vhost: use the guest IOVA to host VA helper
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_vhost.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "iotlb.h"
49 #include "vhost.h"
50
51 #define MAX_PKT_BURST 32
52
53 #define MAX_BATCH_LEN 256
54
55 static bool
56 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
57 {
58         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
59 }
60
61 static __rte_always_inline void
62 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
63                           uint16_t to, uint16_t from, uint16_t size)
64 {
65         rte_memcpy(&vq->used->ring[to],
66                         &vq->shadow_used_ring[from],
67                         size * sizeof(struct vring_used_elem));
68         vhost_log_used_vring(dev, vq,
69                         offsetof(struct vring_used, ring[to]),
70                         size * sizeof(struct vring_used_elem));
71 }
72
73 static __rte_always_inline void
74 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
75 {
76         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
77
78         if (used_idx + vq->shadow_used_idx <= vq->size) {
79                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
80                                           vq->shadow_used_idx);
81         } else {
82                 uint16_t size;
83
84                 /* update used ring interval [used_idx, vq->size] */
85                 size = vq->size - used_idx;
86                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
87
88                 /* update the left half used ring interval [0, left_size] */
89                 do_flush_shadow_used_ring(dev, vq, 0, size,
90                                           vq->shadow_used_idx - size);
91         }
92         vq->last_used_idx += vq->shadow_used_idx;
93
94         rte_smp_wmb();
95
96         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
97         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
98                 sizeof(vq->used->idx));
99 }
100
101 static __rte_always_inline void
102 update_shadow_used_ring(struct vhost_virtqueue *vq,
103                          uint16_t desc_idx, uint16_t len)
104 {
105         uint16_t i = vq->shadow_used_idx++;
106
107         vq->shadow_used_ring[i].id  = desc_idx;
108         vq->shadow_used_ring[i].len = len;
109 }
110
111 static inline void
112 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
113 {
114         struct batch_copy_elem *elem = vq->batch_copy_elems;
115         uint16_t count = vq->batch_copy_nb_elems;
116         int i;
117
118         for (i = 0; i < count; i++) {
119                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
120                 vhost_log_write(dev, elem[i].log_addr, elem[i].len);
121                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
122         }
123 }
124
125 static inline void
126 do_data_copy_dequeue(struct vhost_virtqueue *vq)
127 {
128         struct batch_copy_elem *elem = vq->batch_copy_elems;
129         uint16_t count = vq->batch_copy_nb_elems;
130         int i;
131
132         for (i = 0; i < count; i++)
133                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
134 }
135
136 /* avoid write operation when necessary, to lessen cache issues */
137 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
138         if ((var) != (val))                     \
139                 (var) = (val);                  \
140 } while (0)
141
142 static void
143 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
144 {
145         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
146
147         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
148                 csum_l4 |= PKT_TX_TCP_CKSUM;
149
150         if (csum_l4) {
151                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
152                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
153
154                 switch (csum_l4) {
155                 case PKT_TX_TCP_CKSUM:
156                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
157                                                 cksum));
158                         break;
159                 case PKT_TX_UDP_CKSUM:
160                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
161                                                 dgram_cksum));
162                         break;
163                 case PKT_TX_SCTP_CKSUM:
164                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
165                                                 cksum));
166                         break;
167                 }
168         } else {
169                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
170                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
171                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
172         }
173
174         /* IP cksum verification cannot be bypassed, then calculate here */
175         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
176                 struct ipv4_hdr *ipv4_hdr;
177
178                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
179                                                    m_buf->l2_len);
180                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
181         }
182
183         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
184                 if (m_buf->ol_flags & PKT_TX_IPV4)
185                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
186                 else
187                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
188                 net_hdr->gso_size = m_buf->tso_segsz;
189                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
190                                         + m_buf->l4_len;
191         } else {
192                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
193                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
194                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
195         }
196 }
197
198 static __rte_always_inline int
199 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
200                   struct vring_desc *descs, struct rte_mbuf *m,
201                   uint16_t desc_idx, uint32_t size)
202 {
203         uint32_t desc_avail, desc_offset;
204         uint32_t mbuf_avail, mbuf_offset;
205         uint32_t cpy_len;
206         struct vring_desc *desc;
207         uint64_t desc_addr;
208         /* A counter to avoid desc dead loop chain */
209         uint16_t nr_desc = 1;
210         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
211         uint16_t copy_nb = vq->batch_copy_nb_elems;
212         int error = 0;
213
214         desc = &descs[desc_idx];
215         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
216                                         desc->len, VHOST_ACCESS_RW);
217         /*
218          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
219          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
220          * otherwise stores offset on the stack instead of in a register.
