gso_size = m_buf->tso_segsz;
123                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
124                                         + m_buf->l4_len;
125         }
126 }
127
128 static inline void
129 copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
130                     struct virtio_net_hdr_mrg_rxbuf hdr)
131 {
132         if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
133                 *(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
134         else
135                 *(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
136 }
137
138 static inline int __attribute__((always_inline))
139 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
140                   struct rte_mbuf *m, uint16_t desc_idx)
141 {
142         uint32_t desc_avail, desc_offset;
143         uint32_t mbuf_avail, mbuf_offset;
144         uint32_t cpy_len;
145         struct vring_desc *desc;
146         uint64_t desc_addr;
147         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
148
149         desc = &vq->desc[desc_idx];
150         desc_addr = gpa_to_vva(dev, desc->addr);
151         /*
152          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
153          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
154          * otherwise stores offset on the stack instead of in a register.
155          */
156         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
157                 return -1;
158
159         rte_prefetch0((void *)(uintptr_t)desc_addr);
160
161         virtio_enqueue_offload(m, &virtio_hdr.hdr);
162         copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
163         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
164         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
165
166         desc_offset = dev->vhost_hlen;
167         desc_avail  = desc->len - dev->vhost_hlen;
168
169         mbuf_avail  = rte_pktmbuf_data_len(m);
170         mbuf_offset = 0;
171         while (mbuf_avail != 0 || m->next != NULL) {
172                 /* done with current mbuf, fetch next */
173                 if (mbuf_avail == 0) {
174                         m = m->next;
175
176                         mbuf_offset = 0;
177                         mbuf_avail  = rte_pktmbuf_data_len(m);
178                 }
179
180                 /* done with current desc buf, fetch next */
181                 if (desc_avail == 0) {
182                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
183                                 /* Room in vring buffer is not enough */
184                                 return -1;
185                         }
186                         if (unlikely(desc->next >= vq->size))
187                                 return -1;
188
189                         desc = &vq->desc[desc->next];
190                         desc_addr = gpa_to_vva(dev, desc->addr);
191                         if (unlikely(!desc_addr))
192                                 return -1;
193
194                         desc_offset = 0;
195                         desc_avail  = desc->len;
196                 }
197
198                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
199                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
200                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
201                         cpy_len);
202                 vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
203                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
204                              cpy_len, 0);
205
206                 mbuf_avail  -= cpy_len;
207                 mbuf_offset += cpy_len;
208                 desc_avail  -= cpy_len;
209                 desc_offset += cpy_len;
210         }
211
212         return 0;
213 }
214
215 /**
216  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
217  * be received from the physical port or from another virtio device. A packet
218  * count is returned to indicate the number of packets that are succesfully
219  * added to the RX queue. This function works when the mbuf is scattered, but
220  * it doesn't support the mergeable feature.
