net/cxgbe: support flow API for matching IP TOS
[dpdk.git] / drivers / net / cxgbe / base / t4_hw.c
index 8e2b8a7..cd4da0b 100644 (file)
@@ -1,34 +1,6 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2014-2017 Chelsio Communications.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Chelsio Communications nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2014-2018 Chelsio Communications.
+ * All rights reserved.
  */
 
 #include <netinet/in.h>
@@ -55,9 +27,6 @@
 #include "t4_regs_values.h"
 #include "t4fw_interface.h"
 
-static void init_link_config(struct link_config *lc, unsigned int pcaps,
-                            unsigned int acaps);
-
 /**
  * t4_read_mtu_tbl - returns the values in the HW path MTU table
  * @adap: the adapter
@@ -277,7 +246,7 @@ static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
                         u32 mbox_addr)
 {
        for ( ; nflit; nflit--, mbox_addr += 8)
-               *rpl++ = htobe64(t4_read_reg64(adap, mbox_addr));
+               *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
 }
 
 /*
@@ -366,7 +335,7 @@ int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
                return -EINVAL;
        }
 
-       bzero(p, size);
+       memset(p, 0, size);
        memcpy(p, (const __be64 *)cmd, size);
 
        /*
@@ -2511,6 +2480,46 @@ int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
        return 0;
 }
 
+/**
+ * t4_get_pfres - retrieve VF resource limits
+ * @adapter: the adapter
+ *
+ * Retrieves configured resource limits and capabilities for a physical
+ * function.  The results are stored in @adapter->pfres.
+ */
+int t4_get_pfres(struct adapter *adapter)
+{
+       struct pf_resources *pfres = &adapter->params.pfres;
+       struct fw_pfvf_cmd cmd, rpl;
+       u32 word;
+       int v;
+
+       /*
+        * Execute PFVF Read command to get VF resource limits; bail out early
+        * with error on command failure.
+        */
+       memset(&cmd, 0, sizeof(cmd));
+       cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
+                                   F_FW_CMD_REQUEST |
+                                   F_FW_CMD_READ |
+                                   V_FW_PFVF_CMD_PFN(adapter->pf) |
+                                   V_FW_PFVF_CMD_VFN(0));
+       cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
+       v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
+       if (v != FW_SUCCESS)
+               return v;
+
+       /*
+        * Extract PF resource limits and return success.
+        */
+       word = be32_to_cpu(rpl.niqflint_niq);
+       pfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
+
+       word = be32_to_cpu(rpl.type_to_neq);
+       pfres->neq = G_FW_PFVF_CMD_NEQ(word);
+       return 0;
+}
+
 /* serial flash and firmware constants and flash config file constants */
 enum {
        SF_ATTEMPTS = 10,             /* max retries for SF operations */
@@ -2804,7 +2813,7 @@ void t4_dump_version_info(struct adapter *adapter)
  *
  *     Returns the equivalent 32-bit Port Capabilities value.
  */
-static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
+fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
 {
        fw_port_cap32_t caps32 = 0;
 
@@ -4152,6 +4161,112 @@ int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
                return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
 }
 