221          */
222         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr) {
223                 error = -1;
224                 goto out;
225         }
226
227         rte_prefetch0((void *)(uintptr_t)desc_addr);
228
229         virtio_enqueue_offload(m, (struct virtio_net_hdr *)(uintptr_t)desc_addr);
230         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
231         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
232
233         desc_offset = dev->vhost_hlen;
234         desc_avail  = desc->len - dev->vhost_hlen;
235
236         mbuf_avail  = rte_pktmbuf_data_len(m);
237         mbuf_offset = 0;
238         while (mbuf_avail != 0 || m->next != NULL) {
239                 /* done with current mbuf, fetch next */
240                 if (mbuf_avail == 0) {
241                         m = m->next;
242
243                         mbuf_offset = 0;
244                         mbuf_avail  = rte_pktmbuf_data_len(m);
245                 }
246
247                 /* done with current desc buf, fetch next */
248                 if (desc_avail == 0) {
249                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
250                                 /* Room in vring buffer is not enough */
251                                 error = -1;
252                                 goto out;
253                         }
254                         if (unlikely(desc->next >= size || ++nr_desc > size)) {
255                                 error = -1;
256                                 goto out;
257                         }
258
259                         desc = &descs[desc->next];
260                         desc_addr = vhost_iova_to_vva(dev, vq, desc->addr,
261                                                         desc->len,
262                                                         VHOST_ACCESS_RW);
263                         if (unlikely(!desc_addr)) {
264                                 error = -1;
265                                 goto out;
266                         }
267
268                         desc_offset = 0;
269                         desc_avail  = desc->len;
270                 }
271
272                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
273                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
274                         rte_memcpy((void *)((uintptr_t)(desc_addr +
275                                                         desc_offset)),
276                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
277                                 cpy_len);
278                         vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
279                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
280                                      cpy_len, 0);
281                 } else {
282                         batch_copy[copy_nb].dst =
283                                 (void *)((uintptr_t)(desc_addr + desc_offset));
284                         batch_copy[copy_nb].src =
285                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
286                         batch_copy[copy_nb].log_addr = desc->addr + desc_offset;
287                         batch_copy[copy_nb].len = cpy_len;
288                         copy_nb++;
289                 }
290
291                 mbuf_avail  -= cpy_len;
292                 mbuf_offset += cpy_len;
293                 desc_avail  -= cpy_len;
294                 desc_offset += cpy_len;
295         }
296
297 out:
298         vq->batch_copy_nb_elems = copy_nb;
299
300         return error;
301 }
302
303 /**
304  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
305  * be received from the physical port or from another virtio device. A packet
306  * count is returned to indicate the number of packets that are successfully
307  * added to the RX queue. This function works when the mbuf is scattered, but
308  * it doesn't support the mergeable feature.
309  */
310 static __rte_always_inline uint32_t
311 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
312               struct rte_mbuf **pkts, uint32_t count)
313 {
314         struct vhost_virtqueue *vq;
315         uint16_t avail_idx, free_entries, start_idx;
316         uint16_t desc_indexes[MAX_PKT_BURST];
317         struct vring_desc *descs;
318         uint16_t used_idx;
319         uint32_t i, sz;
320
321         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
322         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
323                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
324                         dev->vid, __func__, queue_id);
325                 return 0;
326         }
327
328         vq = dev->virtqueue[queue_id];
329         if (unlikely(vq->enabled == 0))
330                 return 0;
331
332         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
333         start_idx = vq->last_used_idx;
334         free_entries = avail_idx - start_idx;
335         count = RTE_MIN(count, free_entries);
336         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
337         if (count == 0)
338                 return 0;
339
340         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
341                 dev->vid, start_idx, start_idx + count);
342
343         vq->batch_copy_nb_elems = 0;
344
345         /* Retrieve all of the desc indexes first to avoid caching issues. */
346         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
347         for (i = 0; i < count; i++) {
348                 used_idx = (start_idx + i) & (vq->size - 1);
349                 desc_indexes[i] = vq->avail->ring[used_idx];
350                 vq->used->ring[used_idx].id = desc_indexes[i];
351                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
352                                                dev->vhost_hlen;
353                 vhost_log_used_vring(dev, vq,
354                         offsetof(struct vring_used, ring[used_idx]),
355                         sizeof(vq->used->ring[used_idx]));
356         }
357
358         rte_prefetch0(&vq->desc[desc_indexes[0]]);
359
360         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
361                 vhost_user_iotlb_rd_lock(vq);
362
363         for (i = 0; i < count; i++) {
364                 uint16_t desc_idx = desc_indexes[i];
365                 int err;
366
367                 if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
368                         descs = (struct vring_desc *)(uintptr_t)
369                                 vhost_iova_to_vva(dev,
370                                                 vq, vq->desc[desc_idx].addr,
371                                                 vq->desc[desc_idx].len,
372                                                 VHOST_ACCESS_RO);
373                         if (unlikely(!descs)) {
374                                 count = i;
375                                 break;
376                         }
377
378                         desc_idx = 0;