221  */
222 static inline uint32_t __attribute__((always_inline))
223 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
224               struct rte_mbuf **pkts, uint32_t count)
225 {
226         struct vhost_virtqueue *vq;
227         uint16_t avail_idx, free_entries, start_idx;
228         uint16_t desc_indexes[MAX_PKT_BURST];
229         uint16_t used_idx;
230         uint32_t i;
231
232         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
233         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
234                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
235                         dev->vid, __func__, queue_id);
236                 return 0;
237         }
238
239         vq = dev->virtqueue[queue_id];
240         if (unlikely(vq->enabled == 0))
241                 return 0;
242
243         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
244         start_idx = vq->last_used_idx;
245         free_entries = avail_idx - start_idx;
246         count = RTE_MIN(count, free_entries);
247         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
248         if (count == 0)
249                 return 0;
250
251         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
252                 dev->vid, start_idx, start_idx + count);
253
254         /* Retrieve all of the desc indexes first to avoid caching issues. */
255         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
256         for (i = 0; i < count; i++) {
257                 used_idx = (start_idx + i) & (vq->size - 1);
258                 desc_indexes[i] = vq->avail->ring[used_idx];
259                 vq->used->ring[used_idx].id = desc_indexes[i];
260                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
261                                                dev->vhost_hlen;
262                 vhost_log_used_vring(dev, vq,
263                         offsetof(struct vring_used, ring[used_idx]),
264                         sizeof(vq->used->ring[used_idx]));
265         }
266
267         rte_prefetch0(&vq->desc[desc_indexes[0]]);
268         for (i = 0; i < count; i++) {
269                 uint16_t desc_idx = desc_indexes[i];
270                 int err;
271
272                 err = copy_mbuf_to_desc(dev, vq, pkts[i], desc_idx);
273                 if (unlikely(err)) {
274                         used_idx = (start_idx + i) & (vq->size - 1);
275                         vq->used->ring[used_idx].len = dev->vhost_hlen;
276                         vhost_log_used_vring(dev, vq,
277                                 offsetof(struct vring_used, ring[used_idx]),
278                                 sizeof(vq->used->ring[used_idx]));
279                 }
280
281                 if (i + 1 < count)
282                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
283         }
284
285         rte_smp_wmb();
286
287         *(volatile uint16_t *)&vq->used->idx += count;
288         vq->last_used_idx += count;
289         vhost_log_used_vring(dev, vq,
290                 offsetof(struct vring_used, idx),
291                 sizeof(vq->used->idx));
292
293         /* flush used->idx update before we read avail->flags. */
294         rte_mb();
295
296         /* Kick the guest if necessary. */
297         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
298                         && (vq->callfd >= 0))
299                 eventfd_write(vq->callfd, (eventfd_t)1);
300         return count;
301 }
302
303 static inline int
304 fill_vec_buf(struct vhost_virtqueue *vq, uint32_t avail_idx,
305              uint32_t *allocated, uint32_t *vec_idx,
306              struct buf_vector *buf_vec)
307 {
308         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
309         uint32_t vec_id = *vec_idx;
310         uint32_t len    = *allocated;
311
312         while (1) {
313                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
314                         return -1;
315
316                 len += vq->desc[idx].len;
317                 buf_vec[vec_id].buf_addr = vq->desc[idx].addr;
318                 buf_vec[vec_id].buf_len  = vq->desc[idx].len;
319                 buf_vec[vec_id].desc_idx = idx;
320                 vec_id++;
321
322                 if ((vq->desc[idx].flags & VRING_DESC_F_NEXT) == 0)
323                         break;
324
325                 idx = vq->desc[idx].next;
326         }
327
328         *allocated = len;
329         *vec_idx   = vec_id;
330
331         return 0;
332 }
333
334 /*
335  * Returns -1 on fail, 0 on success
336  */
337 static inline int
338 reserve_avail_buf_mergeable(struct vhost_virtqueue *vq, uint32_t size,
339                             struct buf_vector *buf_vec, uint16_t *num_buffers)
340 {
341         uint16_t cur_idx;
342         uint16_t avail_idx;
343         uint32_t allocated = 0;
344         uint32_t vec_idx = 0;
345         uint16_t tries = 0;
346
347         cur_idx = vq->last_avail_idx;
348
349         while (1) {
350                 avail_idx = *((volatile uint16_t *)&vq->avail->idx);
351                 if (unlikely(cur_idx == avail_idx))
352                         return -1;
353
354                 if (unlikely(fill_vec_buf(vq, cur_idx, &allocated,
355                                           &vec_idx, buf_vec) < 0))
356                         return -1;
357
358                 cur_idx++;
359                 tries++;
360
361                 if (allocated >= size)
362                         break;
363
364                 /*
365                  * if we tried all available ring items, and still
366                  * can't get enough buf, it means something abnormal
367                  * happened.
