baseband/turbo_sw: allow to build without SDK dependency
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
index 35d2827..94aa536 100644 (file)
@@ -9,16 +9,18 @@
 #include <rte_malloc.h>
 #include <rte_ring.h>
 #include <rte_kvargs.h>
+#include <rte_cycles.h>
 
 #include <rte_bbdev.h>
 #include <rte_bbdev_pmd.h>
 
+#ifdef RTE_BBDEV_SDK_AVX2
 #include <phy_turbo.h>
 #include <phy_crc.h>
 #include <phy_rate_match.h>
-#include <divide.h>
+#endif
 
-#define DRIVER_NAME turbo_sw
+#define DRIVER_NAME baseband_turbo_sw
 
 /* Turbo SW PMD logging ID */
 static int bbdev_turbo_sw_logtype;
@@ -32,11 +34,9 @@ static int bbdev_turbo_sw_logtype;
        rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
                ##__VA_ARGS__)
 
-/* Number of columns in sub-block interleaver (36.212, section 5.1.4.1.1) */
-#define C_SUBBLOCK (32)
-#define MAX_TB_SIZE (391656)
-#define MAX_CB_SIZE (6144)
-#define MAX_KW (18528)
+#define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
+#define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
+#define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
 
 /* private data structure */
 struct bbdev_private {
@@ -84,13 +84,26 @@ struct turbo_sw_queue {
        enum rte_bbdev_op_type type;
 } __rte_cache_aligned;
 
+#ifdef RTE_BBDEV_SDK_AVX2
+static inline char *
+mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
+{
+       if (unlikely(len > rte_pktmbuf_tailroom(m)))
+               return NULL;
+
+       char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
+       m->data_len = (uint16_t)(m->data_len + len);
+       m_head->pkt_len  = (m_head->pkt_len + len);
+       return tail;
+}
+
 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
 static inline int32_t
 compute_idx(uint16_t k)
 {
        int32_t result = 0;
 
-       if (k < 40 || k > MAX_CB_SIZE)
+       if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
                return -1;
 
        if (k > 2048) {
@@ -117,6 +130,7 @@ compute_idx(uint16_t k)
 
        return result;
 }
+#endif
 
 /* Read flag value 0/1 from bitmap */
 static inline bool
@@ -132,6 +146,7 @@ info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
        struct bbdev_private *internals = dev->data->dev_private;
 
        static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
+#ifdef RTE_BBDEV_SDK_AVX2
                {
                        .type = RTE_BBDEV_OP_TURBO_DEC,
                        .cap.turbo_dec = {
@@ -140,7 +155,9 @@ info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
                                        RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
                                        RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
                                        RTE_BBDEV_TURBO_CRC_TYPE_24B |
+                                       RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
                                        RTE_BBDEV_TURBO_EARLY_TERMINATION,
+                               .max_llr_modulus = 16,
                                .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
                                .num_buffers_hard_out =
                                                RTE_BBDEV_MAX_CODE_BLOCKS,
@@ -159,6 +176,7 @@ info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
                                .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
                        }
                },
+#endif
                RTE_BBDEV_END_OF_CAPABILITIES_LIST()
        };
 
@@ -166,7 +184,12 @@ info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
                .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
        };
 
+#ifdef RTE_BBDEV_SDK_AVX2
        static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
+       dev_info->cpu_flag_reqs = &cpu_flag;
+#else
+       dev_info->cpu_flag_reqs = NULL;
+#endif
 
        default_queue_conf.socket = dev->data->socket_id;
 
@@ -174,10 +197,10 @@ info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
        dev_info->max_num_queues = internals->max_nb_queues;
        dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
        dev_info->hardware_accelerated = false;
-       dev_info->max_queue_priority = 0;
+       dev_info->max_dl_queue_priority = 0;
+       dev_info->max_ul_queue_priority = 0;
        dev_info->default_queue_conf = default_queue_conf;
        dev_info->capabilities = bbdev_capabilities;
-       dev_info->cpu_flag_reqs = &cpu_flag;
        dev_info->min_alignment = 64;
 
        rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
@@ -225,7 +248,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
        }
 