379                         sz = vq->desc[desc_idx].len / sizeof(*descs);
380                 } else {
381                         descs = vq->desc;
382                         sz = vq->size;
383                 }
384
385                 err = copy_mbuf_to_desc(dev, vq, descs, pkts[i], desc_idx, sz);
386                 if (unlikely(err)) {
387                         count = i;
388                         break;
389                 }
390
391                 if (i + 1 < count)
392                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
393         }
394
395         do_data_copy_enqueue(dev, vq);
396
397         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
398                 vhost_user_iotlb_rd_unlock(vq);
399
400         rte_smp_wmb();
401
402         *(volatile uint16_t *)&vq->used->idx += count;
403         vq->last_used_idx += count;
404         vhost_log_used_vring(dev, vq,
405                 offsetof(struct vring_used, idx),
406                 sizeof(vq->used->idx));
407
408         /* flush used->idx update before we read avail->flags. */
409         rte_mb();
410
411         /* Kick the guest if necessary. */
412         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
413                         && (vq->callfd >= 0))
414                 eventfd_write(vq->callfd, (eventfd_t)1);
415         return count;
416 }
417
418 static __rte_always_inline int
419 fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
420                          uint32_t avail_idx, uint32_t *vec_idx,
421                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
422                          uint16_t *desc_chain_len)
423 {
424         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
425         uint32_t vec_id = *vec_idx;
426         uint32_t len    = 0;
427         struct vring_desc *descs = vq->desc;
428
429         *desc_chain_head = idx;
430
431         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
432                 descs = (struct vring_desc *)(uintptr_t)
433                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
434                                                 vq->desc[idx].len,
435                                                 VHOST_ACCESS_RO);
436                 if (unlikely(!descs))
437                         return -1;
438
439                 idx = 0;
440         }
441
442         while (1) {
443                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
444                         return -1;
445
446                 len += descs[idx].len;
447                 buf_vec[vec_id].buf_addr = descs[idx].addr;
448                 buf_vec[vec_id].buf_len  = descs[idx].len;
449                 buf_vec[vec_id].desc_idx = idx;
450                 vec_id++;
451
452                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
453                         break;
454
455                 idx = descs[idx].next;
456         }
457
458         *desc_chain_len = len;
459         *vec_idx = vec_id;
460
461         return 0;
462 }
463
464 /*
465  * Returns -1 on fail, 0 on success
466  */
467 static inline int
468 reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
469                                 uint32_t size, struct buf_vector *buf_vec,
470                                 uint16_t *num_buffers, uint16_t avail_head)
471 {
472         uint16_t cur_idx;
473         uint32_t vec_idx = 0;
474         uint16_t tries = 0;
475
476         uint16_t head_idx = 0;
477         uint16_t len = 0;
478
479         *num_buffers = 0;
480         cur_idx  = vq->last_avail_idx;
481
482         while (size > 0) {
483                 if (unlikely(cur_idx == avail_head))
484                         return -1;
485
486                 if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
487                                                 &head_idx, &len) < 0))
488                         return -1;
489                 len = RTE_MIN(len, size);
490                 update_shadow_used_ring(vq, head_idx, len);
491                 size -= len;
492
493                 cur_idx++;
494                 tries++;
495                 *num_buffers += 1;
496
497                 /*
498                  * if we tried all available ring items, and still
499                  * can't get enough buf, it means something abnormal
500                  * happened.
501                  */
502                 if (unlikely(tries >= vq->size))
503                         return -1;
504         }
505
506         return 0;
507 }
508
509 static __rte_always_inline int
510 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
511                             struct rte_mbuf *m, struct buf_vector *buf_vec,
512                             uint16_t num_buffers)
513 {
514         uint32_t vec_idx = 0;
515         uint64_t desc_addr;
516         uint32_t mbuf_offset, mbuf_avail;
517         uint32_t desc_offset, desc_avail;
518         uint32_t cpy_len;
519         uint64_t hdr_addr, hdr_phys_addr;
520         struct rte_mbuf *hdr_mbuf;
521         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
522         uint16_t copy_nb = vq->batch_copy_nb_elems;
523         int error = 0;
524
525         if (unlikely(m == NULL)) {
526                 error = -1;
527                 goto out;
528         }
529
530         desc_addr = vhost_iova_to_vva(dev, vq, buf_vec[vec_idx].buf_addr,
531                                                 buf_vec[vec_idx].buf_len,
532                                                 VHOST_ACCESS_RW);
533         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr) {
534                 error = -1;
535                 goto out;
536         }
537
538         hdr_mbuf = m;
539         hdr_addr = desc_addr;
540         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
541         rte_prefetch0((void *)(uintptr_t)hdr_addr);
542
543         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
544                 dev->vid, num_buffers);
545
546         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
547         desc_offset = dev->vhost_hlen;
548
549         mbuf_avail  = rte_pktmbuf_data_len(m);
550         mbuf_offset = 0;
551         while (mbuf_avail != 0 || m->next != NULL) {
552                 /* done with current desc buf, get the next one */
553                 if (desc_avail == 0) {
554                         vec_idx++;
555                         desc_addr =
556                                 vhost_iova_to_vva(dev, vq,
557                                         buf_vec[vec_idx].buf_addr,
558                                         buf_vec[vec_idx].buf_len,
559                                         VHOST_ACCESS_RW);
560                         if (unlikely(!desc_addr)) {
561                                 error = -1;
562                                 goto out;
563                         }
564
565                         /* Prefetch buffer address. */
566                         rte_prefetch0((void *)(uintptr_t)desc_addr);
567                         desc_offset = 0;
