doc: add GSO programmer's guide
[dpdk.git] / doc / guides / prog_guide / index.rst
index 8d86dd4..b5ad6b8 100644 (file)
@@ -1,5 +1,5 @@
 ..  BSD LICENSE
 ..  BSD LICENSE
-    Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+    Copyright(c) 2010-2017 Intel Corporation. All rights reserved.
     All rights reserved.
 
     Redistribution and use in source and binary forms, with or without
     All rights reserved.
 
     Redistribution and use in source and binary forms, with or without
 Programmer's Guide
 ==================
 
 Programmer's Guide
 ==================
 
-|today|
-
-
-**Contents**
-
 .. toctree::
     :maxdepth: 3
     :numbered:
 .. toctree::
     :maxdepth: 3
     :numbered:
@@ -43,37 +38,42 @@ Programmer's Guide
     intro
     overview
     env_abstraction_layer
     intro
     overview
     env_abstraction_layer
-    malloc_lib
+    service_cores
     ring_lib
     mempool_lib
     mbuf_lib
     poll_mode_drv
     ring_lib
     mempool_lib
     mbuf_lib
     poll_mode_drv
-    i40e_ixgbe_igb_virt_func_drv
-    driver_vm_emul_dev
-    ivshmem_lib
-    poll_mode_drv_emulated_virtio_nic
-    poll_mode_drv_paravirtual_vmxnets_nic
-    intel_dpdk_xen_based_packet_switch_sol
-    libpcap_ring_based_poll_mode_drv
+    rte_flow
+    traffic_management
+    cryptodev_lib
     link_bonding_poll_mode_drv_lib
     timer_lib
     hash_lib
     link_bonding_poll_mode_drv_lib
     timer_lib
     hash_lib
+    efd_lib
+    member_lib
     lpm_lib
     lpm6_lib
     packet_distrib_lib
     lpm_lib
     lpm6_lib
     packet_distrib_lib
+    reorder_lib
     ip_fragment_reassembly_lib
     ip_fragment_reassembly_lib
+    generic_receive_offload_lib
+    generic_segmentation_offload_lib
+    pdump_lib
     multi_proc_support
     kernel_nic_interface
     multi_proc_support
     kernel_nic_interface
-    thread_safety_intel_dpdk_functions
+    thread_safety_dpdk_functions
+    eventdev
     qos_framework
     power_man
     packet_classif_access_ctrl
     packet_framework
     vhost_lib
     qos_framework
     power_man
     packet_classif_access_ctrl
     packet_framework
     vhost_lib
+    metrics_lib
+    port_hotplug_framework
     source_org
     dev_kit_build_system
     dev_kit_root_make_help
     source_org
     dev_kit_build_system
     dev_kit_root_make_help
-    extend_intel_dpdk
+    extend_dpdk
     build_app
     ext_app_lib_make_help
     perf_opt_guidelines
     build_app
     ext_app_lib_make_help
     perf_opt_guidelines
@@ -84,152 +84,199 @@ Programmer's Guide
 
 **Figures**
 
 
 **Figures**
 
-:ref:`Figure 1. Core Components Architecture <pg_figure_1>`
+:numref:`figure_architecture-overview` :ref:`figure_architecture-overview`
+
+:numref:`figure_linuxapp_launch` :ref:`figure_linuxapp_launch`
+
+:numref:`figure_malloc_heap` :ref:`figure_malloc_heap`
+
+:numref:`figure_ring1` :ref:`figure_ring1`
+
+:numref:`figure_ring-enqueue1` :ref:`figure_ring-enqueue1`
+
+:numref:`figure_ring-enqueue2` :ref:`figure_ring-enqueue2`
+
+:numref:`figure_ring-enqueue3` :ref:`figure_ring-enqueue3`
+
+:numref:`figure_ring-dequeue1` :ref:`figure_ring-dequeue1`
+
+:numref:`figure_ring-dequeue2` :ref:`figure_ring-dequeue2`
+
+:numref:`figure_ring-dequeue3` :ref:`figure_ring-dequeue3`
+
+:numref:`figure_ring-mp-enqueue1` :ref:`figure_ring-mp-enqueue1`
+
+:numref:`figure_ring-mp-enqueue2` :ref:`figure_ring-mp-enqueue2`
 
 
-:ref:`Figure 2. EAL Initialization in a Linux Application Environment <pg_figure_2>`
+:numref:`figure_ring-mp-enqueue3` :ref:`figure_ring-mp-enqueue3`
 
 
-:ref:`Figure 3. Example of a malloc heap and malloc elements within the malloc library <pg_figure_3>`
+:numref:`figure_ring-mp-enqueue4` :ref:`figure_ring-mp-enqueue4`
 