        /* Allocate memory for encoder output. */
-       ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u",
+       ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
                        dev->data->dev_id, q_id);
        if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
                rte_bbdev_log(ERR,
@@ -234,7 +257,8 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
                return -ENAMETOOLONG;
        }
        q->enc_out = rte_zmalloc_socket(name,
-                       ((MAX_TB_SIZE >> 3) + 3) * sizeof(*q->enc_out) * 3,
+                       ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
+                       sizeof(*q->enc_out) * 3,
                        RTE_CACHE_LINE_SIZE, queue_conf->socket);
        if (q->enc_out == NULL) {
                rte_bbdev_log(ERR,
@@ -244,7 +268,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
 
        /* Allocate memory for rate matching output. */
        ret = snprintf(name, RTE_RING_NAMESIZE,
-                       RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id,
+                       RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
                        q_id);
        if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
                rte_bbdev_log(ERR,
@@ -253,7 +277,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
                return -ENAMETOOLONG;
        }
        q->enc_in = rte_zmalloc_socket(name,
-                       (MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
+                       (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
                        RTE_CACHE_LINE_SIZE, queue_conf->socket);
        if (q->enc_in == NULL) {
                rte_bbdev_log(ERR,
@@ -271,7 +295,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
                return -ENAMETOOLONG;
        }
        q->ag = rte_zmalloc_socket(name,
-                       MAX_CB_SIZE * 10 * sizeof(*q->ag),
+                       RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
                        RTE_CACHE_LINE_SIZE, queue_conf->socket);
        if (q->ag == NULL) {
                rte_bbdev_log(ERR,
@@ -289,7 +313,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
                return -ENAMETOOLONG;
        }
        q->code_block = rte_zmalloc_socket(name,
-                       (6144 >> 3) * sizeof(*q->code_block),
+                       RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
                        RTE_CACHE_LINE_SIZE, queue_conf->socket);
        if (q->code_block == NULL) {
                rte_bbdev_log(ERR,
@@ -299,7 +323,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
 
        /* Allocate memory for Deinterleaver input. */
        ret = snprintf(name, RTE_RING_NAMESIZE,
-                       RTE_STR(DRIVER_NAME)"_deint_input%u:%u",
+                       RTE_STR(DRIVER_NAME)"_de_i%u:%u",
                        dev->data->dev_id, q_id);
        if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
                rte_bbdev_log(ERR,
@@ -308,7 +332,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
                return -ENAMETOOLONG;
        }
        q->deint_input = rte_zmalloc_socket(name,
-                       MAX_KW * sizeof(*q->deint_input),
+                       DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
                        RTE_CACHE_LINE_SIZE, queue_conf->socket);
        if (q->deint_input == NULL) {
                rte_bbdev_log(ERR,
@@ -318,7 +342,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
 
        /* Allocate memory for Deinterleaver output. */
        ret = snprintf(name, RTE_RING_NAMESIZE,
-                       RTE_STR(DRIVER_NAME)"_deint_output%u:%u",
+                       RTE_STR(DRIVER_NAME)"_de_o%u:%u",
                        dev->data->dev_id, q_id);
        if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
                rte_bbdev_log(ERR,
@@ -327,7 +351,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
                return -ENAMETOOLONG;
        }
        q->deint_output = rte_zmalloc_socket(NULL,
-                       MAX_KW * sizeof(*q->deint_output),
+                       DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
                        RTE_CACHE_LINE_SIZE, queue_conf->socket);
        if (q->deint_output == NULL) {
                rte_bbdev_log(ERR,
@@ -337,7 +361,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
 