568                         desc_avail  = buf_vec[vec_idx].buf_len;
569                 }
570
571                 /* done with current mbuf, get the next one */
572                 if (mbuf_avail == 0) {
573                         m = m->next;
574
575                         mbuf_offset = 0;
576                         mbuf_avail  = rte_pktmbuf_data_len(m);
577                 }
578
579                 if (hdr_addr) {
580                         struct virtio_net_hdr_mrg_rxbuf *hdr;
581
582                         hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)
583                                 hdr_addr;
584                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
585                         ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
586
587                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
588                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
589                                      dev->vhost_hlen, 0);
590
591                         hdr_addr = 0;
592                 }
593
594                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
595
596                 if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
597                         rte_memcpy((void *)((uintptr_t)(desc_addr +
598                                                         desc_offset)),
599                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
600                                 cpy_len);
601                         vhost_log_write(dev,
602                                 buf_vec[vec_idx].buf_addr + desc_offset,
603                                 cpy_len);
604                         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
605                                 cpy_len, 0);
606                 } else {
607                         batch_copy[copy_nb].dst =
608                                 (void *)((uintptr_t)(desc_addr + desc_offset));
609                         batch_copy[copy_nb].src =
610                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
611                         batch_copy[copy_nb].log_addr =
612                                 buf_vec[vec_idx].buf_addr + desc_offset;
613                         batch_copy[copy_nb].len = cpy_len;
614                         copy_nb++;
615                 }
616
617                 mbuf_avail  -= cpy_len;
618                 mbuf_offset += cpy_len;
619                 desc_avail  -= cpy_len;
620                 desc_offset += cpy_len;
621         }
622
623 out:
624         vq->batch_copy_nb_elems = copy_nb;
625
626         return error;
627 }
628
629 static __rte_always_inline uint32_t
630 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
631         struct rte_mbuf **pkts, uint32_t count)
632 {
633         struct vhost_virtqueue *vq;
634         uint32_t pkt_idx = 0;
635         uint16_t num_buffers;
636         struct buf_vector buf_vec[BUF_VECTOR_MAX];
637         uint16_t avail_head;
638
639         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
640         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
641                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
642                         dev->vid, __func__, queue_id);
643                 return 0;
644         }
645
646         vq = dev->virtqueue[queue_id];
647         if (unlikely(vq->enabled == 0))
648                 return 0;
649
650         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
651         if (count == 0)
652                 return 0;
653
654         vq->batch_copy_nb_elems = 0;
655
656         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
657
658         vq->shadow_used_idx = 0;
659         avail_head = *((volatile uint16_t *)&vq->avail->idx);
660
661         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
662                 vhost_user_iotlb_rd_lock(vq);
663
664         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
665                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
666
667                 if (unlikely(reserve_avail_buf_mergeable(dev, vq,
668                                                 pkt_len, buf_vec, &num_buffers,
669                                                 avail_head) < 0)) {
670                         LOG_DEBUG(VHOST_DATA,
671                                 "(%d) failed to get enough desc from vring\n",
672                                 dev->vid);
673                         vq->shadow_used_idx -= num_buffers;
674                         break;
675                 }
676
677                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
678                         dev->vid, vq->last_avail_idx,
679                         vq->last_avail_idx + num_buffers);
680
681                 if (copy_mbuf_to_desc_mergeable(dev, vq, pkts[pkt_idx],
682                                                 buf_vec, num_buffers) < 0) {
683                         vq->shadow_used_idx -= num_buffers;
684                         break;
685                 }
686
687                 vq->last_avail_idx += num_buffers;
688         }
689
690         do_data_copy_enqueue(dev, vq);
691
692         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
693                 vhost_user_iotlb_rd_unlock(vq);
694
695         if (likely(vq->shadow_used_idx)) {
696                 flush_shadow_used_ring(dev, vq);
697
698                 /* flush used->idx update before we read avail->flags. */
699                 rte_mb();
700
701                 /* Kick the guest if necessary. */
702                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
703                                 && (vq->callfd >= 0))
704                         eventfd_write(vq->callfd, (eventfd_t)1);
705         }
706
707         return pkt_idx;
708 }
709
710 uint16_t
711 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
712         struct rte_mbuf **pkts, uint16_t count)
713 {
714         struct virtio_net *dev = get_device(vid);
715
716         if (!dev)
717                 return 0;
718
719         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
720                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
721         else
722                 return virtio_dev_rx(dev, queue_id, pkts, count);
723 }
724
725 static inline bool
726 virtio_net_with_host_offload(struct virtio_net *dev)
727 {
728         if (dev->features &
729                         ((1ULL << VIRTIO_NET_F_CSUM) |
730                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
731                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
732                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
733                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
734                 return true;
735
736         return false;
737 }
738
739 static void
740 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
741 {
742         struct ipv4_hdr *ipv4_hdr;
743         struct ipv6_hdr *ipv6_hdr;
744         void *l3_hdr = NULL;
