vhost: prefetch available ring
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <stdbool.h>
36 #include <linux/virtio_net.h>
37
38 #include <rte_mbuf.h>
39 #include <rte_memcpy.h>
40 #include <rte_ether.h>
41 #include <rte_ip.h>
42 #include <rte_virtio_net.h>
43 #include <rte_tcp.h>
44 #include <rte_udp.h>
45 #include <rte_sctp.h>
46 #include <rte_arp.h>
47
48 #include "vhost.h"
49
50 #define MAX_PKT_BURST 32
51 #define VHOST_LOG_PAGE  4096
52
53 static inline void __attribute__((always_inline))
54 vhost_log_page(uint8_t *log_base, uint64_t page)
55 {
56         log_base[page / 8] |= 1 << (page % 8);
57 }
58
59 static inline void __attribute__((always_inline))
60 vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
61 {
62         uint64_t page;
63
64         if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) ||
65                    !dev->log_base || !len))
66                 return;
67
68         if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
69                 return;
70
71         /* To make sure guest memory updates are committed before logging */
72         rte_smp_wmb();
73
74         page = addr / VHOST_LOG_PAGE;
75         while (page * VHOST_LOG_PAGE < addr + len) {
76                 vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
77                 page += 1;
78         }
79 }
80
81 static inline void __attribute__((always_inline))
82 vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
83                      uint64_t offset, uint64_t len)
84 {
85         vhost_log_write(dev, vq->log_guest_addr + offset, len);
86 }
87
88 static bool
89 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
90 {
91         return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
92 }
93
94 static inline void __attribute__((always_inline))
95 do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
96                           uint16_t to, uint16_t from, uint16_t size)
97 {
98         rte_memcpy(&vq->used->ring[to],
99                         &vq->shadow_used_ring[from],
100                         size * sizeof(struct vring_used_elem));
101         vhost_log_used_vring(dev, vq,
102                         offsetof(struct vring_used, ring[to]),
103                         size * sizeof(struct vring_used_elem));
104 }
105
106 static inline void __attribute__((always_inline))
107 flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
108 {
109         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
110
111         if (used_idx + vq->shadow_used_idx <= vq->size) {
112                 do_flush_shadow_used_ring(dev, vq, used_idx, 0,
113                                           vq->shadow_used_idx);
114         } else {
115                 uint16_t size;
116
117                 /* update used ring interval [used_idx, vq->size] */
118                 size = vq->size - used_idx;
119                 do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
120
121                 /* update the left half used ring interval [0, left_size] */
122                 do_flush_shadow_used_ring(dev, vq, 0, size,
123                                           vq->shadow_used_idx - size);
124         }
125         vq->last_used_idx += vq->shadow_used_idx;
126
127         rte_smp_wmb();
128
129         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
130         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
131                 sizeof(vq->used->idx));
132 }
133
134 static inline void __attribute__((always_inline))
135 update_shadow_used_ring(struct vhost_virtqueue *vq,
136                          uint16_t desc_idx, uint16_t len)
137 {
138         uint16_t i = vq->shadow_used_idx++;
139
140         vq->shadow_used_ring[i].id  = desc_idx;
141         vq->shadow_used_ring[i].len = len;
142 }
143
144 static void
145 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
146 {
147         if (m_buf->ol_flags & PKT_TX_L4_MASK) {
148                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
149                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
150
151                 switch (m_buf->ol_flags & PKT_TX_L4_MASK) {
152                 case PKT_TX_TCP_CKSUM:
153                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
154                                                 cksum));
155                         break;
156                 case PKT_TX_UDP_CKSUM:
157                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
158                                                 dgram_cksum));
159                         break;
160                 case PKT_TX_SCTP_CKSUM:
161                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
162                                                 cksum));
163                         break;
164                 }
165         }
166
167         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
168                 if (m_buf->ol_flags & PKT_TX_IPV4)
169                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
170                 else
171                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
172                 net_hdr->gso_size = m_buf->tso_segsz;
173                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
174                                         + m_buf->l4_len;
175         }
176 }
177
178 static inline void
179 copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
180                     struct virtio_net_hdr_mrg_rxbuf hdr)
181 {
182         if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
183                 *(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
184         else
185                 *(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
186 }
187
188 static inline int __attribute__((always_inline))
189 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
190                   struct rte_mbuf *m, uint16_t desc_idx)
191 {
192         uint32_t desc_avail, desc_offset;
193         uint32_t mbuf_avail, mbuf_offset;
194         uint32_t cpy_len;
195         struct vring_desc *desc;
196         uint64_t desc_addr;
197         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
198
199         desc = &vq->desc[desc_idx];
200         desc_addr = gpa_to_vva(dev, desc->addr);
201         /*
202          * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
203          * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
204          * otherwise stores offset on the stack instead of in a register.