 
-:ref:`Figure 4. Ring Structure <pg_figure_4>`
+:numref:`figure_ring-mp-enqueue5` :ref:`figure_ring-mp-enqueue5`
 
 
-:ref:`Figure 5. Two Channels and Quad-ranked DIMM Example <pg_figure_5>`
+:numref:`figure_ring-modulo1` :ref:`figure_ring-modulo1`
 
 
-:ref:`Figure 6. Three Channels and Two Dual-ranked DIMM Example <pg_figure_6>`
+:numref:`figure_ring-modulo2` :ref:`figure_ring-modulo2`
 
 
-:ref:`Figure 7. A mempool in Memory with its Associated Ring <pg_figure_7>`
+:numref:`figure_memory-management` :ref:`figure_memory-management`
 
 
-:ref:`Figure 8. An mbuf with One Segment <pg_figure_8>`
+:numref:`figure_memory-management2` :ref:`figure_memory-management2`
 
 
-:ref:`Figure 9. An mbuf with Three Segments <pg_figure_9>`
+:numref:`figure_mempool` :ref:`figure_mempool`
 
 
-:ref:`Figure 10. Virtualization for a Single Port NIC in SR-IOV Mode <pg_figure_10>`
+:numref:`figure_mbuf1` :ref:`figure_mbuf1`
 
 
-:ref:`Figure 11. Performance Benchmark Setup <pg_figure_11>`
+:numref:`figure_mbuf2` :ref:`figure_mbuf2`
 
 
-:ref:`Figure 12. Fast Host-based Packet Processing <pg_figure_12>`
+:numref:`figure_multi_process_memory` :ref:`figure_multi_process_memory`
 
 
-:ref:`Figure 13. Inter-VM Communication <pg_figure_13>`
+:numref:`figure_kernel_nic_intf` :ref:`figure_kernel_nic_intf`
 
 
-:ref:`Figure 14. Host2VM Communication Example Using kni vhost Back End <pg_figure_14>`
+:numref:`figure_pkt_flow_kni` :ref:`figure_pkt_flow_kni`
 
 
-:ref:`Figure 15. Host2VM Communication Example Using qemu vhost Back End <pg_figure_15>`
 
 
-:ref:`Figure 16. Memory Sharing inthe Intel® DPDK Multi-process Sample Application <pg_figure_16>`
+:numref:`figure_pkt_proc_pipeline_qos` :ref:`figure_pkt_proc_pipeline_qos`
 
 
-:ref:`Figure 17. Components of an Intel® DPDK KNI Application <pg_figure_17>`
+:numref:`figure_hier_sched_blk` :ref:`figure_hier_sched_blk`
 
 
-:ref:`Figure 18. Packet Flow via mbufs in the Intel DPDK® KNI <pg_figure_18>`
+:numref:`figure_sched_hier_per_port` :ref:`figure_sched_hier_per_port`
 
 
-:ref:`Figure 19. vHost-net Architecture Overview <pg_figure_19>`
+:numref:`figure_data_struct_per_port` :ref:`figure_data_struct_per_port`
 
 
-:ref:`Figure 20. KNI Traffic Flow <pg_figure_20>`
+:numref:`figure_prefetch_pipeline` :ref:`figure_prefetch_pipeline`
 
 
-:ref:`Figure 21. Complex Packet Processing Pipeline with QoS Support <pg_figure_21>`
+:numref:`figure_pipe_prefetch_sm` :ref:`figure_pipe_prefetch_sm`
 
 
-:ref:`Figure 22. Hierarchical Scheduler Block Internal Diagram <pg_figure_22>`
+:numref:`figure_blk_diag_dropper` :ref:`figure_blk_diag_dropper`
 
 
-:ref:`Figure 23. Scheduling Hierarchy per Port <pg_figure_23>`
+:numref:`figure_flow_tru_droppper` :ref:`figure_flow_tru_droppper`
 
 
-:ref:`Figure 24. Internal Data Structures per Port <pg_figure_24>`
+:numref:`figure_ex_data_flow_tru_dropper` :ref:`figure_ex_data_flow_tru_dropper`
 
 
-:ref:`Figure 25. Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation <pg_figure_25>`
+:numref:`figure_pkt_drop_probability` :ref:`figure_pkt_drop_probability`
 
 
-:ref:`Figure 26. Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue Operation <pg_figure_26>`
+:numref:`figure_drop_probability_graph` :ref:`figure_drop_probability_graph`
 
 
-:ref:`Figure 27. High-level Block Diagram of the Intel® DPDK Dropper <pg_figure_27>`
+:numref:`figure_figure32` :ref:`figure_figure32`
 