745         struct ether_hdr *eth_hdr;
746         uint16_t ethertype;
747
748         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
749
750         m->l2_len = sizeof(struct ether_hdr);
751         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
752
753         if (ethertype == ETHER_TYPE_VLAN) {
754                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
755
756                 m->l2_len += sizeof(struct vlan_hdr);
757                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
758         }
759
760         l3_hdr = (char *)eth_hdr + m->l2_len;
761
762         switch (ethertype) {
763         case ETHER_TYPE_IPv4:
764                 ipv4_hdr = l3_hdr;
765                 *l4_proto = ipv4_hdr->next_proto_id;
766                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
767                 *l4_hdr = (char *)l3_hdr + m->l3_len;
768                 m->ol_flags |= PKT_TX_IPV4;
769                 break;
770         case ETHER_TYPE_IPv6:
771                 ipv6_hdr = l3_hdr;
772                 *l4_proto = ipv6_hdr->proto;
773                 m->l3_len = sizeof(struct ipv6_hdr);
774                 *l4_hdr = (char *)l3_hdr + m->l3_len;
775                 m->ol_flags |= PKT_TX_IPV6;
776                 break;
777         default:
778                 m->l3_len = 0;
779                 *l4_proto = 0;
780                 *l4_hdr = NULL;
781                 break;
782         }
783 }
784
785 static __rte_always_inline void
786 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
787 {
788         uint16_t l4_proto = 0;
789         void *l4_hdr = NULL;
790         struct tcp_hdr *tcp_hdr = NULL;
791
792         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
793                 return;
794
795         parse_ethernet(m, &l4_proto, &l4_hdr);
796         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
797                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
798                         switch (hdr->csum_offset) {
799                         case (offsetof(struct tcp_hdr, cksum)):
800                                 if (l4_proto == IPPROTO_TCP)
801                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
802                                 break;
803                         case (offsetof(struct udp_hdr, dgram_cksum)):
804                                 if (l4_proto == IPPROTO_UDP)
805                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
806                                 break;
807                         case (offsetof(struct sctp_hdr, cksum)):
808                                 if (l4_proto == IPPROTO_SCTP)
809                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
810                                 break;
811                         default:
812                                 break;
813                         }
814                 }
815         }
816
817         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
818                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
819                 case VIRTIO_NET_HDR_GSO_TCPV4:
820                 case VIRTIO_NET_HDR_GSO_TCPV6:
821                         tcp_hdr = l4_hdr;
822                         m->ol_flags |= PKT_TX_TCP_SEG;
823                         m->tso_segsz = hdr->gso_size;
824                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
825                         break;
826                 default:
827                         RTE_LOG(WARNING, VHOST_DATA,
828                                 "unsupported gso type %u.\n", hdr->gso_type);
829                         break;
830                 }
831         }
832 }
833
834 #define RARP_PKT_SIZE   64
835
836 static int
837 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
838 {
839         struct ether_hdr *eth_hdr;
840         struct arp_hdr  *rarp;
841
842         if (rarp_mbuf->buf_len < 64) {
843                 RTE_LOG(WARNING, VHOST_DATA,
844                         "failed to make RARP; mbuf size too small %u (< %d)\n",
845                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
846                 return -1;
847         }
848
849         /* Ethernet header. */
850         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
851         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
852         ether_addr_copy(mac, &eth_hdr->s_addr);
853         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
854
855         /* RARP header. */
856         rarp = (struct arp_hdr *)(eth_hdr + 1);
857         rarp->arp_hrd = htons(ARP_HRD_ETHER);
858         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
859         rarp->arp_hln = ETHER_ADDR_LEN;
860         rarp->arp_pln = 4;
861         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
862
863         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
864         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
865         memset(&rarp->arp_data.arp_sip, 0x00, 4);
866         memset(&rarp->arp_data.arp_tip, 0x00, 4);
867
868         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
869
870         return 0;
871 }
872
873 static __rte_always_inline void
874 put_zmbuf(struct zcopy_mbuf *zmbuf)
875 {
876         zmbuf->in_use = 0;
877 }
878
879 static __rte_always_inline int
880 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
881                   struct vring_desc *descs, uint16_t max_desc,
882                   struct rte_mbuf *m, uint16_t desc_idx,
883                   struct rte_mempool *mbuf_pool)
884 {
885         struct vring_desc *desc;
886         uint64_t desc_addr;
887         uint32_t desc_avail, desc_offset;
888         uint32_t mbuf_avail, mbuf_offset;
889         uint32_t cpy_len;
890         struct rte_mbuf *cur = m, *prev = m;
891         struct virtio_net_hdr *hdr = NULL;
892         /* A counter to avoid desc dead loop chain */
893         uint32_t nr_desc = 1;
894         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
895         uint16_t copy_nb = vq->batch_copy_nb_elems;
896         int error = 0;
897
898         desc = &descs[desc_idx];
899         if (unlikely((desc->len < dev->vhost_hlen)) ||
900                         (desc->flags & VRING_DESC_F_INDIRECT)) {
901                 error = -1;
902                 goto out;
903         }
904
905         desc_addr = vhost_iova_to_vva(dev,
906                                         vq, desc->addr,
907                                         desc->len,
908                                         VHOST_ACCESS_RO);
909         if (unlikely(!desc_addr)) {
910                 error = -1;
911                 goto out;
912         }
913
914         if (virtio_net_with_host_offload(dev)) {
915                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
916                 rte_prefetch0(hdr);
917         }
918
919         /*
920          * A virtio driver normally uses at least 2 desc buffers
921          * for Tx: the first for storing the header, and others
922          * for storing the data.