        /* Allocate memory for Adapter output. */
        ret = snprintf(name, RTE_RING_NAMESIZE,
-                       RTE_STR(DRIVER_NAME)"_adapter_output%u:%u",
+                       RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
                        dev->data->dev_id, q_id);
        if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
                rte_bbdev_log(ERR,
@@ -346,7 +370,7 @@ q_setup(struct rte_bbdev *dev, uint16_t q_id,
                return -ENAMETOOLONG;
        }
        q->adapter_output = rte_zmalloc_socket(NULL,
-                       MAX_CB_SIZE * 6 * sizeof(*q->adapter_output),
+                       ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
                        RTE_CACHE_LINE_SIZE, queue_conf->socket);
        if (q->adapter_output == NULL) {
                rte_bbdev_log(ERR,
@@ -395,6 +419,7 @@ static const struct rte_bbdev_ops pmd_ops = {
        .queue_release = q_release
 };
 
+#ifdef RTE_BBDEV_SDK_AVX2
 /* Checks if the encoder input buffer is correct.
  * Returns 0 if it's valid, -1 otherwise.
  */
@@ -414,9 +439,9 @@ is_enc_input_valid(const uint16_t k, const int32_t k_idx,
                return -1;
        }
 
-       if (k > MAX_CB_SIZE) {
+       if (k > RTE_BBDEV_MAX_CB_SIZE) {
                rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
-                               k, MAX_CB_SIZE);
+                               k, RTE_BBDEV_MAX_CB_SIZE);
                return -1;
        }
 
@@ -434,28 +459,31 @@ is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
                return -1;
        }
 
-       if (in_length - kw < 0) {
+       if (in_length < kw) {
                rte_bbdev_log(ERR,
                                "Mismatch between input length (%u) and kw (%u)",
                                in_length, kw);
                return -1;
        }
 
-       if (kw > MAX_KW) {
+       if (kw > RTE_BBDEV_MAX_KW) {
                rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
-                               kw, MAX_KW);
+                               kw, RTE_BBDEV_MAX_KW);
                return -1;
        }
 
        return 0;
 }
+#endif
 
 static inline void
 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
                uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
-               uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
-               uint16_t in_offset, uint16_t out_offset, uint16_t total_left)
+               uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
+               struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
+               uint16_t in_length, struct rte_bbdev_stats *q_stats)
 {
+#ifdef RTE_BBDEV_SDK_AVX2
        int ret;
        int16_t k_idx;
        uint16_t m;
@@ -468,6 +496,11 @@ process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
        struct bblib_turbo_encoder_response turbo_resp;
        struct bblib_rate_match_dl_request rm_req;
        struct bblib_rate_match_dl_response rm_resp;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       uint64_t start_time;
+#else
+       RTE_SET_USED(q_stats);
+#endif
 
        k_idx = compute_idx(k);
        in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
@@ -475,17 +508,17 @@ process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
        /* CRC24A (for TB) */
        if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
                (enc->code_block_mode == 1)) {
-               ret = is_enc_input_valid(k - 24, k_idx, total_left);
+               ret = is_enc_input_valid(k - 24, k_idx, in_length);
                if (ret != 0) {
                        op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                        return;
                }
                crc_req.data = in;
-               crc_req.len = (k - 24) >> 3;
-               /* Check if there is a room for CRC bits. If not use
+               crc_req.len = k - 24;
+               /* Check if there is a room for CRC bits if not use
                 * the temporary buffer.
                 */
-               if (rte_pktmbuf_append(m_in, 3) == NULL) {
+               if (mbuf_append(m_in, m_in, 3) == NULL) {
                        rte_memcpy(q->enc_in, in, (k - 24) >> 3);
                        in = q->enc_in;
                } else {
@@ -498,20 +531,27 @@ process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
                }
 