+/**
+ *     t4_alloc_raw_mac_filt - Adds a raw mac entry in mps tcam
+ *     @adap: the adapter
+ *     @viid: the VI id
+ *     @mac: the MAC address
+ *     @mask: the mask
+ *     @idx: index at which to add this entry
+ *     @port_id: the port index
+ *     @lookup_type: MAC address for inner (1) or outer (0) header
+ *     @sleep_ok: call is allowed to sleep
+ *
+ *     Adds the mac entry at the specified index using raw mac interface.
+ *
+ *     Returns a negative error number or the allocated index for this mac.
+ */
+int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
+                         const u8 *addr, const u8 *mask, unsigned int idx,
+                         u8 lookup_type, u8 port_id, bool sleep_ok)
+{
+       int ret = 0;
+       struct fw_vi_mac_cmd c;
+       struct fw_vi_mac_raw *p = &c.u.raw;
+       u32 val;
+
+       memset(&c, 0, sizeof(c));
+       c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
+                                  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
+                                  V_FW_VI_MAC_CMD_VIID(viid));
+       val = V_FW_CMD_LEN16(1) |
+             V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
+       c.freemacs_to_len16 = cpu_to_be32(val);
+
+       /* Specify that this is an inner mac address */
+       p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
+
+       /* Lookup Type. Outer header: 0, Inner header: 1 */
+       p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
+                                  V_DATAPORTNUM(port_id));
+       /* Lookup mask and port mask */
+       p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
+                                   V_DATAPORTNUM(M_DATAPORTNUM));
+
+       /* Copy the address and the mask */
+       memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
+       memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
+
+       ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
+       if (ret == 0) {
+               ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
+               if (ret != (int)idx)
+                       ret = -ENOMEM;
+       }
+
+       return ret;
+}
+
+/**
+ *     t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
+ *     @adap: the adapter
+ *     @viid: the VI id
+ *     @addr: the MAC address
+ *     @mask: the mask
+ *     @idx: index of the entry in mps tcam
+ *     @lookup_type: MAC address for inner (1) or outer (0) header
+ *     @port_id: the port index
+ *     @sleep_ok: call is allowed to sleep
+ *
+ *     Removes the mac entry at the specified index using raw mac interface.
+ *
+ *     Returns a negative error number on failure.
+ */
+int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
+                        const u8 *addr, const u8 *mask, unsigned int idx,
+                        u8 lookup_type, u8 port_id, bool sleep_ok)
+{
+       struct fw_vi_mac_cmd c;
+       struct fw_vi_mac_raw *p = &c.u.raw;
+       u32 raw;
+
+       memset(&c, 0, sizeof(c));
+       c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
+                                  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
+                                  V_FW_CMD_EXEC(0) |
+                                  V_FW_VI_MAC_CMD_VIID(viid));
+       raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
+       c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0U) |
+                                         raw |
+                                         V_FW_CMD_LEN16(1));
+
+       p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
+                                    FW_VI_MAC_ID_BASED_FREE);
+
+       /* Lookup Type. Outer header: 0, Inner header: 1 */
+       p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
+                                  V_DATAPORTNUM(port_id));
+       /* Lookup mask and port mask */
+       p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
+                                   V_DATAPORTNUM(M_DATAPORTNUM));
+
+       /* Copy the address and the mask */
+       memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
+       memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
+
+       return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
+}
+
 /**
  * t4_change_mac - modifies the exact-match filter for a MAC address
  * @adap: the adapter
@@ -4491,7 +4606,7 @@ static void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
                lc->auto_fec = fec;
                pi->port_type = port_type;
                pi->mod_type = mod_type;
-               t4_os_portmod_changed(adapter, pi->port_id);
+               t4_os_portmod_changed(adapter, pi->pidx);
        }
        if (link_ok != lc->link_ok || speed != lc->speed ||
            fc != lc->fc || fec != lc->fec) { /* something changed */
@@ -4521,6 +4636,31 @@ static void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
        }
 }
 
+/**
+ * t4_ctrl_eq_free - free a control egress queue
+ * @adap: the adapter
+ * @mbox: mailbox to use for the FW command
+ * @pf: the PF owning the queue
+ * @vf: the VF owning the queue
+ * @eqid: egress queue id
+ *
+ * Frees a control egress queue.
+ */
+int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
+                   unsigned int vf, unsigned int eqid)
+{
+       struct fw_eq_ctrl_cmd c;
+
+       memset(&c, 0, sizeof(c));
+       c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
+                                 F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
+                                 V_FW_EQ_CTRL_CMD_PFN(pf) |
+                                 V_FW_EQ_CTRL_CMD_VFN(vf));
+       c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
+       c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
+       return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
+}
+
 /**
  * t4_handle_fw_rpl - process a FW reply message
  * @adap: the adapter
@@ -4585,8 +4725,8 @@ void t4_reset_link_config(struct adapter *adap, int idx)
  * Initializes the SW state maintained for each link, including the link's
  * capabilities and default speed/flow-control/autonegotiation settings.
  */
-static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
-                            fw_port_cap32_t acaps)
+void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
+                     fw_port_cap32_t acaps)
 {
        lc->pcaps = pcaps;
        lc->requested_speed = 0;
@@ -4647,9 +4787,8 @@ struct flash_desc {
 int t4_get_flash_params(struct adapter *adapter)
 {
        /*
-        * Table for non-Numonix supported flash parts.  Numonix parts are left
-        * to the preexisting well-tested code.  All flash parts have 64KB
-        * sectors.
+        * Table for non-standard supported Flash parts.  Note, all Flash
+        * parts must have 64KB sectors.
         */
        static struct flash_desc supported_flash[] = {
                { 0x00150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
@@ -4658,7 +4797,7 @@ int t4_get_flash_params(struct adapter *adapter)
        int ret;
        u32 flashid = 0;
        unsigned int part, manufacturer;
-       unsigned int density, size;
+       unsigned int density, size = 0;
 
