vhost: fix return value on dequeue path
[dpdk.git] / lib / librte_vhost / virtio_net.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdbool.h>
7 #include <linux/virtio_net.h>
8
9 #include <rte_mbuf.h>
10 #include <rte_memcpy.h>
11 #include <rte_ether.h>
12 #include <rte_ip.h>
13 #include <rte_vhost.h>
14 #include <rte_tcp.h>
15 #include <rte_udp.h>
16 #include <rte_sctp.h>
17 #include <rte_arp.h>
18 #include <rte_spinlock.h>
19 #include <rte_malloc.h>
20
21 #include "iotlb.h"
22 #include "vhost.h"
23
24 #define MAX_PKT_BURST 32
25
26 #define MAX_BATCH_LEN 256
27
28 static  __rte_always_inline bool
29 rxvq_is_mergeable(struct virtio_net *dev)
30 {
31         return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
32 }
33
34 static bool
35 is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
36 {
37         return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
38 }
39
40 static __rte_always_inline void *
41 alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
42                 uint64_t desc_addr, uint64_t desc_len)
43 {
44         void *idesc;
45         uint64_t src, dst;
46         uint64_t len, remain = desc_len;
47
48         idesc = rte_malloc(__func__, desc_len, 0);
49         if (unlikely(!idesc))
50                 return 0;
51
52         dst = (uint64_t)(uintptr_t)idesc;
53
54         while (remain) {
55                 len = remain;
56                 src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
57                                 VHOST_ACCESS_RO);
58                 if (unlikely(!src || !len)) {
59                         rte_free(idesc);
60                         return 0;
61                 }
62
63                 rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
64
65                 remain -= len;
66                 dst += len;
67                 desc_addr += len;
68         }
69
70         return idesc;
71 }
72
73 static __rte_always_inline void
74 free_ind_table(void *idesc)
75 {
76         rte_free(idesc);
77 }
78
79 static __rte_always_inline void
80 do_flush_shadow_used_ring_split(struct virtio_net *dev,
81                         struct vhost_virtqueue *vq,
82                         uint16_t to, uint16_t from, uint16_t size)
83 {
84         rte_memcpy(&vq->used->ring[to],
85                         &vq->shadow_used_split[from],
86                         size * sizeof(struct vring_used_elem));
87         vhost_log_cache_used_vring(dev, vq,
88                         offsetof(struct vring_used, ring[to]),
89                         size * sizeof(struct vring_used_elem));
90 }
91
92 static __rte_always_inline void
93 flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
94 {
95         uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
96
97         if (used_idx + vq->shadow_used_idx <= vq->size) {
98                 do_flush_shadow_used_ring_split(dev, vq, used_idx, 0,
99                                           vq->shadow_used_idx);
100         } else {
101                 uint16_t size;
102
103                 /* update used ring interval [used_idx, vq->size] */
104                 size = vq->size - used_idx;
105                 do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size);
106
107                 /* update the left half used ring interval [0, left_size] */
108                 do_flush_shadow_used_ring_split(dev, vq, 0, size,
109                                           vq->shadow_used_idx - size);
110         }
111         vq->last_used_idx += vq->shadow_used_idx;
112
113         rte_smp_wmb();
114
115         vhost_log_cache_sync(dev, vq);
116
117         *(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
118         vq->shadow_used_idx = 0;
119         vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
120                 sizeof(vq->used->idx));
121 }
122
123 static __rte_always_inline void
124 update_shadow_used_ring_split(struct vhost_virtqueue *vq,
125                          uint16_t desc_idx, uint16_t len)
126 {
127         uint16_t i = vq->shadow_used_idx++;
128
129         vq->shadow_used_split[i].id  = desc_idx;
130         vq->shadow_used_split[i].len = len;
131 }
132
133 static __rte_always_inline void
134 flush_shadow_used_ring_packed(struct virtio_net *dev,
135                         struct vhost_virtqueue *vq)
136 {
137         int i;
138         uint16_t used_idx = vq->last_used_idx;
139
140         /* Split loop in two to save memory barriers */
141         for (i = 0; i < vq->shadow_used_idx; i++) {
142                 vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id;
143                 vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len;
144
145                 used_idx += vq->shadow_used_packed[i].count;
146                 if (used_idx >= vq->size)
147                         used_idx -= vq->size;
148         }
149
150         rte_smp_wmb();
151
152         for (i = 0; i < vq->shadow_used_idx; i++) {
153                 uint16_t flags;
154
155                 if (vq->shadow_used_packed[i].len)
156                         flags = VRING_DESC_F_WRITE;
157                 else
158                         flags = 0;
159
160                 if (vq->used_wrap_counter) {
161                         flags |= VRING_DESC_F_USED;
162                         flags |= VRING_DESC_F_AVAIL;
163                 } else {
164                         flags &= ~VRING_DESC_F_USED;
165                         flags &= ~VRING_DESC_F_AVAIL;
166                 }
167
168                 vq->desc_packed[vq->last_used_idx].flags = flags;
169
170                 vhost_log_cache_used_vring(dev, vq,
171                                         vq->last_used_idx *
172                                         sizeof(struct vring_packed_desc),
173                                         sizeof(struct vring_packed_desc));
174
175                 vq->last_used_idx += vq->shadow_used_packed[i].count;
176                 if (vq->last_used_idx >= vq->size) {
177                         vq->used_wrap_counter ^= 1;
178                         vq->last_used_idx -= vq->size;
179                 }
180         }
181
182         rte_smp_wmb();
183         vq->shadow_used_idx = 0;
184         vhost_log_cache_sync(dev, vq);
185 }
186
187 static __rte_always_inline void
188 update_shadow_used_ring_packed(struct vhost_virtqueue *vq,
189                          uint16_t desc_idx, uint16_t len, uint16_t count)
190 {
191         uint16_t i = vq->shadow_used_idx++;
192
193         vq->shadow_used_packed[i].id  = desc_idx;
194         vq->shadow_used_packed[i].len = len;
195         vq->shadow_used_packed[i].count = count;
196 }
197
198 static inline void
199 do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
200 {
201         struct batch_copy_elem *elem = vq->batch_copy_elems;
202         uint16_t count = vq->batch_copy_nb_elems;
203         int i;
204
205         for (i = 0; i < count; i++) {
206                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
207                 vhost_log_cache_write(dev, vq, elem[i].log_addr, elem[i].len);
208                 PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
209         }
210
211         vq->batch_copy_nb_elems = 0;
212 }
213
214 static inline void
215 do_data_copy_dequeue(struct vhost_virtqueue *vq)
216 {
217         struct batch_copy_elem *elem = vq->batch_copy_elems;
218         uint16_t count = vq->batch_copy_nb_elems;
219         int i;
220
221         for (i = 0; i < count; i++)
222                 rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
223
224         vq->batch_copy_nb_elems = 0;
225 }
226
227 /* avoid write operation when necessary, to lessen cache issues */
228 #define ASSIGN_UNLESS_EQUAL(var, val) do {      \
229         if ((var) != (val))                     \
230                 (var) = (val);                  \
231 } while (0)
232
233 static __rte_always_inline void
234 virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
235 {
236         uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
237
238         if (m_buf->ol_flags & PKT_TX_TCP_SEG)
239                 csum_l4 |= PKT_TX_TCP_CKSUM;
240
241         if (csum_l4) {