368                  */
369                 if (unlikely(tries >= vq->size))
370                         return -1;
371         }
372
373         *num_buffers = cur_idx - vq->last_avail_idx;
374         return 0;
375 }
376
377 static inline int __attribute__((always_inline))
378 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
379                             struct rte_mbuf *m, struct buf_vector *buf_vec,
380                             uint16_t num_buffers)
381 {
382         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
383         uint32_t vec_idx = 0;
384         uint16_t cur_idx = vq->last_used_idx;
385         uint64_t desc_addr;
386         uint32_t desc_chain_head;
387         uint32_t desc_chain_len;
388         uint32_t mbuf_offset, mbuf_avail;
389         uint32_t desc_offset, desc_avail;
390         uint32_t cpy_len;
391         uint16_t desc_idx, used_idx;
392         uint64_t hdr_addr, hdr_phys_addr;
393         struct rte_mbuf *hdr_mbuf;
394
395         if (unlikely(m == NULL))
396                 return -1;
397
398         LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
399                 dev->vid, cur_idx, cur_idx + num_buffers);
400
401         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
402         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
403                 return -1;
404
405         hdr_mbuf = m;
406         hdr_addr = desc_addr;
407         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
408         rte_prefetch0((void *)(uintptr_t)hdr_addr);
409
410         virtio_hdr.num_buffers = num_buffers;
411         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
412                 dev->vid, virtio_hdr.num_buffers);
413
414         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
415         desc_offset = dev->vhost_hlen;
416         desc_chain_head = buf_vec[vec_idx].desc_idx;
417         desc_chain_len = desc_offset;
418
419         mbuf_avail  = rte_pktmbuf_data_len(m);
420         mbuf_offset = 0;
421         while (mbuf_avail != 0 || m->next != NULL) {
422                 /* done with current desc buf, get the next one */
423                 if (desc_avail == 0) {
424                         desc_idx = buf_vec[vec_idx].desc_idx;
425                         vec_idx++;
426
427                         if (!(vq->desc[desc_idx].flags & VRING_DESC_F_NEXT)) {
428                                 /* Update used ring with desc information */
429                                 used_idx = cur_idx++ & (vq->size - 1);
430                                 vq->used->ring[used_idx].id = desc_chain_head;
431                                 vq->used->ring[used_idx].len = desc_chain_len;
432                                 vhost_log_used_vring(dev, vq,
433                                         offsetof(struct vring_used,
434                                                  ring[used_idx]),
435                                         sizeof(vq->used->ring[used_idx]));
436                                 desc_chain_head = buf_vec[vec_idx].desc_idx;
437                                 desc_chain_len = 0;
438                         }
439
440                         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
441                         if (unlikely(!desc_addr))
442                                 return -1;
443
444                         /* Prefetch buffer address. */
445                         rte_prefetch0((void *)(uintptr_t)desc_addr);
446                         desc_offset = 0;
447                         desc_avail  = buf_vec[vec_idx].buf_len;
448                 }
449
450                 /* done with current mbuf, get the next one */
451                 if (mbuf_avail == 0) {
452                         m = m->next;
453
454                         mbuf_offset = 0;
455                         mbuf_avail  = rte_pktmbuf_data_len(m);
456                 }
457
458                 if (hdr_addr) {
459                         virtio_enqueue_offload(hdr_mbuf, &virtio_hdr.hdr);
460                         copy_virtio_net_hdr(dev, hdr_addr, virtio_hdr);
461                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
462                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
463                                      dev->vhost_hlen, 0);
464
465                         hdr_addr = 0;
466                 }
467
468                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
469                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
470                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
471                         cpy_len);
472                 vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
473                         cpy_len);
474                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
475                         cpy_len, 0);
476
477                 mbuf_avail  -= cpy_len;
478                 mbuf_offset += cpy_len;
479                 desc_avail  -= cpy_len;
480                 desc_offset += cpy_len;
481                 desc_chain_len += cpy_len;
482         }
483
484         used_idx = cur_idx & (vq->size - 1);
485         vq->used->ring[used_idx].id = desc_chain_head;