923          */
924         if (likely((desc->len == dev->vhost_hlen) &&
925                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
926                 desc = &descs[desc->next];
927                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
928                         error = -1;
929                         goto out;
930                 }
931
932                 desc_addr = vhost_iova_to_vva(dev,
933                                                         vq, desc->addr,
934                                                         desc->len,
935                                                         VHOST_ACCESS_RO);
936                 if (unlikely(!desc_addr)) {
937                         error = -1;
938                         goto out;
939                 }
940
941                 desc_offset = 0;
942                 desc_avail  = desc->len;
943                 nr_desc    += 1;
944         } else {
945                 desc_avail  = desc->len - dev->vhost_hlen;
946                 desc_offset = dev->vhost_hlen;
947         }
948
949         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
950
951         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
952
953         mbuf_offset = 0;
954         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
955         while (1) {
956                 uint64_t hpa;
957
958                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
959
960                 /*
961                  * A desc buf might across two host physical pages that are
962                  * not continuous. In such case (gpa_to_hpa returns 0), data
963                  * will be copied even though zero copy is enabled.
964                  */
965                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
966                                         desc->addr + desc_offset, cpy_len)))) {
967                         cur->data_len = cpy_len;
968                         cur->data_off = 0;
969                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
970                         cur->buf_physaddr = hpa;
971
972                         /*
973                          * In zero copy mode, one mbuf can only reference data
974                          * for one or partial of one desc buff.
975                          */
976                         mbuf_avail = cpy_len;
977                 } else {
978                         if (likely(cpy_len > MAX_BATCH_LEN ||
979                                    copy_nb >= vq->size)) {
980                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
981                                                                    mbuf_offset),
982                                            (void *)((uintptr_t)(desc_addr +
983                                                                 desc_offset)),
984                                            cpy_len);
985                         } else {
986                                 batch_copy[copy_nb].dst =
987                                         rte_pktmbuf_mtod_offset(cur, void *,
988                                                                 mbuf_offset);
989                                 batch_copy[copy_nb].src =
990                                         (void *)((uintptr_t)(desc_addr +
991                                                              desc_offset));
992                                 batch_copy[copy_nb].len = cpy_len;
993                                 copy_nb++;
994                         }
995                 }
996
997                 mbuf_avail  -= cpy_len;
998                 mbuf_offset += cpy_len;
999                 desc_avail  -= cpy_len;
1000                 desc_offset += cpy_len;
1001
1002                 /* This desc reaches to its end, get the next one */
1003                 if (desc_avail == 0) {
1004                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
1005                                 break;
1006
1007                         if (unlikely(desc->next >= max_desc ||
1008                                      ++nr_desc > max_desc)) {
1009                                 error = -1;
1010                                 goto out;
1011                         }
1012                         desc = &descs[desc->next];
1013                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
1014                                 error = -1;
1015                                 goto out;
1016                         }
1017
1018                         desc_addr = vhost_iova_to_vva(dev,
1019                                                         vq, desc->addr,
1020                                                         desc->len,
1021                                                         VHOST_ACCESS_RO);
1022                         if (unlikely(!desc_addr)) {
1023                                 error = -1;
1024                                 goto out;
1025                         }
1026
1027                         rte_prefetch0((void *)(uintptr_t)desc_addr);
1028
1029                         desc_offset = 0;
1030                         desc_avail  = desc->len;
1031
1032                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
1033                 }
1034
1035                 /*
1036                  * This mbuf reaches to its end, get a new one
1037                  * to hold more data.