205          */
206         if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
207                 return -1;
208
209         rte_prefetch0((void *)(uintptr_t)desc_addr);
210
211         virtio_enqueue_offload(m, &virtio_hdr.hdr);
212         copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
213         vhost_log_write(dev, desc->addr, dev->vhost_hlen);
214         PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
215
216         desc_offset = dev->vhost_hlen;
217         desc_avail  = desc->len - dev->vhost_hlen;
218
219         mbuf_avail  = rte_pktmbuf_data_len(m);
220         mbuf_offset = 0;
221         while (mbuf_avail != 0 || m->next != NULL) {
222                 /* done with current mbuf, fetch next */
223                 if (mbuf_avail == 0) {
224                         m = m->next;
225
226                         mbuf_offset = 0;
227                         mbuf_avail  = rte_pktmbuf_data_len(m);
228                 }
229
230                 /* done with current desc buf, fetch next */
231                 if (desc_avail == 0) {
232                         if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
233                                 /* Room in vring buffer is not enough */
234                                 return -1;
235                         }
236                         if (unlikely(desc->next >= vq->size))
237                                 return -1;
238
239                         desc = &vq->desc[desc->next];
240                         desc_addr = gpa_to_vva(dev, desc->addr);
241                         if (unlikely(!desc_addr))
242                                 return -1;
243
244                         desc_offset = 0;
245                         desc_avail  = desc->len;
246                 }
247
248                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
249                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
250                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
251                         cpy_len);
252                 vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
253                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
254                              cpy_len, 0);
255
256                 mbuf_avail  -= cpy_len;
257                 mbuf_offset += cpy_len;
258                 desc_avail  -= cpy_len;
259                 desc_offset += cpy_len;
260         }
261
262         return 0;
263 }
264
265 /**
266  * This function adds buffers to the virtio devices RX virtqueue. Buffers can
267  * be received from the physical port or from another virtio device. A packet
268  * count is returned to indicate the number of packets that are succesfully
269  * added to the RX queue. This function works when the mbuf is scattered, but
270  * it doesn't support the mergeable feature.
271  */
272 static inline uint32_t __attribute__((always_inline))
273 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
274               struct rte_mbuf **pkts, uint32_t count)
275 {
276         struct vhost_virtqueue *vq;
277         uint16_t avail_idx, free_entries, start_idx;
278         uint16_t desc_indexes[MAX_PKT_BURST];
279         uint16_t used_idx;
280         uint32_t i;
281
282         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
283         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
284                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
285                         dev->vid, __func__, queue_id);
286                 return 0;
287         }
288
289         vq = dev->virtqueue[queue_id];
290         if (unlikely(vq->enabled == 0))
291                 return 0;
292
293         avail_idx = *((volatile uint16_t *)&vq->avail->idx);
294         start_idx = vq->last_used_idx;
295         free_entries = avail_idx - start_idx;
296         count = RTE_MIN(count, free_entries);
297         count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
298         if (count == 0)
299                 return 0;
300
301         LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
302                 dev->vid, start_idx, start_idx + count);
303
304         /* Retrieve all of the desc indexes first to avoid caching issues. */
305         rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
306         for (i = 0; i < count; i++) {
307                 used_idx = (start_idx + i) & (vq->size - 1);