242                 net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
243                 net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
244
245                 switch (csum_l4) {
246                 case PKT_TX_TCP_CKSUM:
247                         net_hdr->csum_offset = (offsetof(struct tcp_hdr,
248                                                 cksum));
249                         break;
250                 case PKT_TX_UDP_CKSUM:
251                         net_hdr->csum_offset = (offsetof(struct udp_hdr,
252                                                 dgram_cksum));
253                         break;
254                 case PKT_TX_SCTP_CKSUM:
255                         net_hdr->csum_offset = (offsetof(struct sctp_hdr,
256                                                 cksum));
257                         break;
258                 }
259         } else {
260                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
261                 ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
262                 ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
263         }
264
265         /* IP cksum verification cannot be bypassed, then calculate here */
266         if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
267                 struct ipv4_hdr *ipv4_hdr;
268
269                 ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
270                                                    m_buf->l2_len);
271                 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
272         }
273
274         if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
275                 if (m_buf->ol_flags & PKT_TX_IPV4)
276                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
277                 else
278                         net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
279                 net_hdr->gso_size = m_buf->tso_segsz;
280                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
281                                         + m_buf->l4_len;
282         } else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
283                 net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
284                 net_hdr->gso_size = m_buf->tso_segsz;
285                 net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
286                         m_buf->l4_len;
287         } else {
288                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
289                 ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
290                 ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
291         }
292 }
293
294 static __rte_always_inline int
295 map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
296                 struct buf_vector *buf_vec, uint16_t *vec_idx,
297                 uint64_t desc_iova, uint64_t desc_len, uint8_t perm)
298 {
299         uint16_t vec_id = *vec_idx;
300
301         while (desc_len) {
302                 uint64_t desc_addr;
303                 uint64_t desc_chunck_len = desc_len;
304
305                 if (unlikely(vec_id >= BUF_VECTOR_MAX))
306                         return -1;
307
308                 desc_addr = vhost_iova_to_vva(dev, vq,
309                                 desc_iova,
310                                 &desc_chunck_len,
311                                 perm);
312                 if (unlikely(!desc_addr))
313                         return -1;
314
315                 buf_vec[vec_id].buf_iova = desc_iova;
316                 buf_vec[vec_id].buf_addr = desc_addr;
317                 buf_vec[vec_id].buf_len  = desc_chunck_len;
318
319                 desc_len -= desc_chunck_len;
320                 desc_iova += desc_chunck_len;
321                 vec_id++;
322         }
323         *vec_idx = vec_id;
324
325         return 0;
326 }
327
328 static __rte_always_inline int
329 fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
330                          uint32_t avail_idx, uint16_t *vec_idx,
331                          struct buf_vector *buf_vec, uint16_t *desc_chain_head,
332                          uint16_t *desc_chain_len, uint8_t perm)
333 {
334         uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
335         uint16_t vec_id = *vec_idx;
336         uint32_t len    = 0;
337         uint64_t dlen;
338         struct vring_desc *descs = vq->desc;
339         struct vring_desc *idesc = NULL;
340
341         *desc_chain_head = idx;
342
343         if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
344                 dlen = vq->desc[idx].len;
345                 descs = (struct vring_desc *)(uintptr_t)
346                         vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
347                                                 &dlen,
348                                                 VHOST_ACCESS_RO);
349                 if (unlikely(!descs))
350                         return -1;
351
352                 if (unlikely(dlen < vq->desc[idx].len)) {
353                         /*
354                          * The indirect desc table is not contiguous
355                          * in process VA space, we have to copy it.
356                          */
357                         idesc = alloc_copy_ind_table(dev, vq,
358                                         vq->desc[idx].addr, vq->desc[idx].len);
359                         if (unlikely(!idesc))
360                                 return -1;
361
362                         descs = idesc;
363                 }
364
365                 idx = 0;
366         }
367
368         while (1) {
369                 if (unlikely(idx >= vq->size)) {
370                         free_ind_table(idesc);
371                         return -1;
372                 }
373
374                 len += descs[idx].len;
375
376                 if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
377                                                 descs[idx].addr, descs[idx].len,
378                                                 perm))) {
379                         free_ind_table(idesc);
380                         return -1;
381                 }
382
383                 if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
384                         break;
385
386                 idx = descs[idx].next;
387         }
388
389         *desc_chain_len = len;
390         *vec_idx = vec_id;
391
392         if (unlikely(!!idesc))
393                 free_ind_table(idesc);
394
395         return 0;
396 }
397
398 /*
399  * Returns -1 on fail, 0 on success
400  */
401 static inline int
402 reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
403                                 uint32_t size, struct buf_vector *buf_vec,
404                                 uint16_t *num_buffers, uint16_t avail_head,
405                                 uint16_t *nr_vec)
406 {
407         uint16_t cur_idx;
408         uint16_t vec_idx = 0;
409         uint16_t max_tries, tries = 0;
410
411         uint16_t head_idx = 0;
412         uint16_t len = 0;
413
414         *num_buffers = 0;
415         cur_idx  = vq->last_avail_idx;
416
417         if (rxvq_is_mergeable(dev))
418                 max_tries = vq->size;
419         else
420                 max_tries = 1;
421
422         while (size > 0) {
423                 if (unlikely(cur_idx == avail_head))
424                         return -1;
425
426                 if (unlikely(fill_vec_buf_split(dev, vq, cur_idx,
427                                                 &vec_idx, buf_vec,
428                                                 &head_idx, &len,
429                                                 VHOST_ACCESS_RW) < 0))
430                         return -1;
431                 len = RTE_MIN(len, size);
432                 update_shadow_used_ring_split(vq, head_idx, len);
433                 size -= len;
434
435                 cur_idx++;
436                 tries++;
437                 *num_buffers += 1;
438
439                 /*
440                  * if we tried all available ring items, and still
441                  * can't get enough buf, it means something abnormal
442                  * happened.
