ba4ce2afa7faa1eba72a31c8c988587c1370a59a
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18 #include <rte_spinlock.h>
19 #include <rte_malloc.h>
20
21 #include "iotlb.h"
22 #include "vhost.h"
23
24 #define MAX_PKT_BURST 32
25
26 #define MAX_BATCH_LEN 256
27
28 static  __rte_always_inline bool
29 rxvq_is_mergeable(struct virtio_net *dev)
30 {
31         return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
32 }
33
34 static bool
35 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
36 {
37         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
38 }
39
40 static __rte_always_inline void *
41 alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
42                 uint64_t desc_addr, uint64_t desc_len)
43 {
44         void *idesc;
45         uint64_t src, dst;
46         uint64_t len, remain = desc_len;
47
48         idesc = rte_malloc(__func__, desc_len, 0);
49         if (unlikely(!idesc))
50                 return 0;
51
52         dst = (uint64_t)(uintptr_t)idesc;
53
54         while (remain) {
55                 len = remain;
56                 src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
57                                 VHOST_ACCESS_RO);
58                 if (unlikely(!src || !len)) {
59                         rte_free(idesc);
60                         return 0;
61                 }
62
63                 rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
64
65                 remain -= len;
66                 dst += len;
67                 desc_addr += len;
68         }
69
70         return idesc;
71 }
72
73 static __rte_always_inline void
74 free_ind_table(void *idesc)
75 {
76         rte_free(idesc);
77 }
78
79 static __rte_always_inline void
80 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
81                           uint16_t to, uint16_t from, uint16_t size)
82 {
83         rte_memcpy(&vq->used->ring[to],
84                         &vq->shadow_used_ring[from],
85                         size * sizeof(struct vring_used_elem));
86         vhost_log_cache_used_vring(dev, vq,
87                         offsetof(struct vring_used, ring[to]),
88                         size * sizeof(struct vring_used_elem));
89 }
90
91 static __rte_always_inline void
92 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
93 {
94         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
95
96         if (used_idx + vq->shadow_used_idx <= vq->size) {
97                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
98                                           vq->shadow_used_idx);
99         } else {
100                 uint16_t size;
101
102                 /* update used ring interval [used_idx, vq->size] */
103                 size = vq->size - used_idx;
104                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
105
106                 /* update the left half used ring interval [0, left_size] */
107                 do_flush_shadow_used_ring(dev, vq, 0, size,
108                                           vq->shadow_used_idx - size);
109         }
110         vq->last_used_idx += vq->shadow_used_idx;
111
112         rte_smp_wmb();
113
114         vhost_log_cache_sync(dev, vq);
115
116         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
117         vq->shadow_used_idx = 0;
118         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
119                 sizeof(vq->used->idx));
120 }
121
122 static __rte_always_inline void
123 update_shadow_used_ring(struct vhost_virtqueue *vq,
124                          uint16_t desc_idx, uint16_t len)
125 {
126         uint16_t i = vq->shadow_used_idx++;
127
128         vq->shadow_used_ring[i].id  = desc_idx;
129         vq->shadow_used_ring[i].len = len;
130 }
131
132 static inline void
133 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
134 {
135         struct batch_copy_elem *elem = vq->batch_copy_elems;
136         uint16_t count = vq->batch_copy_nb_elems;
137         int i;
138
139         for (i = 0; i < count; i++) {
140                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
141                 vhost_log_cache_write(dev, vq, elem[i].log_addr, elem[i].len);
142                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
143         }
144
145         vq->batch_copy_nb_elems = 0;
146 }
147
148 static inline void
149 do_data_copy_dequeue(struct vhost_virtqueue *vq)
150 {
151         struct batch_copy_elem *elem = vq->batch_copy_elems;
152         uint16_t count = vq->batch_copy_nb_elems;
153         int i;
154
155         for (i = 0; i < count; i++)
156                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
157
158         vq->batch_copy_nb_elems = 0;
159 }
160
161 /* avoid write operation when necessary, to lessen cache issues */
162 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
163         if ((var) != (val))                     \
164                 (var) = (val);                  \
165 } while (0)
166
167 static __rte_always_inline void
168 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
169 {
170         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
171
172         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
173                 csum_l4 |= PKT_TX_TCP_CKSUM;
174
175         if (csum_l4) {
176                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
177                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
178
179                 switch (csum_l4) {
180                 case PKT_TX_TCP_CKSUM:
181                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
182                                                 cksum));
183                         break;
184                 case PKT_TX_UDP_CKSUM:
185                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
186                                                 dgram_cksum));
187                         break;
188                 case PKT_TX_SCTP_CKSUM:
189                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
190                                                 cksum));
191                         break;
192                 }
193         } else {
194                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
195                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
196                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
197         }
198
199         /* IP cksum verification cannot be bypassed, then calculate here */
200         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
201                 struct ipv4_hdr *ipv4_hdr;
202