308                 desc_indexes[i] = vq->avail->ring[used_idx];
309                 vq->used->ring[used_idx].id = desc_indexes[i];
310                 vq->used->ring[used_idx].len = pkts[i]->pkt_len +
311                                                dev->vhost_hlen;
312                 vhost_log_used_vring(dev, vq,
313                         offsetof(struct vring_used, ring[used_idx]),
314                         sizeof(vq->used->ring[used_idx]));
315         }
316
317         rte_prefetch0(&vq->desc[desc_indexes[0]]);
318         for (i = 0; i < count; i++) {
319                 uint16_t desc_idx = desc_indexes[i];
320                 int err;
321
322                 err = copy_mbuf_to_desc(dev, vq, pkts[i], desc_idx);
323                 if (unlikely(err)) {
324                         used_idx = (start_idx + i) & (vq->size - 1);
325                         vq->used->ring[used_idx].len = dev->vhost_hlen;
326                         vhost_log_used_vring(dev, vq,
327                                 offsetof(struct vring_used, ring[used_idx]),
328                                 sizeof(vq->used->ring[used_idx]));
329                 }
330
331                 if (i + 1 < count)
332                         rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
333         }
334
335         rte_smp_wmb();
336
337         *(volatile uint16_t *)&vq->used->idx += count;
338         vq->last_used_idx += count;
339         vhost_log_used_vring(dev, vq,
340                 offsetof(struct vring_used, idx),
341                 sizeof(vq->used->idx));
342
343         /* flush used->idx update before we read avail->flags. */
344         rte_mb();
345
346         /* Kick the guest if necessary. */
347         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
348                         && (vq->callfd >= 0))
349                 eventfd_write(vq->callfd, (eventfd_t)1);
350         return count;
351 }
352
353 static inline int __attribute__((always_inline))
354 fill_vec_buf(struct vhost_virtqueue *vq, uint32_t avail_idx,
355              uint32_t *vec_idx, struct buf_vector *buf_vec,
356              uint16_t *desc_chain_head, uint16_t *desc_chain_len)
357 {
358         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
359         uint32_t vec_id = *vec_idx;
360         uint32_t len    = 0;
361
362         *desc_chain_head = idx;
363         while (1) {
364                 if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
365                         return -1;
366
367                 len += vq->desc[idx].len;
368                 buf_vec[vec_id].buf_addr = vq->desc[idx].addr;
369                 buf_vec[vec_id].buf_len  = vq->desc[idx].len;
370                 buf_vec[vec_id].desc_idx = idx;
371                 vec_id++;
372
373                 if ((vq->desc[idx].flags & VRING_DESC_F_NEXT) == 0)
374                         break;
375
376                 idx = vq->desc[idx].next;
377         }
378
379         *desc_chain_len = len;
380         *vec_idx = vec_id;
381
382         return 0;
383 }
384
385 /*
386  * Returns -1 on fail, 0 on success
387  */
388 static inline int
389 reserve_avail_buf_mergeable(struct vhost_virtqueue *vq, uint32_t size,
390                             struct buf_vector *buf_vec, uint16_t *num_buffers)
391 {
392         uint16_t cur_idx;
393         uint16_t avail_idx;
394         uint32_t vec_idx = 0;
395         uint16_t tries = 0;
396
397         uint16_t head_idx = 0;
398         uint16_t len = 0;
399
400         *num_buffers = 0;
401         cur_idx  = vq->last_avail_idx;
402
403         while (size > 0) {
404                 avail_idx = *((volatile uint16_t *)&vq->avail->idx);
405                 if (unlikely(cur_idx == avail_idx))
406                         return -1;
407
408                 if (unlikely(fill_vec_buf(vq, cur_idx, &vec_idx, buf_vec,
409                                           &head_idx, &len) < 0))
410                         return -1;
411                 len = RTE_MIN(len, size);
412                 update_shadow_used_ring(vq, head_idx, len);
413                 size -= len;
414
415                 cur_idx++;
416                 tries++;
417                 *num_buffers += 1;
418
419                 /*
420                  * if we tried all available ring items, and still
421                  * can't get enough buf, it means something abnormal
422                  * happened.