                crc_resp.data = in;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+               start_time = rte_rdtsc_precise();
+#endif
+               /* CRC24A generation */
                bblib_lte_crc24a_gen(&crc_req, &crc_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+               q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
        } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
                /* CRC24B */
-               ret = is_enc_input_valid(k - 24, k_idx, total_left);
+               ret = is_enc_input_valid(k - 24, k_idx, in_length);
                if (ret != 0) {
                        op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                        return;
                }
                crc_req.data = in;
-               crc_req.len = (k - 24) >> 3;
-               /* Check if there is a room for CRC bits. If this is the last
+               crc_req.len = k - 24;
+               /* Check if there is a room for CRC bits if this is the last
                 * CB in TB. If not use temporary buffer.
                 */
-               if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
+               if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
                        rte_memcpy(q->enc_in, in, (k - 24) >> 3);
                        in = q->enc_in;
                } else if (c - r > 1) {
@@ -524,9 +564,16 @@ process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
                }
 
                crc_resp.data = in;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+               start_time = rte_rdtsc_precise();
+#endif
+               /* CRC24B generation */
                bblib_lte_crc24b_gen(&crc_req, &crc_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+               q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
        } else {
-               ret = is_enc_input_valid(k, k_idx, total_left);
+               ret = is_enc_input_valid(k, k_idx, in_length);
                if (ret != 0) {
                        op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                        return;
@@ -547,7 +594,8 @@ process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
                out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
                out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
        } else {
-               out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
+               out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
+                               (k >> 3) * 3 + 2);
                if (out0 == NULL) {
                        op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                        rte_bbdev_log(ERR,
@@ -571,11 +619,19 @@ process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
        turbo_resp.output_win_0 = out0;
        turbo_resp.output_win_1 = out1;
        turbo_resp.output_win_2 = out2;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       start_time = rte_rdtsc_precise();
+#endif
+       /* Turbo encoding */
        if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
                op->status |= 1 << RTE_BBDEV_DRV_ERROR;
                rte_bbdev_log(ERR, "Turbo Encoder failed");
                return;
        }
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
 
        /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
        if (first_3_bytes != 0)
@@ -583,8 +639,16 @@ process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
 
        /* Rate-matching */
        if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
+               uint8_t mask_id;
+               /* Integer round up division by 8 */
+               uint16_t out_len = (e + 7) >> 3;
+               /* The mask array is indexed using E%8. E is an even number so
+                * there are only 4 possible values.
+                */
+               const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
+
                /* get output data starting address */
-               rm_out = (uint8_t *)rte_pktmbuf_append(m_out, (e >> 3));
+               rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
                if (rm_out == NULL) {
                        op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                        rte_bbdev_log(ERR,
@@ -624,17 +688,30 @@ process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
                rm_req.tin1 = out1;
                rm_req.tin2 = out2;
                rm_resp.output = rm_out;
-               rm_resp.OutputLen = (e >> 3);
+               rm_resp.OutputLen = out_len;
                if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
                        rm_req.bypass_rvidx = 1;
                else
                        rm_req.bypass_rvidx = 0;
 
+#ifdef RTE_BBDEV_OFFLOAD_COST
+               start_time = rte_rdtsc_precise();
+#endif
+               /* Rate-Matching */
                if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
                        op->status |= 1 << RTE_BBDEV_DRV_ERROR;
                        rte_bbdev_log(ERR, "Rate matching failed");
                        return;
                }
+#ifdef RTE_BBDEV_OFFLOAD_COST
+               q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
+
+               /* SW fills an entire last byte even if E%8 != 0. Clear the
+                * superfluous data bits for consistency with HW device.
+                */
+               mask_id = (e & 7) >> 1;
+               rm_out[out_len - 1] &= mask_out[mask_id];
                enc->output.length += rm_resp.OutputLen;
        } else {
                /* Rate matching is bypassed */
@@ -659,10 +736,27 @@ process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
                }
                *tmp_out = 0;
        }
+#else
+       RTE_SET_USED(q);
+       RTE_SET_USED(op);
+       RTE_SET_USED(r);
+       RTE_SET_USED(c);
+       RTE_SET_USED(k);
+       RTE_SET_USED(ncb);
+       RTE_SET_USED(e);
+       RTE_SET_USED(m_in);
+       RTE_SET_USED(m_out_head);
+       RTE_SET_USED(m_out);
+       RTE_SET_USED(in_offset);
+       RTE_SET_USED(out_offset);
+       RTE_SET_USED(in_length);
+       RTE_SET_USED(q_stats);
+#endif
 }
 