486         vq->used->ring[used_idx].len = desc_chain_len;
487         vhost_log_used_vring(dev, vq,
488                 offsetof(struct vring_used, ring[used_idx]),
489                 sizeof(vq->used->ring[used_idx]));
490
491         return 0;
492 }
493
494 static inline uint32_t __attribute__((always_inline))
495 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
496         struct rte_mbuf **pkts, uint32_t count)
497 {
498         struct vhost_virtqueue *vq;
499         uint32_t pkt_idx = 0;
500         uint16_t num_buffers;
501         struct buf_vector buf_vec[BUF_VECTOR_MAX];
502
503         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
504         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
505                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
506                         dev->vid, __func__, queue_id);
507                 return 0;
508         }
509
510         vq = dev->virtqueue[queue_id];
511         if (unlikely(vq->enabled == 0))
512                 return 0;
513
514         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
515         if (count == 0)
516                 return 0;
517
518         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
519                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
520
521                 if (unlikely(reserve_avail_buf_mergeable(vq, pkt_len, buf_vec,
522                                                          &num_buffers) < 0)) {
523                         LOG_DEBUG(VHOST_DATA,
524                                 "(%d) failed to get enough desc from vring\n",
525                                 dev->vid);
526                         break;
527                 }
528
529                 if (copy_mbuf_to_desc_mergeable(dev, vq, pkts[pkt_idx],
530                                                 buf_vec, num_buffers) < 0)
531                         break;
532
533                 rte_smp_wmb();
534
535                 *(volatile uint16_t *)&vq->used->idx += num_buffers;
536                 vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
537                         sizeof(vq->used->idx));
538                 vq->last_used_idx += num_buffers;
539                 vq->last_avail_idx += num_buffers;
540         }
541
542         if (likely(pkt_idx)) {
543                 /* flush used->idx update before we read avail->flags. */
544                 rte_mb();
545
546                 /* Kick the guest if necessary. */
547                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
548                                 && (vq->callfd >= 0))
549                         eventfd_write(vq->callfd, (eventfd_t)1);
550         }
551
552         return pkt_idx;
553 }
554
555 uint16_t
556 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
557         struct rte_mbuf **pkts, uint16_t count)
558 {
559         struct virtio_net *dev = get_device(vid);
560
561         if (!dev)
562                 return 0;
563
564         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
565                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
566         else
567                 return virtio_dev_rx(dev, queue_id, pkts, count);
568 }
569
570 static inline bool
571 virtio_net_with_host_offload(struct virtio_net *dev)
572 {
573         if (dev->features &
574                         (VIRTIO_NET_F_CSUM | VIRTIO_NET_F_HOST_ECN |
575                          VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
576                          VIRTIO_NET_F_HOST_UFO))
577                 return true;
578
579         return false;
580 }
581
582 static void
583 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
584 {
585         struct ipv4_hdr *ipv4_hdr;
586         struct ipv6_hdr *ipv6_hdr;
587         void *l3_hdr = NULL;
588         struct ether_hdr *eth_hdr;
589         uint16_t ethertype;
590
591         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
592
593         m->l2_len = sizeof(struct ether_hdr);
594         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
595
596         if (ethertype == ETHER_TYPE_VLAN) {
597                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
598
599                 m->l2_len += sizeof(struct vlan_hdr);
600                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
601         }
602
603         l3_hdr = (char *)eth_hdr + m->l2_len;
604
605         switch (ethertype) {
606         case ETHER_TYPE_IPv4:
607                 ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
608                 *l4_proto = ipv4_hdr->next_proto_id;
609                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
610                 *l4_hdr = (char *)l3_hdr + m->l3_len;
611                 m->ol_flags |= PKT_TX_IPV4;
612                 break;
613         case ETHER_TYPE_IPv6:
614                 ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
615                 *l4_proto = ipv6_hdr->proto;
616                 m->l3_len = sizeof(struct ipv6_hdr);
617                 *l4_hdr = (char *)l3_hdr + m->l3_len;
618                 m->ol_flags |= PKT_TX_IPV6;
619                 break;
620         default:
621                 m->l3_len = 0;
622                 *l4_proto = 0;
623                 break;