 
-:ref:`Figure 28. Flow Through the Dropper <pg_figure_28>`
+:numref:`figure_figure33` :ref:`figure_figure33`
 
 
-:ref:`Figure 29. Example Data Flow Through Dropper <pg_figure_29>`
+:numref:`figure_figure34` :ref:`figure_figure34`
 
 
-:ref:`Figure 30. Packet Drop Probability for a Given RED Configuration <pg_figure_30>`
+:numref:`figure_figure35` :ref:`figure_figure35`
 
 
-:ref:`Figure 31. Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using a Factor 1 (Blue Curve) and a Factor 2 (Red Curve) <pg_figure_31>`
+:numref:`figure_figure37` :ref:`figure_figure37`
 
 
-:ref:`Figure 32. Example of packet processing pipeline. The input ports 0 and 1 are connected with the output ports 0, 1 and 2 through tables 0 and 1. <pg_figure_32>`
+:numref:`figure_figure38` :ref:`figure_figure38`
 
 
-:ref:`Figure 33. Sequence of steps for hash table operations in packet processing context <pg_figure_33>`
+:numref:`figure_figure39` :ref:`figure_figure39`
 
 
-:ref:`Figure 34. Data structures for configurable key size hash tables <pg_figure_34>`
+:numref:`figure_efd1` :ref:`figure_efd1`
 
 
-:ref:`Figure 35. Bucket search pipeline for key lookup operation (configurable key size hash tables) <pg_figure_35>`
+:numref:`figure_efd2` :ref:`figure_efd2`
 
 
-:ref:`Figure 36. Pseudo-code for match, match_many and match_pos <pg_figure_36>`
+:numref:`figure_efd3` :ref:`figure_efd3`
 
 
-:ref:`Figure 37. Data structures for 8-byte key hash tables <pg_figure_37>`
+:numref:`figure_efd4` :ref:`figure_efd4`
 
 
-:ref:`Figure 38. Data structures for 16-byte key hash tables <pg_figure_38>`
+:numref:`figure_efd5` :ref:`figure_efd5`
 
 
-:ref:`Figure 39. Bucket search pipeline for key lookup operation (single key size hash tables) <pg_figure_39>`
+:numref:`figure_efd6` :ref:`figure_efd6`
+
+:numref:`figure_efd7` :ref:`figure_efd7`
+
+:numref:`figure_efd8` :ref:`figure_efd8`
+
+:numref:`figure_efd9` :ref:`figure_efd9`
+
+:numref:`figure_efd10` :ref:`figure_efd10`
+
+:numref:`figure_efd11` :ref:`figure_efd11`
+
+:numref:`figure_membership1` :ref:`figure_membership1`
+
+:numref:`figure_membership2` :ref:`figure_membership2`
+
+:numref:`figure_membership3` :ref:`figure_membership3`
+
+:numref:`figure_membership4` :ref:`figure_membership4`
+
+:numref:`figure_membership5` :ref:`figure_membership5`
+
+:numref:`figure_membership6` :ref:`figure_membership6`
+
+:numref:`figure_membership7` :ref:`figure_membership7`
 
 **Tables**
 
 
 **Tables**
 
-:ref:`Table 1. Packet Processing Pipeline Implementing QoS <pg_table_1>`
+:numref:`table_qos_1` :ref:`table_qos_1`
+
+:numref:`table_qos_2` :ref:`table_qos_2`
 
 
-:ref:`Table 2. Infrastructure Blocks Used by the Packet Processing Pipeline <pg_table_2>`
+:numref:`table_qos_3` :ref:`table_qos_3`
 
 
-:ref:`Table 3. Port Scheduling Hierarchy <pg_table_3>`
+:numref:`table_qos_4` :ref:`table_qos_4`
 
 
-:ref:`Table 4. Scheduler Internal Data Structures per Port <pg_table_4>`
+:numref:`table_qos_5` :ref:`table_qos_5`
 
 
-:ref:`Table 5. Ethernet Frame Overhead Fields <pg_table_5>`
+:numref:`table_qos_6` :ref:`table_qos_6`
 
 
-:ref:`Table 6. Token Bucket Generic Operations <pg_table_6>`
+:numref:`table_qos_7` :ref:`table_qos_7`
 
 
-:ref:`Table 7. Token Bucket Generic Parameters <pg_table_7>`
+:numref:`table_qos_8` :ref:`table_qos_8`
 
 
-:ref:`Table 8. Token Bucket Persistent Data Structure <pg_table_8>`
+:numref:`table_qos_9` :ref:`table_qos_9`
 