203                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
204                                                    m_buf->l2_len);
205                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
206         }
207
208         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
209                 if (m_buf->ol_flags & PKT_TX_IPV4)
210                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
211                 else
212                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
213                 net_hdr->gso_size = m_buf->tso_segsz;
214                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
215                                         + m_buf->l4_len;
216         } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
217                 net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
218                 net_hdr->gso_size = m_buf->tso_segsz;
219                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
220                         m_buf->l4_len;
221         } else {
222                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
223                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
224                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
225         }
226 }
227
228 static __rte_always_inline int
229 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
230                          uint32_t avail_idx, uint32_t *vec_idx,
231                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
232                          uint16_t *desc_chain_len, uint8_t perm)
233 {
234         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
235         uint32_t vec_id = *vec_idx;
236         uint32_t len    = 0;
237         uint64_t dlen, desc_avail, desc_iova;
238         struct vring_desc *descs = vq->desc;
239         struct vring_desc *idesc = NULL;
240
241         *desc_chain_head = idx;
242
243         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
244                 dlen = vq->desc[idx].len;
245                 descs = (struct vring_desc *)(uintptr_t)
246                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
247                                                 &dlen,
248                                                 VHOST_ACCESS_RO);
249                 if (unlikely(!descs))
250                         return -1;
251
252                 if (unlikely(dlen < vq->desc[idx].len)) {
253                         /*
254                          * The indirect desc table is not contiguous
255                          * in process VA space, we have to copy it.
256                          */
257                         idesc = alloc_copy_ind_table(dev, vq,
258                                         vq->desc[idx].addr, vq->desc[idx].len);
259                         if (unlikely(!idesc))
260                                 return -1;
261
262                         descs = idesc;
263                 }
264
265                 idx = 0;
266         }
267
268         while (1) {
269                 if (unlikely(idx >= vq->size)) {
270                         free_ind_table(idesc);
271                         return -1;
272                 }
273
274
275                 len += descs[idx].len;
276                 desc_avail = descs[idx].len;
277                 desc_iova = descs[idx].addr;
278
279                 while (desc_avail) {
280                         uint64_t desc_addr;
281                         uint64_t desc_chunck_len = desc_avail;
282
283                         if (unlikely(vec_id >= BUF_VECTOR_MAX)) {
284                                 free_ind_table(idesc);
285                                 return -1;
286                         }
287
288                         desc_addr = vhost_iova_to_vva(dev, vq,
289                                         desc_iova,
290                                         &desc_chunck_len,
291                                         perm);
292                         if (unlikely(!desc_addr)) {
293                                 free_ind_table(idesc);
294                                 return -1;
295                         }
296
297                         buf_vec[vec_id].buf_iova = desc_iova;
298                         buf_vec[vec_id].buf_addr = desc_addr;
299                         buf_vec[vec_id].buf_len  = desc_chunck_len;
300                         buf_vec[vec_id].desc_idx = idx;
301
302                         desc_avail -= desc_chunck_len;
303                         desc_iova += desc_chunck_len;
304                         vec_id++;
305                 }
306
307                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
308                         break;
309
310                 idx = descs[idx].next;
311         }
312
313         *desc_chain_len = len;
314         *vec_idx = vec_id;
315
316         if (unlikely(!!idesc))
317                 free_ind_table(idesc);
318
319         return 0;
320 }
321
322 /*
323  * Returns -1 on fail, 0 on success
324  */
325 static inline int
326 reserve_avail_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
327                                 uint32_t size, struct buf_vector *buf_vec,
328                                 uint16_t *num_buffers, uint16_t avail_head,
329                                 uint16_t *nr_vec)
330 {
331         uint16_t cur_idx;
332         uint32_t vec_idx = 0;
333         uint16_t max_tries, tries = 0;
334
335         uint16_t head_idx = 0;
336         uint16_t len = 0;
337
338         *num_buffers = 0;
339         cur_idx  = vq->last_avail_idx;
340
341         if (rxvq_is_mergeable(dev))
342                 max_tries = vq->size;
343         else
344                 max_tries = 1;
345
346         while (size > 0) {
347                 if (unlikely(cur_idx == avail_head))
348                         return -1;
349
350                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
351                                                 &head_idx, &len,
352                                                 VHOST_ACCESS_RW) < 0))
353                         return -1;
354                 len = RTE_MIN(len, size);
355                 update_shadow_used_ring(vq, head_idx, len);
356                 size -= len;
357
358                 cur_idx++;
359                 tries++;
360                 *num_buffers += 1;
361
362                 /*
363                  * if we tried all available ring items, and still
364                  * can't get enough buf, it means something abnormal
365                  * happened.