443                  */
444                 if (unlikely(tries > max_tries))
445                         return -1;
446         }
447
448         *nr_vec = vec_idx;
449
450         return 0;
451 }
452
453 static __rte_always_inline int
454 fill_vec_buf_packed_indirect(struct virtio_net *dev,
455                         struct vhost_virtqueue *vq,
456                         struct vring_packed_desc *desc, uint16_t *vec_idx,
457                         struct buf_vector *buf_vec, uint16_t *len, uint8_t perm)
458 {
459         uint16_t i;
460         uint32_t nr_descs;
461         uint16_t vec_id = *vec_idx;
462         uint64_t dlen;
463         struct vring_packed_desc *descs, *idescs = NULL;
464
465         dlen = desc->len;
466         descs = (struct vring_packed_desc *)(uintptr_t)
467                 vhost_iova_to_vva(dev, vq, desc->addr, &dlen, VHOST_ACCESS_RO);
468         if (unlikely(!descs))
469                 return -1;
470
471         if (unlikely(dlen < desc->len)) {
472                 /*
473                  * The indirect desc table is not contiguous
474                  * in process VA space, we have to copy it.
475                  */
476                 idescs = alloc_copy_ind_table(dev, vq, desc->addr, desc->len);
477                 if (unlikely(!idescs))
478                         return -1;
479
480                 descs = idescs;
481         }
482
483         nr_descs =  desc->len / sizeof(struct vring_packed_desc);
484         if (unlikely(nr_descs >= vq->size)) {
485                 free_ind_table(idescs);
486                 return -1;
487         }
488
489         for (i = 0; i < nr_descs; i++) {
490                 if (unlikely(vec_id >= BUF_VECTOR_MAX)) {
491                         free_ind_table(idescs);
492                         return -1;
493                 }
494
495                 *len += descs[i].len;
496                 if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
497                                                 descs[i].addr, descs[i].len,
498                                                 perm)))
499                         return -1;
500         }
501         *vec_idx = vec_id;
502
503         if (unlikely(!!idescs))
504                 free_ind_table(idescs);
505
506         return 0;
507 }
508
509 static __rte_always_inline int
510 fill_vec_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
511                                 uint16_t avail_idx, uint16_t *desc_count,
512                                 struct buf_vector *buf_vec, uint16_t *vec_idx,
513                                 uint16_t *buf_id, uint16_t *len, uint8_t perm)
514 {
515         bool wrap_counter = vq->avail_wrap_counter;
516         struct vring_packed_desc *descs = vq->desc_packed;
517         uint16_t vec_id = *vec_idx;
518
519         if (avail_idx < vq->last_avail_idx)
520                 wrap_counter ^= 1;
521
522         if (unlikely(!desc_is_avail(&descs[avail_idx], wrap_counter)))
523                 return -1;
524
525         *desc_count = 0;
526
527         while (1) {
528                 if (unlikely(vec_id >= BUF_VECTOR_MAX))
529                         return -1;
530
531                 *desc_count += 1;
532                 *buf_id = descs[avail_idx].id;
533
534                 if (descs[avail_idx].flags & VRING_DESC_F_INDIRECT) {
535                         if (unlikely(fill_vec_buf_packed_indirect(dev, vq,
536                                                         &descs[avail_idx],
537                                                         &vec_id, buf_vec,
538                                                         len, perm) < 0))
539                                 return -1;
540                 } else {
541                         *len += descs[avail_idx].len;
542
543                         if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
544                                                         descs[avail_idx].addr,
545                                                         descs[avail_idx].len,
546                                                         perm)))
547                                 return -1;
548                 }
549
550                 if ((descs[avail_idx].flags & VRING_DESC_F_NEXT) == 0)
551                         break;
552
553                 if (++avail_idx >= vq->size) {
554                         avail_idx -= vq->size;
555                         wrap_counter ^= 1;
556                 }
557         }
558
559         *vec_idx = vec_id;
560
561         return 0;
562 }
563
564 /*
565  * Returns -1 on fail, 0 on success
566  */
567 static inline int
568 reserve_avail_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
569                                 uint32_t size, struct buf_vector *buf_vec,
570                                 uint16_t *nr_vec, uint16_t *num_buffers,
571                                 uint16_t *nr_descs)
572 {
573         uint16_t avail_idx;
574         uint16_t vec_idx = 0;
575         uint16_t max_tries, tries = 0;
576
577         uint16_t buf_id = 0;
578         uint16_t len = 0;
579         uint16_t desc_count;
580
581         *num_buffers = 0;
582         avail_idx = vq->last_avail_idx;
583
584         if (rxvq_is_mergeable(dev))
585                 max_tries = vq->size;
586         else
587                 max_tries = 1;
588
589         while (size > 0) {
590                 if (unlikely(fill_vec_buf_packed(dev, vq,
591                                                 avail_idx, &desc_count,
592                                                 buf_vec, &vec_idx,
593                                                 &buf_id, &len,
594                                                 VHOST_ACCESS_RO) < 0))
595                         return -1;
596
597                 len = RTE_MIN(len, size);
598                 update_shadow_used_ring_packed(vq, buf_id, len, desc_count);
599                 size -= len;
600
601                 avail_idx += desc_count;
602                 if (avail_idx >= vq->size)
603                         avail_idx -= vq->size;
604
605                 *nr_descs += desc_count;
606                 tries++;
607                 *num_buffers += 1;
608
609                 /*
610                  * if we tried all available ring items, and still
611                  * can't get enough buf, it means something abnormal
612                  * happened.