 
-:ref:`Table 9. Token Bucket Operations <pg_table_9>`
+:numref:`table_qos_10` :ref:`table_qos_10`
 
 
-:ref:`Table 10. Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure <pg_table_10>`
+:numref:`table_qos_11` :ref:`table_qos_11`
 
 
-:ref:`Table 11. Subport/Pipe Traffic Class Upper Limit Enforcement Operations <pg_table_11>`
+:numref:`table_qos_12` :ref:`table_qos_12`
 
 
-:ref:`Table 12. Weighted Round Robin (WRR) <pg_table_12>`
+:numref:`table_qos_13` :ref:`table_qos_13`
 
 
-:ref:`Table 13. Subport Traffic Class Oversubscription <pg_table_13>`
+:numref:`table_qos_14` :ref:`table_qos_14`
 
 
-:ref:`Table 14. Watermark Propagation from Subport Level to Member Pipes at the Beginning of Each Traffic Class Upper Limit Enforcement Period <pg_table_14>`
+:numref:`table_qos_15` :ref:`table_qos_15`
 
 
-:ref:`Table 15. Watermark Calculation <pg_table_15>`
+:numref:`table_qos_16` :ref:`table_qos_16`
 
 
-:ref:`Table 16. RED Configuration Parameters <pg_table_16>`
+:numref:`table_qos_17` :ref:`table_qos_17`
 
 
-:ref:`Table 17. Relative Performance of Alternative Approaches <pg_table_17>`
+:numref:`table_qos_18` :ref:`table_qos_18`
 
 
-:ref:`Table 18. RED Configuration Corresponding to RED Configuration File <pg_table_18>`
+:numref:`table_qos_19` :ref:`table_qos_19`
 
 
-:ref:`Table 19. Port types <pg_table_19>`
+:numref:`table_qos_20` :ref:`table_qos_20`
 
 
-:ref:`Table 20. Port abstract interface <pg_table_20>`
+:numref:`table_qos_21` :ref:`table_qos_21`
 
 
-:ref:`Table 21. Table types <pg_table_21>`
+:numref:`table_qos_22` :ref:`table_qos_22`
 
 
-:ref:`Table 29. Table Abstract Interface <pg_table_29_1>`
+:numref:`table_qos_23` :ref:`table_qos_23`
 
 
-:ref:`Table 22. Configuration parameters common for all hash table types <pg_table_22>`
+:numref:`table_qos_24` :ref:`table_qos_24`
 
 
-:ref:`Table 23. Configuration parameters specific to extendible bucket hash table <pg_table_23>`
+:numref:`table_qos_25` :ref:`table_qos_25`
 
 
-:ref:`Table 24. Configuration parameters specific to pre-computed key signature hash table <pg_table_24>`
+:numref:`table_qos_26` :ref:`table_qos_26`
 
 
-:ref:`Table 25. The main large data structures (arrays) used for configurable key size hash tables <pg_table_25>`
+:numref:`table_qos_27` :ref:`table_qos_27`
 
 
-:ref:`Table 26. Field description for bucket array entry (configurable key size hash tables) <pg_table_26>`
+:numref:`table_qos_28` :ref:`table_qos_28`
 
 
-:ref:`Table 27. Description of the bucket search pipeline stages (configurable key size hash tables) <pg_table_27>`
+:numref:`table_qos_29` :ref:`table_qos_29`
 
 
-:ref:`Table 28. Lookup tables for match, match_many, match_pos <pg_table_28>`
+:numref:`table_qos_30` :ref:`table_qos_30`
 
 
-:ref:`Table 29. Collapsed lookup tables for match, match_many and match_pos <pg_table_29>`
+:numref:`table_qos_31` :ref:`table_qos_31`
 
 
-:ref:`Table 30. The main large data structures (arrays) used for 8-byte and 16-byte key size hash tables <pg_table_30>`
+:numref:`table_qos_32` :ref:`table_qos_32`
 
 
-:ref:`Table 31. Field description for bucket array entry (8-byte and 16-byte key hash tables) <pg_table_31>`
+:numref:`table_qos_33` :ref:`table_qos_33`
 
 
-:ref:`Table 32. Description of the bucket search pipeline stages (8-byte and 16-byte key hash tables) <pg_table_32>`
+:numref:`table_qos_34` :ref:`table_qos_34`
 
 
-:ref:`Table 33. Next hop actions (reserved) <pg_table_33>`
+:numref:`table_hash_lib_1` :ref:`table_hash_lib_1`
 
 
-:ref:`Table 34. User action examples <pg_table_34>`
+:numref:`table_hash_lib_2` :ref:`table_hash_lib_2`