366                  */
367                 if (unlikely(tries > max_tries))
368                         return -1;
369         }
370
371         *nr_vec = vec_idx;
372
373         return 0;
374 }
375
376 static __rte_always_inline int
377 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
378                             struct rte_mbuf *m, struct buf_vector *buf_vec,
379                             uint16_t nr_vec, uint16_t num_buffers)
380 {
381         uint32_t vec_idx = 0;
382         uint32_t mbuf_offset, mbuf_avail;
383         uint32_t buf_offset, buf_avail;
384         uint64_t buf_addr, buf_iova, buf_len;
385         uint32_t cpy_len;
386         uint64_t hdr_addr;
387         struct rte_mbuf *hdr_mbuf;
388         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
389         struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
390         int error = 0;
391
392         if (unlikely(m == NULL)) {
393                 error = -1;
394                 goto out;
395         }
396
397         buf_addr = buf_vec[vec_idx].buf_addr;
398         buf_iova = buf_vec[vec_idx].buf_iova;
399         buf_len = buf_vec[vec_idx].buf_len;
400
401         if (nr_vec > 1)
402                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
403
404         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
405                 error = -1;
406                 goto out;
407         }
408
409         hdr_mbuf = m;
410         hdr_addr = buf_addr;
411         if (unlikely(buf_len < dev->vhost_hlen))
412                 hdr = &tmp_hdr;
413         else
414                 hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
415
416         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
417                 dev->vid, num_buffers);
418
419         if (unlikely(buf_len < dev->vhost_hlen)) {
420                 buf_offset = dev->vhost_hlen - buf_len;
421                 vec_idx++;
422                 buf_addr = buf_vec[vec_idx].buf_addr;
423                 buf_iova = buf_vec[vec_idx].buf_iova;
424                 buf_len = buf_vec[vec_idx].buf_len;
425                 buf_avail = buf_len - buf_offset;
426         } else {
427                 buf_offset = dev->vhost_hlen;
428                 buf_avail = buf_len - dev->vhost_hlen;
429         }
430
431         mbuf_avail  = rte_pktmbuf_data_len(m);
432         mbuf_offset = 0;
433         while (mbuf_avail != 0 || m->next != NULL) {
434                 /* done with current buf, get the next one */
435                 if (buf_avail == 0) {
436                         vec_idx++;
437                         if (unlikely(vec_idx >= nr_vec)) {
438                                 error = -1;
439                                 goto out;
440                         }
441
442                         buf_addr = buf_vec[vec_idx].buf_addr;
443                         buf_iova = buf_vec[vec_idx].buf_iova;
444                         buf_len = buf_vec[vec_idx].buf_len;
445
446                         /* Prefetch next buffer address. */
447                         if (vec_idx + 1 < nr_vec)
448                                 rte_prefetch0((void *)(uintptr_t)
449                                                 buf_vec[vec_idx + 1].buf_addr);
450                         buf_offset = 0;
451                         buf_avail  = buf_len;
452                 }
453
454                 /* done with current mbuf, get the next one */
455                 if (mbuf_avail == 0) {
456                         m = m->next;
457
458                         mbuf_offset = 0;
459                         mbuf_avail  = rte_pktmbuf_data_len(m);
460                 }
461
462                 if (hdr_addr) {
463                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
464                         if (rxvq_is_mergeable(dev))
465                                 ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
466                                                 num_buffers);
467
468                         if (unlikely(hdr == &tmp_hdr)) {
469                                 uint64_t len;
470                                 uint64_t remain = dev->vhost_hlen;
471                                 uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
472                                 uint64_t iova = buf_vec[0].buf_iova;
473                                 uint16_t hdr_vec_idx = 0;
474
475                                 while (remain) {
476                                         len = remain;
477                                         dst = buf_vec[hdr_vec_idx].buf_addr;
478                                         rte_memcpy((void *)(uintptr_t)dst,
479                                                         (void *)(uintptr_t)src,
480                                                         len);
481
482                                         PRINT_PACKET(dev, (uintptr_t)dst,
483                                                         (uint32_t)len, 0);
484                                         vhost_log_cache_write(dev, vq,
485                                                         iova, len);
486
487                                         remain -= len;
488                                         iova += len;
489                                         src += len;
490                                         hdr_vec_idx++;
491                                 }
492                         } else {
493                                 PRINT_PACKET(dev, (uintptr_t)hdr_addr,
494                                                 dev->vhost_hlen, 0);
495                                 vhost_log_cache_write(dev, vq,
496                                                 buf_vec[0].buf_iova,
497                                                 dev->vhost_hlen);
498                         }
499
500                         hdr_addr = 0;
501                 }
502
503                 cpy_len = RTE_MIN(buf_len, mbuf_avail);
504