613                  */
614                 if (unlikely(tries > max_tries))
615                         return -1;
616         }
617
618         *nr_vec = vec_idx;
619
620         return 0;
621 }
622
623 static __rte_always_inline int
624 copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
625                             struct rte_mbuf *m, struct buf_vector *buf_vec,
626                             uint16_t nr_vec, uint16_t num_buffers)
627 {
628         uint32_t vec_idx = 0;
629         uint32_t mbuf_offset, mbuf_avail;
630         uint32_t buf_offset, buf_avail;
631         uint64_t buf_addr, buf_iova, buf_len;
632         uint32_t cpy_len;
633         uint64_t hdr_addr;
634         struct rte_mbuf *hdr_mbuf;
635         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
636         struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
637         int error = 0;
638
639         if (unlikely(m == NULL)) {
640                 error = -1;
641                 goto out;
642         }
643
644         buf_addr = buf_vec[vec_idx].buf_addr;
645         buf_iova = buf_vec[vec_idx].buf_iova;
646         buf_len = buf_vec[vec_idx].buf_len;
647
648         if (nr_vec > 1)
649                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
650
651         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
652                 error = -1;
653                 goto out;
654         }
655
656         hdr_mbuf = m;
657         hdr_addr = buf_addr;
658         if (unlikely(buf_len < dev->vhost_hlen))
659                 hdr = &tmp_hdr;
660         else
661                 hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
662
663         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
664                 dev->vid, num_buffers);
665
666         if (unlikely(buf_len < dev->vhost_hlen)) {
667                 buf_offset = dev->vhost_hlen - buf_len;
668                 vec_idx++;
669                 buf_addr = buf_vec[vec_idx].buf_addr;
670                 buf_iova = buf_vec[vec_idx].buf_iova;
671                 buf_len = buf_vec[vec_idx].buf_len;
672                 buf_avail = buf_len - buf_offset;
673         } else {
674                 buf_offset = dev->vhost_hlen;
675                 buf_avail = buf_len - dev->vhost_hlen;
676         }
677
678         mbuf_avail  = rte_pktmbuf_data_len(m);
679         mbuf_offset = 0;
680         while (mbuf_avail != 0 || m->next != NULL) {
681                 /* done with current buf, get the next one */
682                 if (buf_avail == 0) {
683                         vec_idx++;
684                         if (unlikely(vec_idx >= nr_vec)) {
685                                 error = -1;
686                                 goto out;
687                         }
688
689                         buf_addr = buf_vec[vec_idx].buf_addr;
690                         buf_iova = buf_vec[vec_idx].buf_iova;
691                         buf_len = buf_vec[vec_idx].buf_len;
692
693                         /* Prefetch next buffer address. */
694                         if (vec_idx + 1 < nr_vec)
695                                 rte_prefetch0((void *)(uintptr_t)
696                                                 buf_vec[vec_idx + 1].buf_addr);
697                         buf_offset = 0;
698                         buf_avail  = buf_len;
699                 }
700
701                 /* done with current mbuf, get the next one */
702                 if (mbuf_avail == 0) {
703                         m = m->next;
704
705                         mbuf_offset = 0;
706                         mbuf_avail  = rte_pktmbuf_data_len(m);
707                 }
708
709                 if (hdr_addr) {
710                         virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
711                         if (rxvq_is_mergeable(dev))
712                                 ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
713                                                 num_buffers);
714
715                         if (unlikely(hdr == &tmp_hdr)) {
716                                 uint64_t len;
717                                 uint64_t remain = dev->vhost_hlen;
718                                 uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
719                                 uint64_t iova = buf_vec[0].buf_iova;
720                                 uint16_t hdr_vec_idx = 0;
721
722                                 while (remain) {
723                                         len = RTE_MIN(remain,
724                                                 buf_vec[hdr_vec_idx].buf_len);
725                                         dst = buf_vec[hdr_vec_idx].buf_addr;
726                                         rte_memcpy((void *)(uintptr_t)dst,
727                                                         (void *)(uintptr_t)src,
728                                                         len);
729
730                                         PRINT_PACKET(dev, (uintptr_t)dst,
731                                                         (uint32_t)len, 0);
732                                         vhost_log_cache_write(dev, vq,
733                                                         iova, len);
734
735                                         remain -= len;
736                                         iova += len;
737                                         src += len;
738                                         hdr_vec_idx++;
739                                 }
740                         } else {
741                                 PRINT_PACKET(dev, (uintptr_t)hdr_addr,
742                                                 dev->vhost_hlen, 0);
743                                 vhost_log_cache_write(dev, vq,
744                                                 buf_vec[0].buf_iova,
745                                                 dev->vhost_hlen);
746                         }
747
748                         hdr_addr = 0;
749                 }
750
751                 cpy_len = RTE_MIN(buf_avail, mbuf_avail);
752
753                 if (likely(cpy_len > MAX_BATCH_LEN ||
754                                         vq->batch_copy_nb_elems >= vq->size)) {
755                         rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)),
756                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
757                                 cpy_len);
758                         vhost_log_cache_write(dev, vq, buf_iova + buf_offset,
759                                         cpy_len);
760                         PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset),
761                                 cpy_len, 0);
762                 } else {
763                         batch_copy[vq->batch_copy_nb_elems].dst =
764                                 (void *)((uintptr_t)(buf_addr + buf_offset));
765                         batch_copy[vq->batch_copy_nb_elems].src =
766                                 rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
767                         batch_copy[vq->batch_copy_nb_elems].log_addr =
768                                 buf_iova + buf_offset;
769                         batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
770                         vq->batch_copy_nb_elems++;
771                 }
772
773                 mbuf_avail  -= cpy_len;
774                 mbuf_offset += cpy_len;
775                 buf_avail  -= cpy_len;
776                 buf_offset += cpy_len;
777         }
778
779 out:
780
781         return error;
782 }
783
784 static __rte_always_inline uint32_t
785 virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
786         struct rte_mbuf **pkts, uint32_t count)
787 {
788         uint32_t pkt_idx = 0;
789         uint16_t num_buffers;
790         struct buf_vector buf_vec[BUF_VECTOR_MAX];
791         uint16_t avail_head;
792
793         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
794         avail_head = *((volatile uint16_t *)&vq->avail->idx);
795
796         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
797                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
798                 uint16_t nr_vec = 0;
799
800                 if (unlikely(reserve_avail_buf_split(dev, vq,
801                                                 pkt_len, buf_vec, &num_buffers,
802                                                 avail_head, &nr_vec) < 0)) {
803                         VHOST_LOG_DEBUG(VHOST_DATA,
804                                 "(%d) failed to get enough desc from vring\n",
805                                 dev->vid);
806                         vq->shadow_used_idx -= num_buffers;
807                         break;
808                 }
809
810                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
811
812                 VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
813                         dev->vid, vq->last_avail_idx,
814                         vq->last_avail_idx + num_buffers);
815
816                 if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
817                                                 buf_vec, nr_vec,
818                                                 num_buffers) < 0) {
819                         vq->shadow_used_idx -= num_buffers;
820                         break;
821                 }
822
823                 vq->last_avail_idx += num_buffers;
824         }
825
826         do_data_copy_enqueue(dev, vq);
827
828         if (likely(vq->shadow_used_idx)) {
829                 flush_shadow_used_ring_split(dev, vq);
830                 vhost_vring_call_split(dev, vq);
831         }
832
833         return pkt_idx;
834 }
835
836 static __rte_always_inline uint32_t
837 virtio_dev_rx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
838         struct rte_mbuf **pkts, uint32_t count)
839 {
840         uint32_t pkt_idx = 0;
841         uint16_t num_buffers;
842         struct buf_vector buf_vec[BUF_VECTOR_MAX];
843
844         for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
845                 uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
846                 uint16_t nr_vec = 0;
847                 uint16_t nr_descs = 0;
848
849                 if (unlikely(reserve_avail_buf_packed(dev, vq,
850                                                 pkt_len, buf_vec, &nr_vec,