1038                  */
1039                 if (mbuf_avail == 0) {
1040                         cur = rte_pktmbuf_alloc(mbuf_pool);
1041                         if (unlikely(cur == NULL)) {
1042                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1043                                         "allocate memory for mbuf.\n");
1044                                 error = -1;
1045                                 goto out;
1046                         }
1047                         if (unlikely(dev->dequeue_zero_copy))
1048                                 rte_mbuf_refcnt_update(cur, 1);
1049
1050                         prev->next = cur;
1051                         prev->data_len = mbuf_offset;
1052                         m->nb_segs += 1;
1053                         m->pkt_len += mbuf_offset;
1054                         prev = cur;
1055
1056                         mbuf_offset = 0;
1057                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1058                 }
1059         }
1060
1061         prev->data_len = mbuf_offset;
1062         m->pkt_len    += mbuf_offset;
1063
1064         if (hdr)
1065                 vhost_dequeue_offload(hdr, m);
1066
1067 out:
1068         vq->batch_copy_nb_elems = copy_nb;
1069
1070         return error;
1071 }
1072
1073 static __rte_always_inline void
1074 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
1075                  uint32_t used_idx, uint32_t desc_idx)
1076 {
1077         vq->used->ring[used_idx].id  = desc_idx;
1078         vq->used->ring[used_idx].len = 0;
1079         vhost_log_used_vring(dev, vq,
1080                         offsetof(struct vring_used, ring[used_idx]),
1081                         sizeof(vq->used->ring[used_idx]));
1082 }
1083
1084 static __rte_always_inline void
1085 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
1086                 uint32_t count)
1087 {
1088         if (unlikely(count == 0))
1089                 return;
1090
1091         rte_smp_wmb();
1092         rte_smp_rmb();
1093
1094         vq->used->idx += count;
1095         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
1096                         sizeof(vq->used->idx));
1097
1098         /* Kick guest if required. */
1099         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
1100                         && (vq->callfd >= 0))
1101                 eventfd_write(vq->callfd, (eventfd_t)1);
1102 }
1103
1104 static __rte_always_inline struct zcopy_mbuf *
1105 get_zmbuf(struct vhost_virtqueue *vq)
1106 {
1107         uint16_t i;
1108         uint16_t last;
1109         int tries = 0;
1110
1111         /* search [last_zmbuf_idx, zmbuf_size) */
1112         i = vq->last_zmbuf_idx;
1113         last = vq->zmbuf_size;
1114
1115 again:
1116         for (; i < last; i++) {
1117                 if (vq->zmbufs[i].in_use == 0) {
1118                         vq->last_zmbuf_idx = i + 1;
1119                         vq->zmbufs[i].in_use = 1;
1120                         return &vq->zmbufs[i];
1121                 }
1122         }
1123
1124         tries++;
1125         if (tries == 1) {
1126                 /* search [0, last_zmbuf_idx) */
1127                 i = 0;
1128                 last = vq->last_zmbuf_idx;
1129                 goto again;
1130         }
1131
1132         return NULL;
1133 }
1134
1135 static __rte_always_inline bool
1136 mbuf_is_consumed(struct rte_mbuf *m)
1137 {
1138         while (m) {
1139                 if (rte_mbuf_refcnt_read(m) > 1)
1140                         return false;
1141                 m = m->next;
1142         }
1143
1144         return true;
1145 }
1146
1147 uint16_t
1148 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1149         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1150 {
1151         struct virtio_net *dev;
1152         struct rte_mbuf *rarp_mbuf = NULL;
1153         struct vhost_virtqueue *vq;
1154         uint32_t desc_indexes[MAX_PKT_BURST];
1155         uint32_t used_idx;
1156         uint32_t i = 0;
1157         uint16_t free_entries;
1158         uint16_t avail_idx;
1159
1160         dev = get_device(vid);
1161         if (!dev)
1162                 return 0;
1163
1164         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1165                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1166                         dev->vid, __func__, queue_id);
1167                 return 0;
1168         }
1169
1170         vq = dev->virtqueue[queue_id];
1171         if (unlikely(vq->enabled == 0))
1172                 return 0;
1173
1174         vq->batch_copy_nb_elems = 0;
1175
1176         if (unlikely(dev->dequeue_zero_copy)) {
1177                 struct zcopy_mbuf *zmbuf, *next;
1178                 int nr_updated = 0;
1179
1180                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1181                      zmbuf != NULL; zmbuf = next) {
1182                         next = TAILQ_NEXT(zmbuf, next);
1183
1184                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1185                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1186                                 update_used_ring(dev, vq, used_idx,
1187                                                  zmbuf->desc_idx);
1188                                 nr_updated += 1;
1189
1190                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1191                                 rte_pktmbuf_free(zmbuf->mbuf);
1192                                 put_zmbuf(zmbuf);
1193                                 vq->nr_zmbuf -= 1;
1194                         }
1195                 }
1196
1197                 update_used_idx(dev, vq, nr_updated);
1198         }
1199
1200         /*
1201          * Construct a RARP broadcast packet, and inject it to the "pkts"
1202          * array, to looks like that guest actually send such packet.
1203          *
1204          * Check user_send_rarp() for more information.