423                  */
424                 if (unlikely(tries >= vq->size))
425                         return -1;
426         }
427
428         return 0;
429 }
430
431 static inline int __attribute__((always_inline))
432 copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
433                             struct buf_vector *buf_vec, uint16_t num_buffers)
434 {
435         struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
436         uint32_t vec_idx = 0;
437         uint64_t desc_addr;
438         uint32_t mbuf_offset, mbuf_avail;
439         uint32_t desc_offset, desc_avail;
440         uint32_t cpy_len;
441         uint64_t hdr_addr, hdr_phys_addr;
442         struct rte_mbuf *hdr_mbuf;
443
444         if (unlikely(m == NULL))
445                 return -1;
446
447         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
448         if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
449                 return -1;
450
451         hdr_mbuf = m;
452         hdr_addr = desc_addr;
453         hdr_phys_addr = buf_vec[vec_idx].buf_addr;
454         rte_prefetch0((void *)(uintptr_t)hdr_addr);
455
456         virtio_hdr.num_buffers = num_buffers;
457         LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
458                 dev->vid, num_buffers);
459
460         desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
461         desc_offset = dev->vhost_hlen;
462
463         mbuf_avail  = rte_pktmbuf_data_len(m);
464         mbuf_offset = 0;
465         while (mbuf_avail != 0 || m->next != NULL) {
466                 /* done with current desc buf, get the next one */
467                 if (desc_avail == 0) {
468                         vec_idx++;
469                         desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
470                         if (unlikely(!desc_addr))
471                                 return -1;
472
473                         /* Prefetch buffer address. */
474                         rte_prefetch0((void *)(uintptr_t)desc_addr);
475                         desc_offset = 0;
476                         desc_avail  = buf_vec[vec_idx].buf_len;
477                 }
478
479                 /* done with current mbuf, get the next one */
480                 if (mbuf_avail == 0) {
481                         m = m->next;
482
483                         mbuf_offset = 0;
484                         mbuf_avail  = rte_pktmbuf_data_len(m);
485                 }
486
487                 if (hdr_addr) {
488                         virtio_enqueue_offload(hdr_mbuf, &virtio_hdr.hdr);
489                         copy_virtio_net_hdr(dev, hdr_addr, virtio_hdr);
490                         vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
491                         PRINT_PACKET(dev, (uintptr_t)hdr_addr,
492                                      dev->vhost_hlen, 0);
493
494                         hdr_addr = 0;
495                 }
496
497                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
498                 rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
499                         rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
500                         cpy_len);
501                 vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
502                         cpy_len);
503                 PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
504                         cpy_len, 0);
505
506                 mbuf_avail  -= cpy_len;
507                 mbuf_offset += cpy_len;
508                 desc_avail  -= cpy_len;
509                 desc_offset += cpy_len;
510         }
511
512         return 0;
513 }
514
515 static inline uint32_t __attribute__((always_inline))
516 virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
517         struct rte_mbuf **pkts, uint32_t count)
518 {
519         struct vhost_virtqueue *vq;
520         uint32_t pkt_idx = 0;
521         uint16_t num_buffers;
522         struct buf_vector buf_vec[BUF_VECTOR_MAX];
523
524         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
525         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
526                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
527                         dev->vid, __func__, queue_id);
528                 return 0;
529         }
530
531         vq = dev->virtqueue[queue_id];
532         if (unlikely(vq->enabled == 0))
533                 return 0;
534
535         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
536         if (count == 0)
537                 return 0;
538
539         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
540
541         vq->shadow_used_idx = 0;
542         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
543                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
544
545                 if (unlikely(reserve_avail_buf_mergeable(vq, pkt_len, buf_vec,
546                                                          &num_buffers) < 0)) {
547                         LOG_DEBUG(VHOST_DATA,
548                                 "(%d) failed to get enough desc from vring\n",
549                                 dev->vid);
550                         vq->shadow_used_idx -= num_buffers;
551                         break;
552                 }
553
554                 LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
555                         dev->vid, vq->last_avail_idx,
556                         vq->last_avail_idx + num_buffers);
557
558                 if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
559                                                 buf_vec, num_buffers) < 0) {
560                         vq->shadow_used_idx -= num_buffers;
561                         break;
562                 }
563
564                 vq->last_avail_idx += num_buffers;
565         }
566
567         if (likely(vq->shadow_used_idx)) {
568                 flush_shadow_used_ring(dev, vq);
569