624         }
625 }
626
627 static inline void __attribute__((always_inline))
628 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
629 {
630         uint16_t l4_proto = 0;
631         void *l4_hdr = NULL;
632         struct tcp_hdr *tcp_hdr = NULL;
633
634         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
635                 return;
636
637         parse_ethernet(m, &l4_proto, &l4_hdr);
638         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
639                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
640                         switch (hdr->csum_offset) {
641                         case (offsetof(struct tcp_hdr, cksum)):
642                                 if (l4_proto == IPPROTO_TCP)
643                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
644                                 break;
645                         case (offsetof(struct udp_hdr, dgram_cksum)):
646                                 if (l4_proto == IPPROTO_UDP)
647                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
648                                 break;
649                         case (offsetof(struct sctp_hdr, cksum)):
650                                 if (l4_proto == IPPROTO_SCTP)
651                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
652                                 break;
653                         default:
654                                 break;
655                         }
656                 }
657         }
658
659         if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
660                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
661                 case VIRTIO_NET_HDR_GSO_TCPV4:
662                 case VIRTIO_NET_HDR_GSO_TCPV6:
663                         tcp_hdr = (struct tcp_hdr *)l4_hdr;
664                         m->ol_flags |= PKT_TX_TCP_SEG;
665                         m->tso_segsz = hdr->gso_size;
666                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
667                         break;
668                 default:
669                         RTE_LOG(WARNING, VHOST_DATA,
670                                 "unsupported gso type %u.\n", hdr->gso_type);
671                         break;
672                 }
673         }
674 }
675
676 #define RARP_PKT_SIZE   64
677
678 static int
679 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
680 {
681         struct ether_hdr *eth_hdr;
682         struct arp_hdr  *rarp;
683
684         if (rarp_mbuf->buf_len < 64) {
685                 RTE_LOG(WARNING, VHOST_DATA,
686                         "failed to make RARP; mbuf size too small %u (< %d)\n",
687                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
688                 return -1;
689         }
690
691         /* Ethernet header. */
692         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
693         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
694         ether_addr_copy(mac, &eth_hdr->s_addr);
695         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
696
697         /* RARP header. */
698         rarp = (struct arp_hdr *)(eth_hdr + 1);
699         rarp->arp_hrd = htons(ARP_HRD_ETHER);
700         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
701         rarp->arp_hln = ETHER_ADDR_LEN;
702         rarp->arp_pln = 4;
703         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
704
705         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
706         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
707         memset(&rarp->arp_data.arp_sip, 0x00, 4);
708         memset(&rarp->arp_data.arp_tip, 0x00, 4);
709
710         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
711
712         return 0;
713 }
714
715 static inline void __attribute__((always_inline))
716 put_zmbuf(struct zcopy_mbuf *zmbuf)
717 {
718         zmbuf->in_use = 0;
719 }
720
721 static inline int __attribute__((always_inline))
722 copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
723                   uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
724                   struct rte_mempool *mbuf_pool)
725 {
726         struct vring_desc *desc;
727         uint64_t desc_addr;
728         uint32_t desc_avail, desc_offset;
729         uint32_t mbuf_avail, mbuf_offset;
730         uint32_t cpy_len;
731         struct rte_mbuf *cur = m, *prev = m;
732         struct virtio_net_hdr *hdr = NULL;
733         /* A counter to avoid desc dead loop chain */
734         uint32_t nr_desc = 1;
735
736         desc = &descs[desc_idx];
737         if (unlikely((desc->len < dev->vhost_hlen)) ||
738                         (desc->flags & VRING_DESC_F_INDIRECT))
739                 return -1;
740
741         desc_addr = gpa_to_vva(dev, desc->addr);
742         if (unlikely(!desc_addr))
743                 return -1;
744
745         if (virtio_net_with_host_offload(dev)) {
746                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
747                 rte_prefetch0(hdr);
748         }
749
750         /*
751          * A virtio driver normally uses at least 2 desc buffers
752          * for Tx: the first for storing the header, and others
753          * for storing the data.