851                                                 &num_buffers, &nr_descs) < 0)) {
852                         VHOST_LOG_DEBUG(VHOST_DATA,
853                                 "(%d) failed to get enough desc from vring\n",
854                                 dev->vid);
855                         vq->shadow_used_idx -= num_buffers;
856                         break;
857                 }
858
859                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
860
861                 VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
862                         dev->vid, vq->last_avail_idx,
863                         vq->last_avail_idx + num_buffers);
864
865                 if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
866                                                 buf_vec, nr_vec,
867                                                 num_buffers) < 0) {
868                         vq->shadow_used_idx -= num_buffers;
869                         break;
870                 }
871
872                 vq->last_avail_idx += nr_descs;
873                 if (vq->last_avail_idx >= vq->size) {
874                         vq->last_avail_idx -= vq->size;
875                         vq->avail_wrap_counter ^= 1;
876                 }
877         }
878
879         do_data_copy_enqueue(dev, vq);
880
881         if (likely(vq->shadow_used_idx)) {
882                 flush_shadow_used_ring_packed(dev, vq);
883                 vhost_vring_call_packed(dev, vq);
884         }
885
886         return pkt_idx;
887 }
888
889 static __rte_always_inline uint32_t
890 virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
891         struct rte_mbuf **pkts, uint32_t count)
892 {
893         struct vhost_virtqueue *vq;
894
895         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
896         if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
897                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
898                         dev->vid, __func__, queue_id);
899                 return 0;
900         }
901
902         vq = dev->virtqueue[queue_id];
903
904         rte_spinlock_lock(&vq->access_lock);
905
906         if (unlikely(vq->enabled == 0))
907                 goto out_access_unlock;
908
909         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
910                 vhost_user_iotlb_rd_lock(vq);
911
912         if (unlikely(vq->access_ok == 0))
913                 if (unlikely(vring_translate(dev, vq) < 0))
914                         goto out;
915
916         count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
917         if (count == 0)
918                 goto out;
919
920         if (vq_is_packed(dev))
921                 count = virtio_dev_rx_packed(dev, vq, pkts, count);
922         else
923                 count = virtio_dev_rx_split(dev, vq, pkts, count);
924
925 out:
926         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
927                 vhost_user_iotlb_rd_unlock(vq);
928
929 out_access_unlock:
930         rte_spinlock_unlock(&vq->access_lock);
931
932         return count;
933 }
934
935 uint16_t
936 rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
937         struct rte_mbuf **pkts, uint16_t count)
938 {
939         struct virtio_net *dev = get_device(vid);
940
941         if (!dev)
942                 return 0;
943
944         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
945                 RTE_LOG(ERR, VHOST_DATA,
946                         "(%d) %s: built-in vhost net backend is disabled.\n",
947                         dev->vid, __func__);
948                 return 0;
949         }
950
951         return virtio_dev_rx(dev, queue_id, pkts, count);
952 }
953
954 static inline bool
955 virtio_net_with_host_offload(struct virtio_net *dev)
956 {
957         if (dev->features &
958                         ((1ULL << VIRTIO_NET_F_CSUM) |
959                          (1ULL << VIRTIO_NET_F_HOST_ECN) |
960                          (1ULL << VIRTIO_NET_F_HOST_TSO4) |
961                          (1ULL << VIRTIO_NET_F_HOST_TSO6) |
962                          (1ULL << VIRTIO_NET_F_HOST_UFO)))
963                 return true;
964
965         return false;
966 }
967
968 static void
969 parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
970 {
971         struct ipv4_hdr *ipv4_hdr;
972         struct ipv6_hdr *ipv6_hdr;
973         void *l3_hdr = NULL;
974         struct ether_hdr *eth_hdr;
975         uint16_t ethertype;
976
977         eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
978
979         m->l2_len = sizeof(struct ether_hdr);
980         ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
981
982         if (ethertype == ETHER_TYPE_VLAN) {
983                 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
984
985                 m->l2_len += sizeof(struct vlan_hdr);
986                 ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
987         }
988
989         l3_hdr = (char *)eth_hdr + m->l2_len;
990
991         switch (ethertype) {
992         case ETHER_TYPE_IPv4:
993                 ipv4_hdr = l3_hdr;
994                 *l4_proto = ipv4_hdr->next_proto_id;
995                 m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
996                 *l4_hdr = (char *)l3_hdr + m->l3_len;
997                 m->ol_flags |= PKT_TX_IPV4;
998                 break;
999         case ETHER_TYPE_IPv6:
1000                 ipv6_hdr = l3_hdr;
1001                 *l4_proto = ipv6_hdr->proto;
1002                 m->l3_len = sizeof(struct ipv6_hdr);
1003                 *l4_hdr = (char *)l3_hdr + m->l3_len;
1004                 m->ol_flags |= PKT_TX_IPV6;
1005                 break;
1006         default:
1007                 m->l3_len = 0;
1008                 *l4_proto = 0;
1009                 *l4_hdr = NULL;
1010                 break;
1011         }
1012 }
1013
1014 static __rte_always_inline void
1015 vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
1016 {
1017         uint16_t l4_proto = 0;
1018         void *l4_hdr = NULL;
1019         struct tcp_hdr *tcp_hdr = NULL;
1020
1021         if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
1022                 return;
1023
1024         parse_ethernet(m, &l4_proto, &l4_hdr);
1025         if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1026                 if (hdr->csum_start == (m->l2_len + m->l3_len)) {
1027                         switch (hdr->csum_offset) {
1028                         case (offsetof(struct tcp_hdr, cksum)):
1029                                 if (l4_proto == IPPROTO_TCP)
1030                                         m->ol_flags |= PKT_TX_TCP_CKSUM;
1031                                 break;
1032                         case (offsetof(struct udp_hdr, dgram_cksum)):
1033                                 if (l4_proto == IPPROTO_UDP)
1034                                         m->ol_flags |= PKT_TX_UDP_CKSUM;
1035                                 break;
1036                         case (offsetof(struct sctp_hdr, cksum)):
1037                                 if (l4_proto == IPPROTO_SCTP)
1038                                         m->ol_flags |= PKT_TX_SCTP_CKSUM;
1039                                 break;
1040                         default:
1041                                 break;
1042                         }
1043                 }
1044         }
1045
1046         if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
1047                 switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
1048                 case VIRTIO_NET_HDR_GSO_TCPV4:
1049                 case VIRTIO_NET_HDR_GSO_TCPV6:
1050                         tcp_hdr = l4_hdr;
1051                         m->ol_flags |= PKT_TX_TCP_SEG;
1052                         m->tso_segsz = hdr->gso_size;
1053                         m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
1054                         break;
1055                 case VIRTIO_NET_HDR_GSO_UDP:
1056                         m->ol_flags |= PKT_TX_UDP_SEG;
1057                         m->tso_segsz = hdr->gso_size;
1058                         m->l4_len = sizeof(struct udp_hdr);
1059                         break;
1060                 default:
1061                         RTE_LOG(WARNING, VHOST_DATA,
1062                                 "unsupported gso type %u.\n", hdr->gso_type);
1063                         break;
1064                 }
1065         }
1066 }
1067
1068 static __rte_always_inline void
1069 put_zmbuf(struct zcopy_mbuf *zmbuf)
1070 {
1071         zmbuf->in_use = 0;
1072 }
1073
1074 static __rte_always_inline int
1075 copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
1076                   struct buf_vector *buf_vec, uint16_t nr_vec,
1077                   struct rte_mbuf *m, struct rte_mempool *mbuf_pool)
1078 {
1079         uint32_t buf_avail, buf_offset;
1080         uint64_t buf_addr, buf_iova, buf_len;
1081         uint32_t mbuf_avail, mbuf_offset;
1082         uint32_t cpy_len;
1083         struct rte_mbuf *cur = m, *prev = m;
1084         struct virtio_net_hdr tmp_hdr;
1085         struct virtio_net_hdr *hdr = NULL;
1086         /* A counter to avoid desc dead loop chain */
1087         uint16_t vec_idx = 0;
1088         struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
1089         int error = 0;
1090
1091         buf_addr = buf_vec[vec_idx].buf_addr;
1092         buf_iova = buf_vec[vec_idx].buf_iova;
1093         buf_len = buf_vec[vec_idx].buf_len;
1094
1095         if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
1096                 error = -1;
1097                 goto out;
1098         }
1099
1100         if (likely(nr_vec > 1))
1101                 rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
1102
1103         if (virtio_net_with_host_offload(dev)) {
1104                 if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) {
1105                         uint64_t len;
1106                         uint64_t remain = sizeof(struct virtio_net_hdr);
1107                         uint64_t src;
1108                         uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr;
1109                         uint16_t hdr_vec_idx = 0;
1110
1111                         /*
1112                          * No luck, the virtio-net header doesn't fit
1113                          * in a contiguous virtual area.