505                 if (likely(cpy_len > MAX_BATCH_LEN ||
506                                         vq->batch_copy_nb_elems >= vq->size)) {
507                         rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)),
508                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
509                                 cpy_len);
510                         vhost_log_cache_write(dev, vq, buf_iova + buf_offset,
511                                         cpy_len);
512                         PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset),
513                                 cpy_len, 0);
514                 } else {
515                         batch_copy[vq->batch_copy_nb_elems].dst =
516                                 (void *)((uintptr_t)(buf_addr + buf_offset));
517                         batch_copy[vq->batch_copy_nb_elems].src =
518                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
519                         batch_copy[vq->batch_copy_nb_elems].log_addr =
520                                 buf_iova + buf_offset;
521                         batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
522                         vq->batch_copy_nb_elems++;
523                 }
524
525                 mbuf_avail  -= cpy_len;
526                 mbuf_offset += cpy_len;
527                 buf_avail  -= cpy_len;
528                 buf_offset += cpy_len;
529         }
530
531 out:
532
533         return error;
534 }
535
536 static __rte_always_inline uint32_t
537 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
538         struct rte_mbuf **pkts, uint32_t count)
539 {
540         struct vhost_virtqueue *vq;
541         uint32_t pkt_idx = 0;
542         uint16_t num_buffers;
543         struct buf_vector buf_vec[BUF_VECTOR_MAX];
544         uint16_t avail_head;
545
546         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
547         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
548                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
549                         dev->vid, __func__, queue_id);
550                 return 0;
551         }
552
553         vq = dev->virtqueue[queue_id];
554
555         rte_spinlock_lock(&vq->access_lock);
556
557         if (unlikely(vq->enabled == 0))
558                 goto out_access_unlock;
559
560         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
561                 vhost_user_iotlb_rd_lock(vq);
562
563         if (unlikely(vq->access_ok == 0))
564                 if (unlikely(vring_translate(dev, vq) < 0))
565                         goto out;
566
567         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
568         if (count == 0)
569                 goto out;
570
571         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
572
573         avail_head = *((volatile uint16_t *)&vq->avail->idx);
574         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
575                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
576                 uint16_t nr_vec = 0;
577
578                 if (unlikely(reserve_avail_buf(dev, vq,
579                                                 pkt_len, buf_vec, &num_buffers,
580                                                 avail_head, &nr_vec) < 0)) {
581                         VHOST_LOG_DEBUG(VHOST_DATA,
582                                 "(%d) failed to get enough desc from vring\n",
583                                 dev->vid);
584                         vq->shadow_used_idx -= num_buffers;
585                         break;
586                 }
587
588                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
589
590                 VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
591                         dev->vid, vq->last_avail_idx,
592                         vq->last_avail_idx + num_buffers);
593
594                 if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
595                                                 buf_vec, nr_vec,
596                                                 num_buffers) < 0) {
597                         vq->shadow_used_idx -= num_buffers;
598                         break;
599                 }
600
601                 vq->last_avail_idx += num_buffers;
602         }
603
604         do_data_copy_enqueue(dev, vq);
605
606         if (likely(vq->shadow_used_idx)) {
607                 flush_shadow_used_ring(dev, vq);
608                 vhost_vring_call(dev, vq);
609         }
610
611 out:
612         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
613                 vhost_user_iotlb_rd_unlock(vq);
614
615 out_access_unlock:
616         rte_spinlock_unlock(&vq->access_lock);
617
618         return pkt_idx;
619 }
620
621 uint16_t
622 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
623         struct rte_mbuf **pkts, uint16_t count)
624 {
625         struct virtio_net *dev = get_device(vid);
626
627         if (!dev)
628                 return 0;
629
630         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
631                 RTE_LOG(ERR, VHOST_DATA,
632                         "(%d) %s: built-in vhost net backend is disabled.\n",
633                         dev->vid, __func__);
634                 return 0;
635         }
636
637         return virtio_dev_rx(dev, queue_id, pkts, count);
638 }
639
640 static inline bool
641 virtio_net_with_host_offload(struct virtio_net *dev)
642 {
643         if (dev->features &
644                         ((1ULL << VIRTIO_NET_F_CSUM) |
645                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
646                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
647                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
648                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
649                 return true;
650
651         return false;
652 }
653
654 static void
655 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