        /**
         * Issue a Read ID Command to the Flash part.  We decode supported
@@ -4673,6 +4812,9 @@ int t4_get_flash_params(struct adapter *adapter)
        if (ret < 0)
                return ret;
 
+       /**
+        * Check to see if it's one of our non-standard supported Flash parts.
+        */
        for (part = 0; part < ARRAY_SIZE(supported_flash); part++) {
                if (supported_flash[part].vendor_and_model_id == flashid) {
                        adapter->params.sf_size =
@@ -4683,6 +4825,15 @@ int t4_get_flash_params(struct adapter *adapter)
                }
        }
 
+       /**
+        * Decode Flash part size.  The code below looks repetative with
+        * common encodings, but that's not guaranteed in the JEDEC
+        * specification for the Read JADEC ID command.  The only thing that
+        * we're guaranteed by the JADEC specification is where the
+        * Manufacturer ID is in the returned result.  After that each
+        * Manufacturer ~could~ encode things completely differently.
+        * Note, all Flash parts must have 64KB sectors.
+        */
        manufacturer = flashid & 0xff;
        switch (manufacturer) {
        case 0x20: { /* Micron/Numonix */
@@ -4719,21 +4870,81 @@ int t4_get_flash_params(struct adapter *adapter)
                case 0x22:
                        size = 1 << 28; /* 256MB */
                        break;
-               default:
-                       dev_err(adapter, "Micron Flash Part has bad size, ID = %#x, Density code = %#x\n",
-                               flashid, density);
-                       return -EINVAL;
                }
+               break;
+       }
 
-               adapter->params.sf_size = size;
-               adapter->params.sf_nsec = size / SF_SEC_SIZE;
+       case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
+               /**
+                * This Density -> Size decoding table is taken from ISSI
+                * Data Sheets.
+                */
+               density = (flashid >> 16) & 0xff;
+               switch (density) {
+               case 0x16:
+                       size = 1 << 25; /* 32MB */
+                       break;
+               case 0x17:
+                       size = 1 << 26; /* 64MB */
+                       break;
+               }
+               break;
+       }
+
+       case 0xc2: { /* Macronix */
+               /**
+                * This Density -> Size decoding table is taken from Macronix
+                * Data Sheets.
+                */
+               density = (flashid >> 16) & 0xff;
+               switch (density) {
+               case 0x17:
+                       size = 1 << 23; /* 8MB */
+                       break;
+               case 0x18:
+                       size = 1 << 24; /* 16MB */
+                       break;
+               }
+               break;
+       }
+
+       case 0xef: { /* Winbond */
+               /**
+                * This Density -> Size decoding table is taken from Winbond
+                * Data Sheets.
+                */
+               density = (flashid >> 16) & 0xff;
+               switch (density) {
+               case 0x17:
+                       size = 1 << 23; /* 8MB */
+                       break;
+               case 0x18:
+                       size = 1 << 24; /* 16MB */
+                       break;
+               }
                break;
        }
-       default:
-               dev_err(adapter, "Unsupported Flash Part, ID = %#x\n", flashid);
-               return -EINVAL;
        }
 
+       /* If we didn't recognize the FLASH part, that's no real issue: the
+        * Hardware/Software contract says that Hardware will _*ALWAYS*_
+        * use a FLASH part which is at least 4MB in size and has 64KB
+        * sectors.  The unrecognized FLASH part is likely to be much larger
+        * than 4MB, but that's all we really need.
+        */
+       if (size == 0) {
+               dev_warn(adapter,
+                        "Unknown Flash Part, ID = %#x, assuming 4MB\n",
+                        flashid);
+               size = 1 << 22;
+       }
+
+       /**
+        * Store decoded Flash size and fall through into vetting code.
+        */
+       adapter->params.sf_size = size;
+       adapter->params.sf_nsec = size / SF_SEC_SIZE;
+
 found:
        /*
         * We should reject adapters with FLASHes which are too small. So, emit
@@ -5038,13 +5249,16 @@ int t4_init_tp_params(struct adapter *adap)
        adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
        adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
                                                               F_PROTOCOL);
+       adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
+                                                               F_ETHERTYPE);
+       adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
+                                                              F_MACMATCH);
+       adap->params.tp.tos_shift = t4_filter_field_shift(adap, F_TOS);
 