1114                          */
1115                         while (remain) {
1116                                 len = RTE_MIN(remain,
1117                                         buf_vec[hdr_vec_idx].buf_len);
1118                                 src = buf_vec[hdr_vec_idx].buf_addr;
1119                                 rte_memcpy((void *)(uintptr_t)dst,
1120                                                    (void *)(uintptr_t)src, len);
1121
1122                                 remain -= len;
1123                                 dst += len;
1124                                 hdr_vec_idx++;
1125                         }
1126
1127                         hdr = &tmp_hdr;
1128                 } else {
1129                         hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr);
1130                         rte_prefetch0(hdr);
1131                 }
1132         }
1133
1134         /*
1135          * A virtio driver normally uses at least 2 desc buffers
1136          * for Tx: the first for storing the header, and others
1137          * for storing the data.
1138          */
1139         if (unlikely(buf_len < dev->vhost_hlen)) {
1140                 buf_offset = dev->vhost_hlen - buf_len;
1141                 vec_idx++;
1142                 buf_addr = buf_vec[vec_idx].buf_addr;
1143                 buf_iova = buf_vec[vec_idx].buf_iova;
1144                 buf_len = buf_vec[vec_idx].buf_len;
1145                 buf_avail  = buf_len - buf_offset;
1146         } else if (buf_len == dev->vhost_hlen) {
1147                 if (unlikely(++vec_idx >= nr_vec))
1148                         goto out;
1149                 buf_addr = buf_vec[vec_idx].buf_addr;
1150                 buf_iova = buf_vec[vec_idx].buf_iova;
1151                 buf_len = buf_vec[vec_idx].buf_len;
1152
1153                 buf_offset = 0;
1154                 buf_avail = buf_len;
1155         } else {
1156                 buf_offset = dev->vhost_hlen;
1157                 buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
1158         }
1159
1160         rte_prefetch0((void *)(uintptr_t)
1161                         (buf_addr + buf_offset));
1162
1163         PRINT_PACKET(dev,
1164                         (uintptr_t)(buf_addr + buf_offset),
1165                         (uint32_t)buf_avail, 0);
1166
1167         mbuf_offset = 0;
1168         mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
1169         while (1) {
1170                 uint64_t hpa;
1171
1172                 cpy_len = RTE_MIN(buf_avail, mbuf_avail);
1173
1174                 /*
1175                  * A desc buf might across two host physical pages that are
1176                  * not continuous. In such case (gpa_to_hpa returns 0), data
1177                  * will be copied even though zero copy is enabled.
1178                  */
1179                 if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
1180                                         buf_iova + buf_offset, cpy_len)))) {
1181                         cur->data_len = cpy_len;
1182                         cur->data_off = 0;
1183                         cur->buf_addr =
1184                                 (void *)(uintptr_t)(buf_addr + buf_offset);
1185                         cur->buf_iova = hpa;
1186
1187                         /*
1188                          * In zero copy mode, one mbuf can only reference data
1189                          * for one or partial of one desc buff.
1190                          */
1191                         mbuf_avail = cpy_len;
1192                 } else {
1193                         if (likely(cpy_len > MAX_BATCH_LEN ||
1194                                    vq->batch_copy_nb_elems >= vq->size ||
1195                                    (hdr && cur == m))) {
1196                                 rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
1197                                                                    mbuf_offset),
1198                                            (void *)((uintptr_t)(buf_addr +
1199                                                            buf_offset)),
1200                                            cpy_len);
1201                         } else {
1202                                 batch_copy[vq->batch_copy_nb_elems].dst =
1203                                         rte_pktmbuf_mtod_offset(cur, void *,
1204                                                                 mbuf_offset);
1205                                 batch_copy[vq->batch_copy_nb_elems].src =
1206                                         (void *)((uintptr_t)(buf_addr +
1207                                                                 buf_offset));
1208                                 batch_copy[vq->batch_copy_nb_elems].len =
1209                                         cpy_len;
1210                                 vq->batch_copy_nb_elems++;
1211                         }
1212                 }
1213
1214                 mbuf_avail  -= cpy_len;
1215                 mbuf_offset += cpy_len;
1216                 buf_avail -= cpy_len;
1217                 buf_offset += cpy_len;
1218
1219                 /* This buf reaches to its end, get the next one */
1220                 if (buf_avail == 0) {
1221                         if (++vec_idx >= nr_vec)
1222                                 break;
1223
1224                         buf_addr = buf_vec[vec_idx].buf_addr;
1225                         buf_iova = buf_vec[vec_idx].buf_iova;
1226                         buf_len = buf_vec[vec_idx].buf_len;
1227
1228                         /*
1229                          * Prefecth desc n + 1 buffer while
1230                          * desc n buffer is processed.
1231                          */
1232                         if (vec_idx + 1 < nr_vec)
1233                                 rte_prefetch0((void *)(uintptr_t)
1234                                                 buf_vec[vec_idx + 1].buf_addr);
1235
1236                         buf_offset = 0;
1237                         buf_avail  = buf_len;
1238
1239                         PRINT_PACKET(dev, (uintptr_t)buf_addr,
1240                                         (uint32_t)buf_avail, 0);
1241                 }
1242
1243                 /*
1244                  * This mbuf reaches to its end, get a new one
1245                  * to hold more data.