656 {
657         struct ipv4_hdr *ipv4_hdr;
658         struct ipv6_hdr *ipv6_hdr;
659         void *l3_hdr = NULL;
660         struct ether_hdr *eth_hdr;
661         uint16_t ethertype;
662
663         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
664
665         m->l2_len = sizeof(struct ether_hdr);
666         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
667
668         if (ethertype == ETHER_TYPE_VLAN) {
669                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
670
671                 m->l2_len += sizeof(struct vlan_hdr);
672                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
673         }
674
675         l3_hdr = (char *)eth_hdr + m->l2_len;
676
677         switch (ethertype) {
678         case ETHER_TYPE_IPv4:
679                 ipv4_hdr = l3_hdr;
680                 *l4_proto = ipv4_hdr->next_proto_id;
681                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
682                 *l4_hdr = (char *)l3_hdr + m->l3_len;
683                 m->ol_flags |= PKT_TX_IPV4;
684                 break;
685         case ETHER_TYPE_IPv6:
686                 ipv6_hdr = l3_hdr;
687                 *l4_proto = ipv6_hdr->proto;
688                 m->l3_len = sizeof(struct ipv6_hdr);
689                 *l4_hdr = (char *)l3_hdr + m->l3_len;
690                 m->ol_flags |= PKT_TX_IPV6;
691                 break;
692         default:
693                 m->l3_len = 0;
694                 *l4_proto = 0;
695                 *l4_hdr = NULL;
696                 break;
697         }
698 }
699
700 static __rte_always_inline void
701 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
702 {
703         uint16_t l4_proto = 0;
704         void *l4_hdr = NULL;
705         struct tcp_hdr *tcp_hdr = NULL;
706
707         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
708                 return;
709
710         parse_ethernet(m, &l4_proto, &l4_hdr);
711         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
712                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
713                         switch (hdr->csum_offset) {
714                         case (offsetof(struct tcp_hdr, cksum)):
715                                 if (l4_proto == IPPROTO_TCP)
716                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
717                                 break;
718                         case (offsetof(struct udp_hdr, dgram_cksum)):
719                                 if (l4_proto == IPPROTO_UDP)
720                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
721                                 break;
722                         case (offsetof(struct sctp_hdr, cksum)):
723                                 if (l4_proto == IPPROTO_SCTP)
724                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
725                                 break;
726                         default:
727                                 break;
728                         }
729                 }
730         }
731
732         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
733                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
734                 case VIRTIO_NET_HDR_GSO_TCPV4:
735                 case VIRTIO_NET_HDR_GSO_TCPV6:
736                         tcp_hdr = l4_hdr;
737                         m->ol_flags |= PKT_TX_TCP_SEG;
738                         m->tso_segsz = hdr->gso_size;
739                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
740                         break;
741                 case VIRTIO_NET_HDR_GSO_UDP:
742                         m->ol_flags |= PKT_TX_UDP_SEG;
743                         m->tso_segsz = hdr->gso_size;
744                         m->l4_len = sizeof(struct udp_hdr);
745                         break;
746                 default:
747                         RTE_LOG(WARNING, VHOST_DATA,
748                                 "unsupported gso type %u.\n", hdr->gso_type);
749                         break;
750                 }
751         }
752 }
753
754 static __rte_always_inline void
755 put_zmbuf(struct zcopy_mbuf *zmbuf)
756 {
757         zmbuf->in_use = 0;
758 }
759
760 static __rte_always_inline int
761 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
762                   struct buf_vector *buf_vec, uint16_t nr_vec,
763                   struct rte_mbuf *m, struct rte_mempool *mbuf_pool)
764 {
765         uint32_t buf_avail, buf_offset;
766         uint64_t buf_addr, buf_iova, buf_len;
767         uint32_t mbuf_avail, mbuf_offset;
768         uint32_t cpy_len;
769         struct rte_mbuf *cur = m, *prev = m;
770         struct virtio_net_hdr tmp_hdr;
771         struct virtio_net_hdr *hdr = NULL;
772         /* A counter to avoid desc dead loop chain */
773         uint16_t vec_idx = 0;
774         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
775         int error = 0;
776
777         buf_addr = buf_vec[vec_idx].buf_addr;
778         buf_iova = buf_vec[vec_idx].buf_iova;
779         buf_len = buf_vec[vec_idx].buf_len;
780
781         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
782                 error = -1;
783                 goto out;
784         }
785
786         if (likely(nr_vec > 1))
787                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
788
789         if (virtio_net_with_host_offload(dev)) {
790                 if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) {
791                         uint64_t len;
792                         uint64_t remain = sizeof(struct virtio_net_hdr);
793                         uint64_t src;
794                         uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr;
795                         uint16_t hdr_vec_idx = 0;
796
797                         /*
798                          * No luck, the virtio-net header doesn't fit
799                          * in a contiguous virtual area.