570                 /* flush used->idx update before we read avail->flags. */
571                 rte_mb();
572
573                 /* Kick the guest if necessary. */
574                 if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
575                                 && (vq->callfd >= 0))
576                         eventfd_write(vq->callfd, (eventfd_t)1);
577         }
578
579         return pkt_idx;
580 }
581
582 uint16_t
583 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
584         struct rte_mbuf **pkts, uint16_t count)
585 {
586         struct virtio_net *dev = get_device(vid);
587
588         if (!dev)
589                 return 0;
590
591         if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
592                 return virtio_dev_merge_rx(dev, queue_id, pkts, count);
593         else
594                 return virtio_dev_rx(dev, queue_id, pkts, count);
595 }
596
597 static inline bool
598 virtio_net_with_host_offload(struct virtio_net *dev)
599 {
600         if (dev->features &
601                         (VIRTIO_NET_F_CSUM | VIRTIO_NET_F_HOST_ECN |
602                          VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
603                          VIRTIO_NET_F_HOST_UFO))
604                 return true;
605
606         return false;
607 }
608
609 static void
610 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
611 {
612         struct ipv4_hdr *ipv4_hdr;
613         struct ipv6_hdr *ipv6_hdr;
614         void *l3_hdr = NULL;
615         struct ether_hdr *eth_hdr;
616         uint16_t ethertype;
617
618         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
619
620         m->l2_len = sizeof(struct ether_hdr);
621         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
622
623         if (ethertype == ETHER_TYPE_VLAN) {
624                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
625
626                 m->l2_len += sizeof(struct vlan_hdr);
627                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
628         }
629
630         l3_hdr = (char *)eth_hdr + m->l2_len;
631
632         switch (ethertype) {
633         case ETHER_TYPE_IPv4:
634                 ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
635                 *l4_proto = ipv4_hdr->next_proto_id;
636                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
637                 *l4_hdr = (char *)l3_hdr + m->l3_len;
638                 m->ol_flags |= PKT_TX_IPV4;
639                 break;
640         case ETHER_TYPE_IPv6:
641                 ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
642                 *l4_proto = ipv6_hdr->proto;
643                 m->l3_len = sizeof(struct ipv6_hdr);
644                 *l4_hdr = (char *)l3_hdr + m->l3_len;
645                 m->ol_flags |= PKT_TX_IPV6;
646                 break;
647         default:
648                 m->l3_len = 0;
649                 *l4_proto = 0;
650                 break;
651         }
652 }
653
654 static inline void __attribute__((always_inline))
655 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
656 {
657         uint16_t l4_proto = 0;
658         void *l4_hdr = NULL;
659         struct tcp_hdr *tcp_hdr = NULL;
660
661         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
662                 return;
663
664         parse_ethernet(m, &l4_proto, &l4_hdr);
665         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
666                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
667                         switch (hdr->csum_offset) {
668                         case (offsetof(struct tcp_hdr, cksum)):
669                                 if (l4_proto == IPPROTO_TCP)
670                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
671                                 break;
672                         case (offsetof(struct udp_hdr, dgram_cksum)):
673                                 if (l4_proto == IPPROTO_UDP)
674                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
675                                 break;
676                         case (offsetof(struct sctp_hdr, cksum)):
677                                 if (l4_proto == IPPROTO_SCTP)
678                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
679                                 break;
680                         default:
681                                 break;
682                         }
683                 }
684         }
685
686         if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
687                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
688                 case VIRTIO_NET_HDR_GSO_TCPV4:
689                 case VIRTIO_NET_HDR_GSO_TCPV6:
690                         tcp_hdr = (struct tcp_hdr *)l4_hdr;
691                         m->ol_flags |= PKT_TX_TCP_SEG;
692                         m->tso_segsz = hdr->gso_size;
693                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
694                         break;
695                 default:
696                         RTE_LOG(WARNING, VHOST_DATA,
697                                 "unsupported gso type %u.\n", hdr->gso_type);
698                         break;
699                 }
700         }
701 }
702
703 #define RARP_PKT_SIZE   64
704
705 static int
706 make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
707 {
708         struct ether_hdr *eth_hdr;
709         struct arp_hdr  *rarp;
710
711         if (rarp_mbuf->buf_len < 64) {
712                 RTE_LOG(WARNING, VHOST_DATA,
713                         "failed to make RARP; mbuf size too small %u (< %d)\n",
714                         rarp_mbuf->buf_len, RARP_PKT_SIZE);
715                 return -1;
716         }
717
718         /* Ethernet header. */
719         eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
720         memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
721         ether_addr_copy(mac, &eth_hdr->s_addr);