754          */
755         if (likely((desc->len == dev->vhost_hlen) &&
756                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
757                 desc = &descs[desc->next];
758                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
759                         return -1;
760
761                 desc_addr = gpa_to_vva(dev, desc->addr);
762                 if (unlikely(!desc_addr))
763                         return -1;
764
765                 desc_offset = 0;
766                 desc_avail  = desc->len;
767                 nr_desc    += 1;
768         } else {
769                 desc_avail  = desc->len - dev->vhost_hlen;
770                 desc_offset = dev->vhost_hlen;
771         }
772
773         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
774
775         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
776
777         mbuf_offset = 0;
778         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
779         while (1) {
780                 uint64_t hpa;
781
782                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
783
784                 /*
785                  * A desc buf might across two host physical pages that are
786                  * not continuous. In such case (gpa_to_hpa returns 0), data
787                  * will be copied even though zero copy is enabled.
788                  */
789                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
790                                         desc->addr + desc_offset, cpy_len)))) {
791                         cur->data_len = cpy_len;
792                         cur->data_off = 0;
793                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
794                         cur->buf_physaddr = hpa;
795
796                         /*
797                          * In zero copy mode, one mbuf can only reference data
798                          * for one or partial of one desc buff.
799                          */
800                         mbuf_avail = cpy_len;
801                 } else {
802                         rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
803                                                            mbuf_offset),
804                                 (void *)((uintptr_t)(desc_addr + desc_offset)),
805                                 cpy_len);
806                 }
807
808                 mbuf_avail  -= cpy_len;
809                 mbuf_offset += cpy_len;
810                 desc_avail  -= cpy_len;
811                 desc_offset += cpy_len;
812
813                 /* This desc reaches to its end, get the next one */
814                 if (desc_avail == 0) {
815                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
816                                 break;
817
818                         if (unlikely(desc->next >= max_desc ||
819                                      ++nr_desc > max_desc))
820                                 return -1;
821                         desc = &descs[desc->next];
822                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
823                                 return -1;
824
825                         desc_addr = gpa_to_vva(dev, desc->addr);
826                         if (unlikely(!desc_addr))
827                                 return -1;
828
829                         rte_prefetch0((void *)(uintptr_t)desc_addr);
830
831                         desc_offset = 0;
832                         desc_avail  = desc->len;
833
834                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
835                 }
836
837                 /*
838                  * This mbuf reaches to its end, get a new one
839                  * to hold more data.