 static inline void
-enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
+enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
+               struct rte_bbdev_stats *queue_stats)
 {
        uint8_t c, r, crc24_bits = 0;
        uint16_t k, ncb;
@@ -672,14 +766,16 @@ enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
        uint16_t out_offset = enc->output.offset;
        struct rte_mbuf *m_in = enc->input.data;
        struct rte_mbuf *m_out = enc->output.data;
-       uint16_t total_left = enc->input.length;
+       struct rte_mbuf *m_out_head = enc->output.data;
+       uint32_t in_length, mbuf_total_left = enc->input.length;
+       uint16_t seg_total_left;
 
        /* Clear op status */
        op->status = 0;
 
-       if (total_left > MAX_TB_SIZE >> 3) {
+       if (mbuf_total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
                rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
-                               total_left, MAX_TB_SIZE);
+                               mbuf_total_left, RTE_BBDEV_MAX_TB_SIZE);
                op->status = 1 << RTE_BBDEV_DATA_ERROR;
                return;
        }
@@ -702,7 +798,10 @@ enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
                r = 0;
        }
 
-       while (total_left > 0 && r < c) {
+       while (mbuf_total_left > 0 && r < c) {
+
+               seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
+
                if (enc->code_block_mode == 0) {
                        k = (r < enc->tb_params.c_neg) ?
                                enc->tb_params.k_neg : enc->tb_params.k_pos;
@@ -716,21 +815,32 @@ enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
                        e = enc->cb_params.e;
                }
 
-               process_enc_cb(q, op, r, c, k, ncb, e, m_in,
-                               m_out, in_offset, out_offset, total_left);
+               process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
+                               m_out, in_offset, out_offset, seg_total_left,
+                               queue_stats);
                /* Update total_left */
-               total_left -= (k - crc24_bits) >> 3;
+               in_length = ((k - crc24_bits) >> 3);
+               mbuf_total_left -= in_length;
                /* Update offsets for next CBs (if exist) */
                in_offset += (k - crc24_bits) >> 3;
                if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
                        out_offset += e >> 3;
                else
                        out_offset += (k >> 3) * 3 + 2;
+
+               /* Update offsets */
+               if (seg_total_left == in_length) {
+                       /* Go to the next mbuf */
+                       m_in = m_in->next;
+                       m_out = m_out->next;
+                       in_offset = 0;
+                       out_offset = 0;
+               }
                r++;
        }
 
        /* check if all input data was processed */
-       if (total_left != 0) {
+       if (mbuf_total_left != 0) {
                op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                rte_bbdev_log(ERR,
                                "Mismatch between mbuf length and included CBs sizes");
@@ -739,97 +849,21 @@ enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
 
 static inline uint16_t
 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
-               uint16_t nb_ops)
+               uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
 {
        uint16_t i;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       queue_stats->acc_offload_cycles = 0;
+#endif
 
        for (i = 0; i < nb_ops; ++i)
-               enqueue_enc_one_op(q, ops[i]);
+               enqueue_enc_one_op(q, ops[i], queue_stats);
 
        return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
                        NULL);
 }
 