722         eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
723
724         /* RARP header. */
725         rarp = (struct arp_hdr *)(eth_hdr + 1);
726         rarp->arp_hrd = htons(ARP_HRD_ETHER);
727         rarp->arp_pro = htons(ETHER_TYPE_IPv4);
728         rarp->arp_hln = ETHER_ADDR_LEN;
729         rarp->arp_pln = 4;
730         rarp->arp_op  = htons(ARP_OP_REVREQUEST);
731
732         ether_addr_copy(mac, &rarp->arp_data.arp_sha);
733         ether_addr_copy(mac, &rarp->arp_data.arp_tha);
734         memset(&rarp->arp_data.arp_sip, 0x00, 4);
735         memset(&rarp->arp_data.arp_tip, 0x00, 4);
736
737         rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;
738
739         return 0;
740 }
741
742 static inline void __attribute__((always_inline))
743 put_zmbuf(struct zcopy_mbuf *zmbuf)
744 {
745         zmbuf->in_use = 0;
746 }
747
748 static inline int __attribute__((always_inline))
749 copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
750                   uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
751                   struct rte_mempool *mbuf_pool)
752 {
753         struct vring_desc *desc;
754         uint64_t desc_addr;
755         uint32_t desc_avail, desc_offset;
756         uint32_t mbuf_avail, mbuf_offset;
757         uint32_t cpy_len;
758         struct rte_mbuf *cur = m, *prev = m;
759         struct virtio_net_hdr *hdr = NULL;
760         /* A counter to avoid desc dead loop chain */
761         uint32_t nr_desc = 1;
762
763         desc = &descs[desc_idx];
764         if (unlikely((desc->len < dev->vhost_hlen)) ||
765                         (desc->flags & VRING_DESC_F_INDIRECT))
766                 return -1;
767
768         desc_addr = gpa_to_vva(dev, desc->addr);
769         if (unlikely(!desc_addr))
770                 return -1;
771
772         if (virtio_net_with_host_offload(dev)) {
773                 hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
774                 rte_prefetch0(hdr);
775         }
776
777         /*
778          * A virtio driver normally uses at least 2 desc buffers
779          * for Tx: the first for storing the header, and others
780          * for storing the data.
781          */
782         if (likely((desc->len == dev->vhost_hlen) &&
783                    (desc->flags & VRING_DESC_F_NEXT) != 0)) {
784                 desc = &descs[desc->next];
785                 if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
786                         return -1;
787
788                 desc_addr = gpa_to_vva(dev, desc->addr);
789                 if (unlikely(!desc_addr))
790                         return -1;
791
792                 desc_offset = 0;
793                 desc_avail  = desc->len;
794                 nr_desc    += 1;
795         } else {
796                 desc_avail  = desc->len - dev->vhost_hlen;
797                 desc_offset = dev->vhost_hlen;
798         }
799
800         rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
801
802         PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
803
804         mbuf_offset = 0;
805         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
806         while (1) {
807                 uint64_t hpa;
808
809                 cpy_len = RTE_MIN(desc_avail, mbuf_avail);
810
811                 /*
812                  * A desc buf might across two host physical pages that are
813                  * not continuous. In such case (gpa_to_hpa returns 0), data
814                  * will be copied even though zero copy is enabled.
815                  */
816                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
817                                         desc->addr + desc_offset, cpy_len)))) {
818                         cur->data_len = cpy_len;
819                         cur->data_off = 0;
820                         cur->buf_addr = (void *)(uintptr_t)desc_addr;
821                         cur->buf_physaddr = hpa;
822
823                         /*
824                          * In zero copy mode, one mbuf can only reference data
825                          * for one or partial of one desc buff.
826                          */
827                         mbuf_avail = cpy_len;
828                 } else {
829                         rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
830                                                            mbuf_offset),
831                                 (void *)((uintptr_t)(desc_addr + desc_offset)),
832                                 cpy_len);
833                 }
834
835                 mbuf_avail  -= cpy_len;
836                 mbuf_offset += cpy_len;
837                 desc_avail  -= cpy_len;
838                 desc_offset += cpy_len;
839
840                 /* This desc reaches to its end, get the next one */
841                 if (desc_avail == 0) {
842                         if ((desc->flags & VRING_DESC_F_NEXT) == 0)
843                                 break;
844
845                         if (unlikely(desc->next >= max_desc ||
846                                      ++nr_desc > max_desc))
847                                 return -1;
848                         desc = &descs[desc->next];
849                         if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
850                                 return -1;
851
852                         desc_addr = gpa_to_vva(dev, desc->addr);
853                         if (unlikely(!desc_addr))
854                                 return -1;
855
856                         rte_prefetch0((void *)(uintptr_t)desc_addr);
857
858                         desc_offset = 0;
859                         desc_avail  = desc->len;
860
861                         PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
862                 }
863
864                 /*
865                  * This mbuf reaches to its end, get a new one
866                  * to hold more data.