1246                  */
1247                 if (mbuf_avail == 0) {
1248                         cur = rte_pktmbuf_alloc(mbuf_pool);
1249                         if (unlikely(cur == NULL)) {
1250                                 RTE_LOG(ERR, VHOST_DATA, "Failed to "
1251                                         "allocate memory for mbuf.\n");
1252                                 error = -1;
1253                                 goto out;
1254                         }
1255                         if (unlikely(dev->dequeue_zero_copy))
1256                                 rte_mbuf_refcnt_update(cur, 1);
1257
1258                         prev->next = cur;
1259                         prev->data_len = mbuf_offset;
1260                         m->nb_segs += 1;
1261                         m->pkt_len += mbuf_offset;
1262                         prev = cur;
1263
1264                         mbuf_offset = 0;
1265                         mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
1266                 }
1267         }
1268
1269         prev->data_len = mbuf_offset;
1270         m->pkt_len    += mbuf_offset;
1271
1272         if (hdr)
1273                 vhost_dequeue_offload(hdr, m);
1274
1275 out:
1276
1277         return error;
1278 }
1279
1280 static __rte_always_inline struct zcopy_mbuf *
1281 get_zmbuf(struct vhost_virtqueue *vq)
1282 {
1283         uint16_t i;
1284         uint16_t last;
1285         int tries = 0;
1286
1287         /* search [last_zmbuf_idx, zmbuf_size) */
1288         i = vq->last_zmbuf_idx;
1289         last = vq->zmbuf_size;
1290
1291 again:
1292         for (; i < last; i++) {
1293                 if (vq->zmbufs[i].in_use == 0) {
1294                         vq->last_zmbuf_idx = i + 1;
1295                         vq->zmbufs[i].in_use = 1;
1296                         return &vq->zmbufs[i];
1297                 }
1298         }
1299
1300         tries++;
1301         if (tries == 1) {
1302                 /* search [0, last_zmbuf_idx) */
1303                 i = 0;
1304                 last = vq->last_zmbuf_idx;
1305                 goto again;
1306         }
1307
1308         return NULL;
1309 }
1310
1311 static __rte_always_inline bool
1312 mbuf_is_consumed(struct rte_mbuf *m)
1313 {
1314         while (m) {
1315                 if (rte_mbuf_refcnt_read(m) > 1)
1316                         return false;
1317                 m = m->next;
1318         }
1319
1320         return true;
1321 }
1322
1323 static __rte_always_inline void
1324 restore_mbuf(struct rte_mbuf *m)
1325 {
1326         uint32_t mbuf_size, priv_size;
1327
1328         while (m) {
1329                 priv_size = rte_pktmbuf_priv_size(m->pool);
1330                 mbuf_size = sizeof(struct rte_mbuf) + priv_size;
1331                 /* start of buffer is after mbuf structure and priv data */
1332
1333                 m->buf_addr = (char *)m + mbuf_size;
1334                 m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
1335                 m = m->next;
1336         }
1337 }
1338
1339 static __rte_always_inline uint16_t
1340 virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
1341         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1342 {
1343         uint16_t i;
1344         uint16_t free_entries;
1345
1346         if (unlikely(dev->dequeue_zero_copy)) {
1347                 struct zcopy_mbuf *zmbuf, *next;
1348                 int nr_updated = 0;
1349
1350                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1351                      zmbuf != NULL; zmbuf = next) {
1352                         next = TAILQ_NEXT(zmbuf, next);
1353
1354                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1355                                 update_shadow_used_ring_split(vq,
1356                                                 zmbuf->desc_idx, 0);
1357                                 nr_updated += 1;
1358
1359                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1360                                 restore_mbuf(zmbuf->mbuf);
1361                                 rte_pktmbuf_free(zmbuf->mbuf);
1362                                 put_zmbuf(zmbuf);
1363                                 vq->nr_zmbuf -= 1;
1364                         }
1365                 }
1366
1367                 flush_shadow_used_ring_split(dev, vq);
1368                 vhost_vring_call_split(dev, vq);
1369         }
1370
1371         rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
1372
1373         free_entries = *((volatile uint16_t *)&vq->avail->idx) -
1374                         vq->last_avail_idx;
1375         if (free_entries == 0)
1376                 return 0;
1377
1378         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1379
1380         count = RTE_MIN(count, MAX_PKT_BURST);
1381         count = RTE_MIN(count, free_entries);
1382         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1383                         dev->vid, count);
1384
1385         for (i = 0; i < count; i++) {
1386                 struct buf_vector buf_vec[BUF_VECTOR_MAX];
1387                 uint16_t head_idx, dummy_len;
1388                 uint16_t nr_vec = 0;
1389                 int err;
1390
1391                 if (unlikely(fill_vec_buf_split(dev, vq,
1392                                                 vq->last_avail_idx + i,
1393                                                 &nr_vec, buf_vec,
1394                                                 &head_idx, &dummy_len,
1395                                                 VHOST_ACCESS_RO) < 0))
1396                         break;
1397
1398                 if (likely(dev->dequeue_zero_copy == 0))
1399                         update_shadow_used_ring_split(vq, head_idx, 0);
1400
1401                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
1402
1403                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1404                 if (unlikely(pkts[i] == NULL)) {
1405                         RTE_LOG(ERR, VHOST_DATA,
1406                                 "Failed to allocate memory for mbuf.\n");
1407                         break;
1408                 }
1409
1410                 err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
1411                                 mbuf_pool);
1412                 if (unlikely(err)) {
1413                         rte_pktmbuf_free(pkts[i]);
1414                         break;
1415                 }
1416
1417                 if (unlikely(dev->dequeue_zero_copy)) {
1418                         struct zcopy_mbuf *zmbuf;
1419
1420                         zmbuf = get_zmbuf(vq);
1421                         if (!zmbuf) {
1422                                 rte_pktmbuf_free(pkts[i]);
1423                                 break;
1424                         }
1425                         zmbuf->mbuf = pkts[i];
1426                         zmbuf->desc_idx = head_idx;
1427
1428                         /*
1429                          * Pin lock the mbuf; we will check later to see
1430                          * whether the mbuf is freed (when we are the last
1431                          * user) or not. If that's the case, we then could
1432                          * update the used ring safely.