840                  */
841                 if (mbuf_avail == 0) {
842                         cur = rte_pktmbuf_alloc(mbuf_pool);
843                         if (unlikely(cur == NULL)) {
844                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
845                                         "allocate memory for mbuf.\n");
846                                 return -1;
847                         }
848
849                         prev->next = cur;
850                         prev->data_len = mbuf_offset;
851                         m->nb_segs += 1;
852                         m->pkt_len += mbuf_offset;
853                         prev = cur;
854
855                         mbuf_offset = 0;
856                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
857                 }
858         }
859
860         prev->data_len = mbuf_offset;
861         m->pkt_len    += mbuf_offset;
862
863         if (hdr)
864                 vhost_dequeue_offload(hdr, m);
865
866         return 0;
867 }
868
869 static inline void __attribute__((always_inline))
870 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
871                  uint32_t used_idx, uint32_t desc_idx)
872 {
873         vq->used->ring[used_idx].id  = desc_idx;
874         vq->used->ring[used_idx].len = 0;
875         vhost_log_used_vring(dev, vq,
876                         offsetof(struct vring_used, ring[used_idx]),
877                         sizeof(vq->used->ring[used_idx]));
878 }
879
880 static inline void __attribute__((always_inline))
881 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
882                 uint32_t count)
883 {
884         if (unlikely(count == 0))
885                 return;
886
887         rte_smp_wmb();
888         rte_smp_rmb();
889
890         vq->used->idx += count;
891         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
892                         sizeof(vq->used->idx));
893
894         /* Kick guest if required. */
895         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
896                         && (vq->callfd >= 0))
897                 eventfd_write(vq->callfd, (eventfd_t)1);
898 }
899
900 static inline struct zcopy_mbuf *__attribute__((always_inline))
901 get_zmbuf(struct vhost_virtqueue *vq)
902 {
903         uint16_t i;
904         uint16_t last;
905         int tries = 0;
906
907         /* search [last_zmbuf_idx, zmbuf_size) */
908         i = vq->last_zmbuf_idx;
909         last = vq->zmbuf_size;
910
911 again:
912         for (; i < last; i++) {
913                 if (vq->zmbufs[i].in_use == 0) {
914                         vq->last_zmbuf_idx = i + 1;
915                         vq->zmbufs[i].in_use = 1;
916                         return &vq->zmbufs[i];
917                 }
918         }
919
920         tries++;
921         if (tries == 1) {
922                 /* search [0, last_zmbuf_idx) */
923                 i = 0;
924                 last = vq->last_zmbuf_idx;
925                 goto again;
926         }
927
928         return NULL;
929 }
930
931 static inline bool __attribute__((always_inline))
932 mbuf_is_consumed(struct rte_mbuf *m)
933 {
934         while (m) {
935                 if (rte_mbuf_refcnt_read(m) > 1)
936                         return false;
937                 m = m->next;
938         }
939
940         return true;
941 }
942
943 uint16_t
944 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
945         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
946 {
947         struct virtio_net *dev;
948         struct rte_mbuf *rarp_mbuf = NULL;
949         struct vhost_virtqueue *vq;
950         uint32_t desc_indexes[MAX_PKT_BURST];
951         uint32_t used_idx;
952         uint32_t i = 0;
953         uint16_t free_entries;
954         uint16_t avail_idx;
955
956         dev = get_device(vid);
957         if (!dev)
958                 return 0;
959
960         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
961                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
962                         dev->vid, __func__, queue_id);
963                 return 0;
964         }
965
966         vq = dev->virtqueue[queue_id];
967         if (unlikely(vq->enabled == 0))
968                 return 0;
969
970         if (unlikely(dev->dequeue_zero_copy)) {
971                 struct zcopy_mbuf *zmbuf, *next;
972                 int nr_updated = 0;
973
974                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
975                      zmbuf != NULL; zmbuf = next) {
976                         next = TAILQ_NEXT(zmbuf, next);
977
978                         if (mbuf_is_consumed(zmbuf->mbuf)) {
979                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
980                                 update_used_ring(dev, vq, used_idx,
981                                                  zmbuf->desc_idx);
982                                 nr_updated += 1;
983
984                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
985                                 rte_pktmbuf_free(zmbuf->mbuf);
986                                 put_zmbuf(zmbuf);
987                                 vq->nr_zmbuf -= 1;
988                         }
989                 }
990
991                 update_used_idx(dev, vq, nr_updated);
992         }
993
994         /*
995          * Construct a RARP broadcast packet, and inject it to the "pkts"
996          * array, to looks like that guest actually send such packet.
997          *
998          * Check user_send_rarp() for more information.