800                          */
801                         while (remain) {
802                                 len = remain;
803                                 src = buf_vec[hdr_vec_idx].buf_addr;
804                                 rte_memcpy((void *)(uintptr_t)dst,
805                                                    (void *)(uintptr_t)src, len);
806
807                                 remain -= len;
808                                 dst += len;
809                                 hdr_vec_idx++;
810                         }
811
812                         hdr = &tmp_hdr;
813                 } else {
814                         hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr);
815                         rte_prefetch0(hdr);
816                 }
817         }
818
819         /*
820          * A virtio driver normally uses at least 2 desc buffers
821          * for Tx: the first for storing the header, and others
822          * for storing the data.
823          */
824         if (unlikely(buf_len < dev->vhost_hlen)) {
825                 buf_offset = dev->vhost_hlen - buf_len;
826                 vec_idx++;
827                 buf_addr = buf_vec[vec_idx].buf_addr;
828                 buf_iova = buf_vec[vec_idx].buf_iova;
829                 buf_len = buf_vec[vec_idx].buf_len;
830                 buf_avail  = buf_len - buf_offset;
831         } else if (buf_len == dev->vhost_hlen) {
832                 if (unlikely(++vec_idx >= nr_vec))
833                         goto out;
834                 buf_addr = buf_vec[vec_idx].buf_addr;
835                 buf_iova = buf_vec[vec_idx].buf_iova;
836                 buf_len = buf_vec[vec_idx].buf_len;
837
838                 buf_offset = 0;
839                 buf_avail = buf_len;
840         } else {
841                 buf_offset = dev->vhost_hlen;
842                 buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
843         }
844
845         rte_prefetch0((void *)(uintptr_t)
846                         (buf_addr + buf_offset));
847
848         PRINT_PACKET(dev,
849                         (uintptr_t)(buf_addr + buf_offset),
850                         (uint32_t)buf_avail, 0);
851
852         mbuf_offset = 0;
853         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
854         while (1) {
855                 uint64_t hpa;
856
857                 cpy_len = RTE_MIN(buf_avail, mbuf_avail);
858
859                 /*
860                  * A desc buf might across two host physical pages that are
861                  * not continuous. In such case (gpa_to_hpa returns 0), data
862                  * will be copied even though zero copy is enabled.
863                  */
864                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
865                                         buf_iova + buf_offset, cpy_len)))) {
866                         cur->data_len = cpy_len;
867                         cur->data_off = 0;
868                         cur->buf_addr =
869                                 (void *)(uintptr_t)(buf_addr + buf_offset);
870                         cur->buf_iova = hpa;
871
872                         /*
873                          * In zero copy mode, one mbuf can only reference data
874                          * for one or partial of one desc buff.
875                          */
876                         mbuf_avail = cpy_len;
877                 } else {
878                         if (likely(cpy_len > MAX_BATCH_LEN ||
879                                    vq->batch_copy_nb_elems >= vq->size ||
880                                    (hdr && cur == m))) {
881                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
882                                                                    mbuf_offset),
883                                            (void *)((uintptr_t)(buf_addr +
884                                                            buf_offset)),
885                                            cpy_len);
886                         } else {
887                                 batch_copy[vq->batch_copy_nb_elems].dst =
888                                         rte_pktmbuf_mtod_offset(cur, void *,
889                                                                 mbuf_offset);
890                                 batch_copy[vq->batch_copy_nb_elems].src =
891                                         (void *)((uintptr_t)(buf_addr +
892                                                                 buf_offset));
893                                 batch_copy[vq->batch_copy_nb_elems].len =
894                                         cpy_len;
895                                 vq->batch_copy_nb_elems++;
896                         }
897                 }
898
899                 mbuf_avail  -= cpy_len;
900                 mbuf_offset += cpy_len;
901                 buf_avail -= cpy_len;
902                 buf_offset += cpy_len;
903
904                 /* This buf reaches to its end, get the next one */
905                 if (buf_avail == 0) {
906                         if (++vec_idx >= nr_vec)
907                                 break;
908
909                         buf_addr = buf_vec[vec_idx].buf_addr;
910                         buf_iova = buf_vec[vec_idx].buf_iova;
911                         buf_len = buf_vec[vec_idx].buf_len;
912
913                         /*
914                          * Prefecth desc n + 1 buffer while
915                          * desc n buffer is processed.