-       /*
-        * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
-        * represents the presense of an Outer VLAN instead of a VNIC ID.
-        */
-       if ((adap->params.tp.ingress_config & F_VNIC) == 0)
-               adap->params.tp.vnic_shift = -1;
+       v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
+       adap->params.tp.hash_filter_mask = v;
+       v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
+       adap->params.tp.hash_filter_mask |= ((u64)v << 32);
 
        return 0;
 }
@@ -5221,3 +5435,212 @@ int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
        }
        return 0;
 }
+
+/**
+ * t4_memory_rw_addr - read/write adapter memory via PCIE memory window
+ * @adap: the adapter
+ * @win: PCI-E Memory Window to use
+ * @addr: address within adapter memory
+ * @len: amount of memory to transfer
+ * @hbuf: host memory buffer
+ * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
+ *
+ * Reads/writes an [almost] arbitrary memory region in the firmware: the
+ * firmware memory address and host buffer must be aligned on 32-bit
+ * boudaries; the length may be arbitrary.
+ *
+ * NOTES:
+ *  1. The memory is transferred as a raw byte sequence from/to the
+ *     firmware's memory.  If this memory contains data structures which
+ *     contain multi-byte integers, it's the caller's responsibility to
+ *     perform appropriate byte order conversions.
+ *
+ *  2. It is the Caller's responsibility to ensure that no other code
+ *     uses the specified PCI-E Memory Window while this routine is
+ *     using it.  This is typically done via the use of OS-specific
+ *     locks, etc.
+ */
+int t4_memory_rw_addr(struct adapter *adap, int win, u32 addr,
+                     u32 len, void *hbuf, int dir)
+{
+       u32 pos, offset, resid;
+       u32 win_pf, mem_reg, mem_aperture, mem_base;
+       u32 *buf;
+
+       /* Argument sanity checks ...*/
+       if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
+               return -EINVAL;
+       buf = (u32 *)hbuf;
+
+       /* It's convenient to be able to handle lengths which aren't a
+        * multiple of 32-bits because we often end up transferring files to
+        * the firmware.  So we'll handle that by normalizing the length here
+        * and then handling any residual transfer at the end.
+        */
+       resid = len & 0x3;
+       len -= resid;
+
+       /* Each PCI-E Memory Window is programmed with a window size -- or
+        * "aperture" -- which controls the granularity of its mapping onto
+        * adapter memory.  We need to grab that aperture in order to know
+        * how to use the specified window.  The window is also programmed
+        * with the base address of the Memory Window in BAR0's address
+        * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
+        * the address is relative to BAR0.
+        */
+       mem_reg = t4_read_reg(adap,
+                             PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
+                                                 win));
+       mem_aperture = 1 << (G_WINDOW(mem_reg) + X_WINDOW_SHIFT);
+       mem_base = G_PCIEOFST(mem_reg) << X_PCIEOFST_SHIFT;
+
+       win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->pf);
+
+       /* Calculate our initial PCI-E Memory Window Position and Offset into
+        * that Window.
+        */
+       pos = addr & ~(mem_aperture - 1);
+       offset = addr - pos;
+
+       /* Set up initial PCI-E Memory Window to cover the start of our
+        * transfer.  (Read it back to ensure that changes propagate before we
+        * attempt to use the new value.)
+        */
+       t4_write_reg(adap,
+                    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win),
+                    pos | win_pf);
+       t4_read_reg(adap,
+                   PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win));
+
+       /* Transfer data to/from the adapter as long as there's an integral
+        * number of 32-bit transfers to complete.
+        *
+        * A note on Endianness issues:
+        *
+        * The "register" reads and writes below from/to the PCI-E Memory
+        * Window invoke the standard adapter Big-Endian to PCI-E Link
+        * Little-Endian "swizzel."  As a result, if we have the following
+        * data in adapter memory:
+        *
+        *     Memory:  ... | b0 | b1 | b2 | b3 | ...
+        *     Address:      i+0  i+1  i+2  i+3
+        *
+        * Then a read of the adapter memory via the PCI-E Memory Window
+        * will yield:
+        *
+        *     x = readl(i)
+        *         31                  0
+        *         [ b3 | b2 | b1 | b0 ]
+        *