-/* Remove the padding bytes from a cyclic buffer.
- * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
- * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
- * The output buffer is a data stream wk with pruned padding bytes. It's length
- * is 3*D bytes and the order of non-padding bytes is preserved.
- */
-static inline void
-remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
-               uint16_t ncb)
-{
-       uint32_t in_idx, out_idx, c_idx;
-       const uint32_t d = k + 4;
-       const uint32_t kw = (ncb / 3);
-       const uint32_t nd = kw - d;
-       const uint32_t r_subblock = kw / C_SUBBLOCK;
-       /* Inter-column permutation pattern */
-       const uint32_t P[C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10,
-                       26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19,
-                       11, 27, 7, 23, 15, 31};
-       in_idx = 0;
-       out_idx = 0;
-
-       /* The padding bytes are at the first Nd positions in the first row. */
-       for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
-               if (P[c_idx] < nd) {
-                       rte_memcpy(&out[out_idx], &in[in_idx + 1],
-                                       r_subblock - 1);
-                       out_idx += r_subblock - 1;
-               } else {
-                       rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
-                       out_idx += r_subblock;
-               }
-       }
-
-       /* First and second parity bits sub-blocks are interlaced. */
-       for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
-                       in_idx += 2 * r_subblock, ++c_idx) {
-               uint32_t second_block_c_idx = P[c_idx];
-               uint32_t third_block_c_idx = P[c_idx] + 1;
-
-               if (second_block_c_idx < nd && third_block_c_idx < nd) {
-                       rte_memcpy(&out[out_idx], &in[in_idx + 2],
-                                       2 * r_subblock - 2);
-                       out_idx += 2 * r_subblock - 2;
-               } else if (second_block_c_idx >= nd &&
-                               third_block_c_idx >= nd) {
-                       rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
-                       out_idx += 2 * r_subblock;
-               } else if (second_block_c_idx < nd) {
-                       out[out_idx++] = in[in_idx];
-                       rte_memcpy(&out[out_idx], &in[in_idx + 2],
-                                       2 * r_subblock - 2);
-                       out_idx += 2 * r_subblock - 2;
-               } else {
-                       rte_memcpy(&out[out_idx], &in[in_idx + 1],
-                                       2 * r_subblock - 1);
-                       out_idx += 2 * r_subblock - 1;
-               }
-       }
-
-       /* Last interlaced row is different - its last byte is the only padding
-        * byte. We can have from 2 up to 26 padding bytes (Nd) per sub-block.
-        * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
-        * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
-        * (moving to another column). 2nd parity sub-block uses the same
-        * inter-column permutation pattern as the systematic and 1st parity
-        * sub-blocks but it adds '1' to the resulting index and calculates the
-        * modulus of the result and Kw. Last column is mapped to itself (id 31)
-        * so the first byte taken from the 2nd parity sub-block will be the
-        * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
-        * last byte will be the first byte from the sub-block:
-        * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't  be smaller
-        * than 2 so we know that bytes with ids 0 and 1 must be the padding
-        * bytes. The bytes from the 1st parity sub-block are the bytes from the
-        * 31st column - Nd can't be greater than 26 so we are sure that there
-        * are no padding bytes in 31st column.
-        */
-       rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
-}
-
+#ifdef RTE_BBDEV_SDK_AVX2
 static inline void
 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
                uint16_t ncb)
@@ -840,15 +874,19 @@ move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
 
        rte_memcpy(&out[nd], in, d);
        rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
-       rte_memcpy(&out[nd + 2 * (kpi + 64)], &in[2 * kpi], d);
+       rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
 }
+#endif
 
 static inline void
 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
                uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
-               struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
-               bool check_crc_24b, uint16_t total_left)
+               struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
+               uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
+               uint16_t crc24_overlap, uint16_t in_length,
+               struct rte_bbdev_stats *q_stats)
 {
+#ifdef RTE_BBDEV_SDK_AVX2
        int ret;
        int32_t k_idx;
        int32_t iter_cnt;
@@ -859,10 +897,15 @@ process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
        struct bblib_turbo_decoder_request turbo_req;
        struct bblib_turbo_decoder_response turbo_resp;
        struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       uint64_t start_time;
+#else
+       RTE_SET_USED(q_stats);
+#endif
 
        k_idx = compute_idx(k);
 