916                          */
917                         if (vec_idx + 1 < nr_vec)
918                                 rte_prefetch0((void *)(uintptr_t)
919                                                 buf_vec[vec_idx + 1].buf_addr);
920
921                         buf_offset = 0;
922                         buf_avail  = buf_len;
923
924                         PRINT_PACKET(dev, (uintptr_t)buf_addr,
925                                         (uint32_t)buf_avail, 0);
926                 }
927
928                 /*
929                  * This mbuf reaches to its end, get a new one
930                  * to hold more data.
931                  */
932                 if (mbuf_avail == 0) {
933                         cur = rte_pktmbuf_alloc(mbuf_pool);
934                         if (unlikely(cur == NULL)) {
935                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
936                                         "allocate memory for mbuf.\n");
937                                 error = -1;
938                                 goto out;
939                         }
940                         if (unlikely(dev->dequeue_zero_copy))
941                                 rte_mbuf_refcnt_update(cur, 1);
942
943                         prev->next = cur;
944                         prev->data_len = mbuf_offset;
945                         m->nb_segs += 1;
946                         m->pkt_len += mbuf_offset;
947                         prev = cur;
948
949                         mbuf_offset = 0;
950                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
951                 }
952         }
953
954         prev->data_len = mbuf_offset;
955         m->pkt_len    += mbuf_offset;
956
957         if (hdr)
958                 vhost_dequeue_offload(hdr, m);
959
960 out:
961
962         return error;
963 }
964
965 static __rte_always_inline struct zcopy_mbuf *
966 get_zmbuf(struct vhost_virtqueue *vq)
967 {
968         uint16_t i;
969         uint16_t last;
970         int tries = 0;
971
972         /* search [last_zmbuf_idx, zmbuf_size) */
973         i = vq->last_zmbuf_idx;
974         last = vq->zmbuf_size;
975
976 again:
977         for (; i < last; i++) {
978                 if (vq->zmbufs[i].in_use == 0) {
979                         vq->last_zmbuf_idx = i + 1;
980                         vq->zmbufs[i].in_use = 1;
981                         return &vq->zmbufs[i];
982                 }
983         }
984
985         tries++;
986         if (tries == 1) {
987                 /* search [0, last_zmbuf_idx) */
988                 i = 0;
989                 last = vq->last_zmbuf_idx;
990                 goto again;
991         }
992
993         return NULL;
994 }
995
996 static __rte_always_inline bool
997 mbuf_is_consumed(struct rte_mbuf *m)
998 {
999         while (m) {
1000                 if (rte_mbuf_refcnt_read(m) > 1)
1001                         return false;
1002                 m = m->next;
1003         }
1004
1005         return true;
1006 }
1007
1008 static __rte_always_inline void
1009 restore_mbuf(struct rte_mbuf *m)
1010 {
1011         uint32_t mbuf_size, priv_size;
1012
1013         while (m) {
1014                 priv_size = rte_pktmbuf_priv_size(m->pool);
1015                 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
1016                 /* start of buffer is after mbuf structure and priv data */
1017
1018                 m->buf_addr = (char *)m + mbuf_size;
1019                 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1020                 m = m->next;
1021         }
1022 }
1023
1024 uint16_t
1025 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1026         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1027 {
1028         struct virtio_net *dev;
1029         struct rte_mbuf *rarp_mbuf = NULL;
1030         struct vhost_virtqueue *vq;
1031         uint32_t i = 0;
1032         uint16_t free_entries;
1033
1034         dev = get_device(vid);
1035         if (!dev)
1036                 return 0;
1037
1038         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
1039                 RTE_LOG(ERR, VHOST_DATA,
1040                         "(%d) %s: built-in vhost net backend is disabled.\n",
1041                         dev->vid, __func__);
1042                 return 0;
1043         }
1044
1045         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1046                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1047                         dev->vid, __func__, queue_id);
1048                 return 0;
1049         }
1050
1051         vq = dev->virtqueue[queue_id];
1052
1053         if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
1054                 return 0;
1055
1056         if (unlikely(vq->enabled == 0))
1057                 goto out_access_unlock;
1058
1059         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1060                 vhost_user_iotlb_rd_lock(vq);
1061
1062         if (unlikely(vq->access_ok == 0))
1063                 if (unlikely(vring_translate(dev, vq) < 0))
1064                         goto out;
1065
1066         if (unlikely(dev->dequeue_zero_copy)) {
1067                 struct zcopy_mbuf *zmbuf, *next;
1068                 int nr_updated = 0;
1069
1070                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1071                      zmbuf != NULL; zmbuf = next) {
1072                         next = TAILQ_NEXT(zmbuf, next);
1073
1074                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1075                                 update_shadow_used_ring(vq, zmbuf->desc_idx, 0);
1076                                 nr_updated += 1;
1077
1078                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1079                                 restore_mbuf(zmbuf->mbuf);
1080                                 rte_pktmbuf_free(zmbuf->mbuf);
1081                                 put_zmbuf(zmbuf);
1082                                 vq->nr_zmbuf -= 1;
1083                         }
1084                 }
1085
1086                 flush_shadow_used_ring(dev, vq);
1087                 vhost_vring_call(dev, vq);
1088         }
1089
1090         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
1091
1092         /*
1093          * Construct a RARP broadcast packet, and inject it to the "pkts"
1094          * array, to looks like that guest actually send such packet.