+        * If this value is stored into local memory on a Little-Endian system
+        * it will show up correctly in local memory as:
+        *
+        *     ( ..., b0, b1, b2, b3, ... )
+        *
+        * But on a Big-Endian system, the store will show up in memory
+        * incorrectly swizzled as:
+        *
+        *     ( ..., b3, b2, b1, b0, ... )
+        *
+        * So we need to account for this in the reads and writes to the
+        * PCI-E Memory Window below by undoing the register read/write
+        * swizzels.
+        */
+       while (len > 0) {
+               if (dir == T4_MEMORY_READ)
+                       *buf++ = le32_to_cpu((__le32)t4_read_reg(adap,
+                                                                mem_base +
+                                                                offset));
+               else
+                       t4_write_reg(adap, mem_base + offset,
+                                    (u32)cpu_to_le32(*buf++));
+               offset += sizeof(__be32);
+               len -= sizeof(__be32);
+
+               /* If we've reached the end of our current window aperture,
+                * move the PCI-E Memory Window on to the next.  Note that
+                * doing this here after "len" may be 0 allows us to set up
+                * the PCI-E Memory Window for a possible final residual
+                * transfer below ...
+                */
+               if (offset == mem_aperture) {
+                       pos += mem_aperture;
+                       offset = 0;
+                       t4_write_reg(adap,
+                               PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
+                                                   win), pos | win_pf);
+                       t4_read_reg(adap,
+                               PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
+                                                   win));
+               }
+       }
+
+       /* If the original transfer had a length which wasn't a multiple of
+        * 32-bits, now's where we need to finish off the transfer of the
+        * residual amount.  The PCI-E Memory Window has already been moved
+        * above (if necessary) to cover this final transfer.
+        */
+       if (resid) {
+               union {
+                       u32 word;
+                       char byte[4];
+               } last;
+               unsigned char *bp;
+               int i;
+
+               if (dir == T4_MEMORY_READ) {
+                       last.word = le32_to_cpu((__le32)t4_read_reg(adap,
+                                                                   mem_base +
+                                                                   offset));
+                       for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
+                               bp[i] = last.byte[i];
+               } else {
+                       last.word = *buf;
+                       for (i = resid; i < 4; i++)
+                               last.byte[i] = 0;
+                       t4_write_reg(adap, mem_base + offset,
+                                    (u32)cpu_to_le32(last.word));
+               }
+       }
+
+       return 0;
+}
+
+/**
+ * t4_memory_rw_mtype -read/write EDC 0, EDC 1 or MC via PCIE memory window
+ * @adap: the adapter
+ * @win: PCI-E Memory Window to use
+ * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
+ * @maddr: address within indicated memory type
+ * @len: amount of memory to transfer
+ * @hbuf: host memory buffer
+ * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
+ *
+ * Reads/writes adapter memory using t4_memory_rw_addr().  This routine
+ * provides an (memory type, address within memory type) interface.
+ */
+int t4_memory_rw_mtype(struct adapter *adap, int win, int mtype, u32 maddr,
+                      u32 len, void *hbuf, int dir)
+{
+       u32 mtype_offset;
+       u32 edc_size, mc_size;
+
+       /* Offset into the region of memory which is being accessed
+        * MEM_EDC0 = 0
+        * MEM_EDC1 = 1
+        * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
+        * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
+        */
+       edc_size  = G_EDRAM0_SIZE(t4_read_reg(adap, A_MA_EDRAM0_BAR));
+       if (mtype != MEM_MC1) {
+               mtype_offset = (mtype * (edc_size * 1024 * 1024));
+       } else {
+               mc_size = G_EXT_MEM0_SIZE(t4_read_reg(adap,
+                                                     A_MA_EXT_MEMORY0_BAR));
+               mtype_offset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
+       }
+
+       return t4_memory_rw_addr(adap, win,
+                                mtype_offset + maddr, len,
+                                hbuf, dir);
+}