999          */
1000         if (unlikely(rte_atomic16_cmpset((volatile uint16_t *)
1001                                          &dev->broadcast_rarp.cnt, 1, 0))) {
1002                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1003                 if (rarp_mbuf == NULL) {
1004                         RTE_LOG(ERR, VHOST_DATA,
1005                                 "Failed to allocate memory for mbuf.\n");
1006                         return 0;
1007                 }
1008
1009                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1010                         rte_pktmbuf_free(rarp_mbuf);
1011                         rarp_mbuf = NULL;
1012                 } else {
1013                         count -= 1;
1014                 }
1015         }
1016
1017         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1018                         vq->last_avail_idx;
1019         if (free_entries == 0)
1020                 goto out;
1021
1022         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1023
1024         /* Prefetch available and used ring */
1025         avail_idx = vq->last_avail_idx & (vq->size - 1);
1026         used_idx  = vq->last_used_idx  & (vq->size - 1);
1027         rte_prefetch0(&vq->avail->ring[avail_idx]);
1028         rte_prefetch0(&vq->used->ring[used_idx]);
1029
1030         count = RTE_MIN(count, MAX_PKT_BURST);
1031         count = RTE_MIN(count, free_entries);
1032         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1033                         dev->vid, count);
1034
1035         /* Retrieve all of the head indexes first to avoid caching issues. */
1036         for (i = 0; i < count; i++) {
1037                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1038                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1039                 desc_indexes[i] = vq->avail->ring[avail_idx];
1040
1041                 if (likely(dev->dequeue_zero_copy == 0))
1042                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1043         }
1044
1045         /* Prefetch descriptor index. */
1046         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1047         for (i = 0; i < count; i++) {
1048                 struct vring_desc *desc;
1049                 uint16_t sz, idx;
1050                 int err;
1051
1052                 if (likely(i + 1 < count))
1053                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1054
1055                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1056                         desc = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
1057                                         vq->desc[desc_indexes[i]].addr);
1058                         if (unlikely(!desc))
1059                                 break;
1060
1061                         rte_prefetch0(desc);
1062                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1063                         idx = 0;
1064                 } else {
1065                         desc = vq->desc;
1066                         sz = vq->size;
1067                         idx = desc_indexes[i];
1068                 }
1069
1070                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1071                 if (unlikely(pkts[i] == NULL)) {
1072                         RTE_LOG(ERR, VHOST_DATA,
1073                                 "Failed to allocate memory for mbuf.\n");
1074                         break;
1075                 }
1076
1077                 err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
1078                 if (unlikely(err)) {
1079                         rte_pktmbuf_free(pkts[i]);
1080                         break;
1081                 }
1082
1083                 if (unlikely(dev->dequeue_zero_copy)) {
1084                         struct zcopy_mbuf *zmbuf;
1085
1086                         zmbuf = get_zmbuf(vq);
1087                         if (!zmbuf) {
1088                                 rte_pktmbuf_free(pkts[i]);
1089                                 break;
1090                         }
1091                         zmbuf->mbuf = pkts[i];
1092                         zmbuf->desc_idx = desc_indexes[i];
1093
1094                         /*
1095                          * Pin lock the mbuf; we will check later to see
1096                          * whether the mbuf is freed (when we are the last
1097                          * user) or not. If that's the case, we then could
1098                          * update the used ring safely.
1099                          */
1100                         rte_mbuf_refcnt_update(pkts[i], 1);
1101
1102                         vq->nr_zmbuf += 1;
1103                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1104                 }
1105         }
1106         vq->last_avail_idx += i;
1107
1108         if (likely(dev->dequeue_zero_copy == 0)) {
1109                 vq->last_used_idx += i;
1110                 update_used_idx(dev, vq, i);
1111         }
1112
1113 out:
1114         if (unlikely(rarp_mbuf != NULL)) {
1115                 /*
1116                  * Inject it to the head of "pkts" array, so that switch's mac
1117                  * learning table will get updated first.
1118                  */
1119                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1120                 pkts[0] = rarp_mbuf;
1121                 i += 1;
1122         }
1123
1124         return i;
1125 }