867                  */
868                 if (mbuf_avail == 0) {
869                         cur = rte_pktmbuf_alloc(mbuf_pool);
870                         if (unlikely(cur == NULL)) {
871                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
872                                         "allocate memory for mbuf.\n");
873                                 return -1;
874                         }
875
876                         prev->next = cur;
877                         prev->data_len = mbuf_offset;
878                         m->nb_segs += 1;
879                         m->pkt_len += mbuf_offset;
880                         prev = cur;
881
882                         mbuf_offset = 0;
883                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
884                 }
885         }
886
887         prev->data_len = mbuf_offset;
888         m->pkt_len    += mbuf_offset;
889
890         if (hdr)
891                 vhost_dequeue_offload(hdr, m);
892
893         return 0;
894 }
895
896 static inline void __attribute__((always_inline))
897 update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
898                  uint32_t used_idx, uint32_t desc_idx)
899 {
900         vq->used->ring[used_idx].id  = desc_idx;
901         vq->used->ring[used_idx].len = 0;
902         vhost_log_used_vring(dev, vq,
903                         offsetof(struct vring_used, ring[used_idx]),
904                         sizeof(vq->used->ring[used_idx]));
905 }
906
907 static inline void __attribute__((always_inline))
908 update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
909                 uint32_t count)
910 {
911         if (unlikely(count == 0))
912                 return;
913
914         rte_smp_wmb();
915         rte_smp_rmb();
916
917         vq->used->idx += count;
918         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
919                         sizeof(vq->used->idx));
920
921         /* Kick guest if required. */
922         if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
923                         && (vq->callfd >= 0))
924                 eventfd_write(vq->callfd, (eventfd_t)1);
925 }
926
927 static inline struct zcopy_mbuf *__attribute__((always_inline))
928 get_zmbuf(struct vhost_virtqueue *vq)
929 {
930         uint16_t i;
931         uint16_t last;
932         int tries = 0;
933
934         /* search [last_zmbuf_idx, zmbuf_size) */
935         i = vq->last_zmbuf_idx;
936         last = vq->zmbuf_size;
937
938 again:
939         for (; i < last; i++) {
940                 if (vq->zmbufs[i].in_use == 0) {
941                         vq->last_zmbuf_idx = i + 1;
942                         vq->zmbufs[i].in_use = 1;
943                         return &vq->zmbufs[i];
944                 }
945         }
946
947         tries++;
948         if (tries == 1) {
949                 /* search [0, last_zmbuf_idx) */
950                 i = 0;
951                 last = vq->last_zmbuf_idx;
952                 goto again;
953         }
954
955         return NULL;
956 }
957
958 static inline bool __attribute__((always_inline))
959 mbuf_is_consumed(struct rte_mbuf *m)
960 {
961         while (m) {
962                 if (rte_mbuf_refcnt_read(m) > 1)
963                         return false;
964                 m = m->next;
965         }
966
967         return true;
968 }
969
970 uint16_t
971 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
972         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
973 {
974         struct virtio_net *dev;
975         struct rte_mbuf *rarp_mbuf = NULL;
976         struct vhost_virtqueue *vq;
977         uint32_t desc_indexes[MAX_PKT_BURST];
978         uint32_t used_idx;
979         uint32_t i = 0;
980         uint16_t free_entries;
981         uint16_t avail_idx;
982
983         dev = get_device(vid);
984         if (!dev)
985                 return 0;
986
987         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
988                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
989                         dev->vid, __func__, queue_id);
990                 return 0;
991         }
992
993         vq = dev->virtqueue[queue_id];
994         if (unlikely(vq->enabled == 0))
995                 return 0;
996
997         if (unlikely(dev->dequeue_zero_copy)) {
998                 struct zcopy_mbuf *zmbuf, *next;
999                 int nr_updated = 0;
1000
1001                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1002                      zmbuf != NULL; zmbuf = next) {
1003                         next = TAILQ_NEXT(zmbuf, next);
1004
1005                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1006                                 used_idx = vq->last_used_idx++ & (vq->size - 1);
1007                                 update_used_ring(dev, vq, used_idx,
1008                                                  zmbuf->desc_idx);
1009                                 nr_updated += 1;
1010
1011                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1012                                 rte_pktmbuf_free(zmbuf->mbuf);
1013                                 put_zmbuf(zmbuf);
1014                                 vq->nr_zmbuf -= 1;
1015                         }
1016                 }
1017
1018                 update_used_idx(dev, vq, nr_updated);
1019         }
1020
1021         /*
1022          * Construct a RARP broadcast packet, and inject it to the "pkts"
1023          * array, to looks like that guest actually send such packet.