1205          *
1206          * broadcast_rarp shares a cacheline in the virtio_net structure
1207          * with some fields that are accessed during enqueue and
1208          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1209          * result in false sharing between enqueue and dequeue.
1210          *
1211          * Prevent unnecessary false sharing by reading broadcast_rarp first
1212          * and only performing cmpset if the read indicates it is likely to
1213          * be set.
1214          */
1215
1216         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1217                         rte_atomic16_cmpset((volatile uint16_t *)
1218                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1219
1220                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1221                 if (rarp_mbuf == NULL) {
1222                         RTE_LOG(ERR, VHOST_DATA,
1223                                 "Failed to allocate memory for mbuf.\n");
1224                         return 0;
1225                 }
1226
1227                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1228                         rte_pktmbuf_free(rarp_mbuf);
1229                         rarp_mbuf = NULL;
1230                 } else {
1231                         count -= 1;
1232                 }
1233         }
1234
1235         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1236                         vq->last_avail_idx;
1237         if (free_entries == 0)
1238                 goto out;
1239
1240         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1241
1242         /* Prefetch available and used ring */
1243         avail_idx = vq->last_avail_idx & (vq->size - 1);
1244         used_idx  = vq->last_used_idx  & (vq->size - 1);
1245         rte_prefetch0(&vq->avail->ring[avail_idx]);
1246         rte_prefetch0(&vq->used->ring[used_idx]);
1247
1248         count = RTE_MIN(count, MAX_PKT_BURST);
1249         count = RTE_MIN(count, free_entries);
1250         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1251                         dev->vid, count);
1252
1253         /* Retrieve all of the head indexes first to avoid caching issues. */
1254         for (i = 0; i < count; i++) {
1255                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1256                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1257                 desc_indexes[i] = vq->avail->ring[avail_idx];
1258
1259                 if (likely(dev->dequeue_zero_copy == 0))
1260                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1261         }
1262
1263         /* Prefetch descriptor index. */
1264         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1265
1266         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1267                 vhost_user_iotlb_rd_lock(vq);
1268
1269         for (i = 0; i < count; i++) {
1270                 struct vring_desc *desc;
1271                 uint16_t sz, idx;
1272                 int err;
1273
1274                 if (likely(i + 1 < count))
1275                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1276
1277                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1278                         desc = (struct vring_desc *)(uintptr_t)
1279                                 vhost_iova_to_vva(dev, vq,
1280                                                 vq->desc[desc_indexes[i]].addr,
1281                                                 sizeof(*desc),
1282                                                 VHOST_ACCESS_RO);
1283                         if (unlikely(!desc))
1284                                 break;
1285
1286                         rte_prefetch0(desc);
1287                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1288                         idx = 0;
1289                 } else {
1290                         desc = vq->desc;
1291                         sz = vq->size;
1292                         idx = desc_indexes[i];
1293                 }
1294
1295                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1296                 if (unlikely(pkts[i] == NULL)) {
1297                         RTE_LOG(ERR, VHOST_DATA,
1298                                 "Failed to allocate memory for mbuf.\n");
1299                         break;
1300                 }
1301
1302                 err = copy_desc_to_mbuf(dev, vq, desc, sz, pkts[i], idx,
1303                                         mbuf_pool);
1304                 if (unlikely(err)) {
1305                         rte_pktmbuf_free(pkts[i]);
1306                         break;
1307                 }
1308
1309                 if (unlikely(dev->dequeue_zero_copy)) {
1310                         struct zcopy_mbuf *zmbuf;
1311
1312                         zmbuf = get_zmbuf(vq);
1313                         if (!zmbuf) {
1314                                 rte_pktmbuf_free(pkts[i]);
1315                                 break;
1316                         }
1317                         zmbuf->mbuf = pkts[i];
1318                         zmbuf->desc_idx = desc_indexes[i];
1319
1320                         /*
1321                          * Pin lock the mbuf; we will check later to see
1322                          * whether the mbuf is freed (when we are the last
1323                          * user) or not. If that's the case, we then could
1324                          * update the used ring safely.
1325                          */
1326                         rte_mbuf_refcnt_update(pkts[i], 1);
1327
1328                         vq->nr_zmbuf += 1;
1329                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1330                 }
1331         }
1332         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1333                 vhost_user_iotlb_rd_unlock(vq);
1334
1335         vq->last_avail_idx += i;
1336
1337         if (likely(dev->dequeue_zero_copy == 0)) {
1338                 do_data_copy_dequeue(vq);
1339                 vq->last_used_idx += i;
1340                 update_used_idx(dev, vq, i);
1341         }
1342
1343 out:
1344         if (unlikely(rarp_mbuf != NULL)) {
1345                 /*
1346                  * Inject it to the head of "pkts" array, so that switch's mac
1347                  * learning table will get updated first.
1348                  */
1349                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1350                 pkts[0] = rarp_mbuf;
1351                 i += 1;
1352         }
1353
1354         return i;
1355 }