1095          *
1096          * Check user_send_rarp() for more information.
1097          *
1098          * broadcast_rarp shares a cacheline in the virtio_net structure
1099          * with some fields that are accessed during enqueue and
1100          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1101          * result in false sharing between enqueue and dequeue.
1102          *
1103          * Prevent unnecessary false sharing by reading broadcast_rarp first
1104          * and only performing cmpset if the read indicates it is likely to
1105          * be set.
1106          */
1107
1108         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1109                         rte_atomic16_cmpset((volatile uint16_t *)
1110                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1111
1112                 rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
1113                 if (rarp_mbuf == NULL) {
1114                         RTE_LOG(ERR, VHOST_DATA,
1115                                 "Failed to make RARP packet.\n");
1116                         return 0;
1117                 }
1118                 count -= 1;
1119         }
1120
1121         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1122                         vq->last_avail_idx;
1123         if (free_entries == 0)
1124                 goto out;
1125
1126         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1127
1128         count = RTE_MIN(count, MAX_PKT_BURST);
1129         count = RTE_MIN(count, free_entries);
1130         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1131                         dev->vid, count);
1132
1133         for (i = 0; i < count; i++) {
1134                 struct buf_vector buf_vec[BUF_VECTOR_MAX];
1135                 uint16_t head_idx, dummy_len;
1136                 uint32_t nr_vec = 0;
1137                 int err;
1138
1139                 if (unlikely(fill_vec_buf(dev, vq,
1140                                                 vq->last_avail_idx + i,
1141                                                 &nr_vec, buf_vec,
1142                                                 &head_idx, &dummy_len,
1143                                                 VHOST_ACCESS_RO) < 0))
1144                         break;
1145
1146                 if (likely(dev->dequeue_zero_copy == 0))
1147                         update_shadow_used_ring(vq, head_idx, 0);
1148
1149                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
1150
1151                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1152                 if (unlikely(pkts[i] == NULL)) {
1153                         RTE_LOG(ERR, VHOST_DATA,
1154                                 "Failed to allocate memory for mbuf.\n");
1155                         break;
1156                 }
1157
1158                 err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
1159                                 mbuf_pool);
1160                 if (unlikely(err)) {
1161                         rte_pktmbuf_free(pkts[i]);
1162                         break;
1163                 }
1164
1165                 if (unlikely(dev->dequeue_zero_copy)) {
1166                         struct zcopy_mbuf *zmbuf;
1167
1168                         zmbuf = get_zmbuf(vq);
1169                         if (!zmbuf) {
1170                                 rte_pktmbuf_free(pkts[i]);
1171                                 break;
1172                         }
1173                         zmbuf->mbuf = pkts[i];
1174                         zmbuf->desc_idx = head_idx;
1175
1176                         /*
1177                          * Pin lock the mbuf; we will check later to see
1178                          * whether the mbuf is freed (when we are the last
1179                          * user) or not. If that's the case, we then could
1180                          * update the used ring safely.
1181                          */
1182                         rte_mbuf_refcnt_update(pkts[i], 1);
1183
1184                         vq->nr_zmbuf += 1;
1185                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1186                 }
1187         }
1188         vq->last_avail_idx += i;
1189
1190         if (likely(dev->dequeue_zero_copy == 0)) {
1191                 do_data_copy_dequeue(vq);
1192                 if (unlikely(i < count))
1193                         vq->shadow_used_idx = i;
1194                 flush_shadow_used_ring(dev, vq);
1195                 vhost_vring_call(dev, vq);
1196         }
1197
1198 out:
1199         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1200                 vhost_user_iotlb_rd_unlock(vq);
1201
1202 out_access_unlock:
1203         rte_spinlock_unlock(&vq->access_lock);
1204
1205         if (unlikely(rarp_mbuf != NULL)) {
1206                 /*
1207                  * Inject it to the head of "pkts" array, so that switch's mac
1208                  * learning table will get updated first.
1209                  */
1210                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1211                 pkts[0] = rarp_mbuf;
1212                 i += 1;
1213         }
1214
1215         return i;
1216 }