-       ret = is_dec_input_valid(k_idx, kw, total_left);
+       ret = is_dec_input_valid(k_idx, kw, in_length);
        if (ret != 0) {
                op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                return;
@@ -876,15 +919,18 @@ process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
                struct bblib_deinterleave_ul_request deint_req;
                struct bblib_deinterleave_ul_response deint_resp;
 
-               /* SW decoder accepts only a circular buffer without NULL bytes
-                * so the input needs to be converted.
-                */
-               remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
-
-               deint_req.pharqbuffer = q->deint_input;
-               deint_req.ncb = ncb_without_null;
+               deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
+               deint_req.pharqbuffer = in;
+               deint_req.ncb = ncb;
                deint_resp.pinteleavebuffer = q->deint_output;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+               start_time = rte_rdtsc_precise();
+#endif
                bblib_deinterleave_ul(&deint_req, &deint_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+               q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
        } else
                move_padding_bytes(in, q->deint_output, k, ncb);
 
@@ -903,9 +949,18 @@ process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
        adapter_req.ncb = ncb_without_null;
        adapter_req.pinteleavebuffer = adapter_input;
        adapter_resp.pharqout = q->adapter_output;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       start_time = rte_rdtsc_precise();
+#endif
+       /* Turbo decode adaptation */
        bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
 
-       out = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3));
+       out = (uint8_t *)mbuf_append(m_out_head, m_out,
+                       ((k - crc24_overlap) >> 3));
        if (out == NULL) {
                op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                rte_bbdev_log(ERR, "Too little space in output mbuf");
@@ -923,34 +978,64 @@ process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
        turbo_req.k = k;
        turbo_req.k_idx = k_idx;
        turbo_req.max_iter_num = dec->iter_max;
+       turbo_req.early_term_disable = !check_bit(dec->op_flags,
+                       RTE_BBDEV_TURBO_EARLY_TERMINATION);
        turbo_resp.ag_buf = q->ag;
        turbo_resp.cb_buf = q->code_block;
        turbo_resp.output = out;
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       start_time = rte_rdtsc_precise();
+#endif
+       /* Turbo decode */
        iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
+#endif
        dec->hard_output.length += (k >> 3);
 
        if (iter_cnt > 0) {
                /* Temporary solution for returned iter_count from SDK */
-               iter_cnt = (iter_cnt - 1) / 2;
+               iter_cnt = (iter_cnt - 1) >> 1;
                dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
        } else {
                op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                rte_bbdev_log(ERR, "Turbo Decoder failed");
                return;
        }
+#else
+       RTE_SET_USED(q);
+       RTE_SET_USED(op);
+       RTE_SET_USED(c);
+       RTE_SET_USED(k);
+       RTE_SET_USED(kw);
+       RTE_SET_USED(m_in);
+       RTE_SET_USED(m_out_head);
+       RTE_SET_USED(m_out);
+       RTE_SET_USED(in_offset);
+       RTE_SET_USED(out_offset);
+       RTE_SET_USED(check_crc_24b);
+       RTE_SET_USED(crc24_overlap);
+       RTE_SET_USED(in_length);
+       RTE_SET_USED(q_stats);
+#endif
 }
 
 static inline void
-enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
+enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
+               struct rte_bbdev_stats *queue_stats)
 {
        uint8_t c, r = 0;
        uint16_t kw, k = 0;
+       uint16_t crc24_overlap = 0;
        struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
        struct rte_mbuf *m_in = dec->input.data;
        struct rte_mbuf *m_out = dec->hard_output.data;
+       struct rte_mbuf *m_out_head = dec->hard_output.data;
        uint16_t in_offset = dec->input.offset;
-       uint16_t total_left = dec->input.length;
        uint16_t out_offset = dec->hard_output.offset;
+       uint32_t mbuf_total_left = dec->input.length;
+       uint16_t seg_total_left;
 