1433                          */
1434                         rte_mbuf_refcnt_update(pkts[i], 1);
1435
1436                         vq->nr_zmbuf += 1;
1437                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1438                 }
1439         }
1440         vq->last_avail_idx += i;
1441
1442         if (likely(dev->dequeue_zero_copy == 0)) {
1443                 do_data_copy_dequeue(vq);
1444                 if (unlikely(i < count))
1445                         vq->shadow_used_idx = i;
1446                 flush_shadow_used_ring_split(dev, vq);
1447                 vhost_vring_call_split(dev, vq);
1448         }
1449
1450         return i;
1451 }
1452
1453 static __rte_always_inline uint16_t
1454 virtio_dev_tx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
1455         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1456 {
1457         uint16_t i;
1458
1459         rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]);
1460
1461         if (unlikely(dev->dequeue_zero_copy)) {
1462                 struct zcopy_mbuf *zmbuf, *next;
1463
1464                 for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
1465                      zmbuf != NULL; zmbuf = next) {
1466                         next = TAILQ_NEXT(zmbuf, next);
1467
1468                         if (mbuf_is_consumed(zmbuf->mbuf)) {
1469                                 update_shadow_used_ring_packed(vq,
1470                                                 zmbuf->desc_idx,
1471                                                 0,
1472                                                 zmbuf->desc_count);
1473
1474                                 TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
1475                                 restore_mbuf(zmbuf->mbuf);
1476                                 rte_pktmbuf_free(zmbuf->mbuf);
1477                                 put_zmbuf(zmbuf);
1478                                 vq->nr_zmbuf -= 1;
1479                         }
1480                 }
1481
1482                 flush_shadow_used_ring_packed(dev, vq);
1483                 vhost_vring_call_packed(dev, vq);
1484         }
1485
1486         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
1487
1488         count = RTE_MIN(count, MAX_PKT_BURST);
1489         VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
1490                         dev->vid, count);
1491
1492         for (i = 0; i < count; i++) {
1493                 struct buf_vector buf_vec[BUF_VECTOR_MAX];
1494                 uint16_t buf_id, dummy_len;
1495                 uint16_t desc_count, nr_vec = 0;
1496                 int err;
1497
1498                 if (unlikely(fill_vec_buf_packed(dev, vq,
1499                                                 vq->last_avail_idx, &desc_count,
1500                                                 buf_vec, &nr_vec,
1501                                                 &buf_id, &dummy_len,
1502                                                 VHOST_ACCESS_RW) < 0))
1503                         break;
1504
1505                 if (likely(dev->dequeue_zero_copy == 0))
1506                         update_shadow_used_ring_packed(vq, buf_id, 0,
1507                                         desc_count);
1508
1509                 rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
1510
1511                 pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
1512                 if (unlikely(pkts[i] == NULL)) {
1513                         RTE_LOG(ERR, VHOST_DATA,
1514                                 "Failed to allocate memory for mbuf.\n");
1515                         break;
1516                 }
1517
1518                 err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
1519                                 mbuf_pool);
1520                 if (unlikely(err)) {
1521                         rte_pktmbuf_free(pkts[i]);
1522                         break;
1523                 }
1524
1525                 if (unlikely(dev->dequeue_zero_copy)) {
1526                         struct zcopy_mbuf *zmbuf;
1527
1528                         zmbuf = get_zmbuf(vq);
1529                         if (!zmbuf) {
1530                                 rte_pktmbuf_free(pkts[i]);
1531                                 break;
1532                         }
1533                         zmbuf->mbuf = pkts[i];
1534                         zmbuf->desc_idx = buf_id;
1535                         zmbuf->desc_count = desc_count;
1536
1537                         /*
1538                          * Pin lock the mbuf; we will check later to see
1539                          * whether the mbuf is freed (when we are the last
1540                          * user) or not. If that's the case, we then could
1541                          * update the used ring safely.
1542                          */
1543                         rte_mbuf_refcnt_update(pkts[i], 1);
1544
1545                         vq->nr_zmbuf += 1;
1546                         TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
1547                 }
1548
1549                 vq->last_avail_idx += desc_count;
1550                 if (vq->last_avail_idx >= vq->size) {
1551                         vq->last_avail_idx -= vq->size;
1552                         vq->avail_wrap_counter ^= 1;
1553                 }
1554         }
1555
1556         if (likely(dev->dequeue_zero_copy == 0)) {
1557                 do_data_copy_dequeue(vq);
1558                 if (unlikely(i < count))
1559                         vq->shadow_used_idx = i;
1560                 flush_shadow_used_ring_packed(dev, vq);
1561                 vhost_vring_call_packed(dev, vq);
1562         }
1563
1564         return i;
1565 }
1566
1567 uint16_t
1568 rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
1569         struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
1570 {
1571         struct virtio_net *dev;
1572         struct rte_mbuf *rarp_mbuf = NULL;
1573         struct vhost_virtqueue *vq;
1574
1575         dev = get_device(vid);
1576         if (!dev)
1577                 return 0;
1578
1579         if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
1580                 RTE_LOG(ERR, VHOST_DATA,
1581                         "(%d) %s: built-in vhost net backend is disabled.\n",
1582                         dev->vid, __func__);
1583                 return 0;
1584         }
1585
1586         if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
1587                 RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
1588                         dev->vid, __func__, queue_id);
1589                 return 0;
1590         }
1591
1592         vq = dev->virtqueue[queue_id];
1593
1594         if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
1595                 return 0;
1596
1597         if (unlikely(vq->enabled == 0)) {
1598                 count = 0;
1599                 goto out_access_unlock;
1600         }
1601
1602         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1603                 vhost_user_iotlb_rd_lock(vq);
1604
1605         if (unlikely(vq->access_ok == 0))
1606                 if (unlikely(vring_translate(dev, vq) < 0)) {
1607                         count = 0;
1608                         goto out;
1609                 }
1610
1611         /*
1612          * Construct a RARP broadcast packet, and inject it to the "pkts"
1613          * array, to looks like that guest actually send such packet.
1614          *
1615          * Check user_send_rarp() for more information.
1616          *
1617          * broadcast_rarp shares a cacheline in the virtio_net structure
1618          * with some fields that are accessed during enqueue and
1619          * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
1620          * result in false sharing between enqueue and dequeue.
1621          *
1622          * Prevent unnecessary false sharing by reading broadcast_rarp first
1623          * and only performing cmpset if the read indicates it is likely to
1624          * be set.
1625          */
1626         if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
1627                         rte_atomic16_cmpset((volatile uint16_t *)
1628                                 &dev->broadcast_rarp.cnt, 1, 0))) {
1629
1630                 rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
1631                 if (rarp_mbuf == NULL) {
1632                         RTE_LOG(ERR, VHOST_DATA,
1633                                 "Failed to make RARP packet.\n");
1634                         return 0;
1635                 }
1636                 count -= 1;
1637         }
1638
1639         if (vq_is_packed(dev))
1640                 count = virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count);
1641         else
1642                 count = virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count);
1643
1644 out:
1645         if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
1646                 vhost_user_iotlb_rd_unlock(vq);
1647
1648 out_access_unlock:
1649         rte_spinlock_unlock(&vq->access_lock);
1650
1651         if (unlikely(rarp_mbuf != NULL)) {
1652                 /*
1653                  * Inject it to the head of "pkts" array, so that switch's mac
1654                  * learning table will get updated first.
1655                  */
1656                 memmove(&pkts[1], pkts, count * sizeof(struct rte_mbuf *));
1657                 pkts[0] = rarp_mbuf;
1658                 count += 1;
1659         }
1660
1661         return count;
1662 }