1024          *
1025          * Check user_send_rarp() for more information.
1026          */
1027         if (unlikely(rte_atomic16_cmpset((volatile uint16_t *)
1028                                          &dev->broadcast_rarp.cnt, 1, 0))) {
1029                 rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
1030                 if (rarp_mbuf == NULL) {
1031                         RTE_LOG(ERR, VHOST_DATA,
1032                                 "Failed to allocate memory for mbuf.\n");
1033                         return 0;
1034                 }
1035
1036                 if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
1037                         rte_pktmbuf_free(rarp_mbuf);
1038                         rarp_mbuf = NULL;
1039                 } else {
1040                         count -= 1;
1041                 }
1042         }
1043
1044         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1045                         vq->last_avail_idx;
1046         if (free_entries == 0)
1047                 goto out;
1048
1049         LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1050
1051         /* Prefetch available and used ring */
1052         avail_idx = vq->last_avail_idx & (vq->size - 1);
1053         used_idx  = vq->last_used_idx  & (vq->size - 1);
1054         rte_prefetch0(&vq->avail->ring[avail_idx]);
1055         rte_prefetch0(&vq->used->ring[used_idx]);
1056
1057         count = RTE_MIN(count, MAX_PKT_BURST);
1058         count = RTE_MIN(count, free_entries);
1059         LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1060                         dev->vid, count);
1061
1062         /* Retrieve all of the head indexes first to avoid caching issues. */
1063         for (i = 0; i < count; i++) {
1064                 avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
1065                 used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
1066                 desc_indexes[i] = vq->avail->ring[avail_idx];
1067
1068                 if (likely(dev->dequeue_zero_copy == 0))
1069                         update_used_ring(dev, vq, used_idx, desc_indexes[i]);
1070         }
1071
1072         /* Prefetch descriptor index. */
1073         rte_prefetch0(&vq->desc[desc_indexes[0]]);
1074         for (i = 0; i < count; i++) {
1075                 struct vring_desc *desc;
1076                 uint16_t sz, idx;
1077                 int err;
1078
1079                 if (likely(i + 1 < count))
1080                         rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
1081
1082                 if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
1083                         desc = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
1084                                         vq->desc[desc_indexes[i]].addr);
1085                         if (unlikely(!desc))
1086                                 break;
1087
1088                         rte_prefetch0(desc);
1089                         sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
1090                         idx = 0;
1091                 } else {
1092                         desc = vq->desc;
1093                         sz = vq->size;
1094                         idx = desc_indexes[i];
1095                 }
1096
1097                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1098                 if (unlikely(pkts[i] == NULL)) {
1099                         RTE_LOG(ERR, VHOST_DATA,
1100                                 "Failed to allocate memory for mbuf.\n");
1101                         break;
1102                 }
1103
1104                 err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
1105                 if (unlikely(err)) {
1106                         rte_pktmbuf_free(pkts[i]);
1107                         break;
1108                 }
1109
1110                 if (unlikely(dev->dequeue_zero_copy)) {
1111                         struct zcopy_mbuf *zmbuf;
1112
1113                         zmbuf = get_zmbuf(vq);
1114                         if (!zmbuf) {
1115                                 rte_pktmbuf_free(pkts[i]);
1116                                 break;
1117                         }
1118                         zmbuf->mbuf = pkts[i];
1119                         zmbuf->desc_idx = desc_indexes[i];
1120
1121                         /*
1122                          * Pin lock the mbuf; we will check later to see
1123                          * whether the mbuf is freed (when we are the last
1124                          * user) or not. If that's the case, we then could
1125                          * update the used ring safely.
1126                          */
1127                         rte_mbuf_refcnt_update(pkts[i], 1);
1128
1129                         vq->nr_zmbuf += 1;
1130                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1131                 }
1132         }
1133         vq->last_avail_idx += i;
1134
1135         if (likely(dev->dequeue_zero_copy == 0)) {
1136                 vq->last_used_idx += i;
1137                 update_used_idx(dev, vq, i);
1138         }
1139
1140 out:
1141         if (unlikely(rarp_mbuf != NULL)) {
1142                 /*
1143                  * Inject it to the head of "pkts" array, so that switch's mac
1144                  * learning table will get updated first.
1145                  */
1146                 memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
1147                 pkts[0] = rarp_mbuf;
1148                 i += 1;
1149         }
1150
1151         return i;
1152 }