        /* Clear op status */
        op->status = 0;
@@ -968,11 +1053,17 @@ enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
                c = 1;
        }
 
-       while (total_left > 0) {
+       if ((c > 1) && !check_bit(dec->op_flags,
+               RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
+               crc24_overlap = 24;
+
+       while (mbuf_total_left > 0) {
                if (dec->code_block_mode == 0)
                        k = (r < dec->tb_params.c_neg) ?
                                dec->tb_params.k_neg : dec->tb_params.k_pos;
 
+               seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
+
                /* Calculates circular buffer size (Kw).
                 * According to 3gpp 36.212 section 5.1.4.2
                 *   Kw = 3 * Kpi,
@@ -983,24 +1074,34 @@ enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
                 * where D is the size of each output from turbo encoder block
                 * (k + 4).
                 */
-               kw = RTE_ALIGN_CEIL(k + 4, C_SUBBLOCK) * 3;
-
-               process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
-                               out_offset, check_bit(dec->op_flags,
-                               RTE_BBDEV_TURBO_CRC_TYPE_24B), total_left);
-               /* As a result of decoding we get Code Block with included
-                * decoded CRC24 at the end of Code Block. Type of CRC24 is
-                * specified by flag.
+               kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
+
+               process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
+                               in_offset, out_offset, check_bit(dec->op_flags,
+                               RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
+                               seg_total_left, queue_stats);
+               /* To keep CRC24 attached to end of Code block, use
+                * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
+                * removed by default once verified.
                 */
 
-               /* Update total_left */
-               total_left -= kw;
-               /* Update offsets for next CBs (if exist) */
-               in_offset += kw;
-               out_offset += (k >> 3);
+               mbuf_total_left -= kw;
+
+               /* Update offsets */
+               if (seg_total_left == kw) {
+                       /* Go to the next mbuf */
+                       m_in = m_in->next;
+                       m_out = m_out->next;
+                       in_offset = 0;
+                       out_offset = 0;
+               } else {
+                       /* Update offsets for next CBs (if exist) */
+                       in_offset += kw;
+                       out_offset += ((k - crc24_overlap) >> 3);
+               }
                r++;
        }
-       if (total_left != 0) {
+       if (mbuf_total_left != 0) {
                op->status |= 1 << RTE_BBDEV_DATA_ERROR;
                rte_bbdev_log(ERR,
                                "Mismatch between mbuf length and included Circular buffer sizes");
@@ -1009,12 +1110,15 @@ enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
 
 static inline uint16_t
 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
-               uint16_t nb_ops)
+               uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
 {
        uint16_t i;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+       queue_stats->acc_offload_cycles = 0;
+#endif
 
        for (i = 0; i < nb_ops; ++i)
-               enqueue_dec_one_op(q, ops[i]);
+               enqueue_dec_one_op(q, ops[i], queue_stats);
 
        return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
                        NULL);
@@ -1029,7 +1133,7 @@ enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
        struct turbo_sw_queue *q = queue;
        uint16_t nb_enqueued = 0;
 
-       nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops);
+       nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
 
        q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
        q_data->queue_stats.enqueued_count += nb_enqueued;
@@ -1046,7 +1150,7 @@ enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
        struct turbo_sw_queue *q = queue;
        uint16_t nb_enqueued = 0;
 
-       nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
+       nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
 
        q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
        q_data->queue_stats.enqueued_count += nb_enqueued;
@@ -1231,10 +1335,9 @@ RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
        TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
        TURBO_SW_SOCKET_ID_ARG"=<int>");
+RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
 
-RTE_INIT(null_bbdev_init_log);
-static void
-null_bbdev_init_log(void)
+RTE_INIT(turbo_sw_bbdev_init_log)
 {
        bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
        if (bbdev_turbo_sw_logtype >= 0)