ethdev: add namespace
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_avx2.c
index 7c5d23f..b47c51b 100644 (file)
 
 #include "iavf_rxtx_vec_common.h"
 
-#include <x86intrin.h>
+#include <rte_vect.h>
 
 #ifndef __INTEL_COMPILER
 #pragma GCC diagnostic ignored "-Wcast-qual"
 #endif
 
-static inline void
+static __rte_always_inline void
 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
 {
-       int i;
-       uint16_t rx_id;
-       volatile union iavf_rx_desc *rxdp;
-       struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
-
-       rxdp = rxq->rx_ring + rxq->rxrearm_start;
-
-       /* Pull 'n' more MBUFs into the software ring */
-       if (rte_mempool_get_bulk(rxq->mp,
-                                (void *)rxp,
-                                IAVF_RXQ_REARM_THRESH) < 0) {
-               if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
-                   rxq->nb_rx_desc) {
-                       __m128i dma_addr0;
-
-                       dma_addr0 = _mm_setzero_si128();
-                       for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
-                               rxp[i] = &rxq->fake_mbuf;
-                               _mm_store_si128((__m128i *)&rxdp[i].read,
-                                               dma_addr0);
-                       }
-               }
-               rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
-                       IAVF_RXQ_REARM_THRESH;
-               return;
-       }
-
-#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
-       struct rte_mbuf *mb0, *mb1;
-       __m128i dma_addr0, dma_addr1;
-       __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
-                       RTE_PKTMBUF_HEADROOM);
-       /* Initialize the mbufs in vector, process 2 mbufs in one loop */
-       for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
-               __m128i vaddr0, vaddr1;
-
-               mb0 = rxp[0];
-               mb1 = rxp[1];
-
-               /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
-               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
-                               offsetof(struct rte_mbuf, buf_addr) + 8);
-               vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
-               vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
-
-               /* convert pa to dma_addr hdr/data */
-               dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
-               dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
-
-               /* add headroom to pa values */
-               dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
-               dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
-
-               /* flush desc with pa dma_addr */
-               _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
-               _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
-       }
-#else
-       struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
-       __m256i dma_addr0_1, dma_addr2_3;
-       __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
-       /* Initialize the mbufs in vector, process 4 mbufs in one loop */
-       for (i = 0; i < IAVF_RXQ_REARM_THRESH;
-                       i += 4, rxp += 4, rxdp += 4) {
-               __m128i vaddr0, vaddr1, vaddr2, vaddr3;
-               __m256i vaddr0_1, vaddr2_3;
-
-               mb0 = rxp[0];
-               mb1 = rxp[1];
-               mb2 = rxp[2];
-               mb3 = rxp[3];
-
-               /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
-               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
-                               offsetof(struct rte_mbuf, buf_addr) + 8);
-               vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
-               vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
-               vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
-               vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
-
-               /**
-                * merge 0 & 1, by casting 0 to 256-bit and inserting 1
-                * into the high lanes. Similarly for 2 & 3
-                */
-               vaddr0_1 =
-                       _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
-                                               vaddr1, 1);
-               vaddr2_3 =
-                       _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
-                                               vaddr3, 1);
-
-               /* convert pa to dma_addr hdr/data */
-               dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
-               dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
-
-               /* add headroom to pa values */
-               dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
-               dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
-
-               /* flush desc with pa dma_addr */
-               _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
-               _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
-       }
-
-#endif
-
-       rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
-       if (rxq->rxrearm_start >= rxq->nb_rx_desc)
-               rxq->rxrearm_start = 0;
-
-       rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
-
-       rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
-                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
-
-       /* Update the tail pointer on the NIC */
-       IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+       return iavf_rxq_rearm_common(rxq, false);
 }
 
 #define PKTLEN_SHIFT     10
@@ -142,25 +26,8 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
 #define IAVF_DESCS_PER_LOOP_AVX 8
 
        /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
-       static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
-               /* [0] reserved */
-               [1] = RTE_PTYPE_L2_ETHER,
-               /* [2] - [21] reserved */
-               [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
-                       RTE_PTYPE_L4_FRAG,
-               [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
-                       RTE_PTYPE_L4_NONFRAG,
-               [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
-                       RTE_PTYPE_L4_UDP,
-               /* [25] reserved */
-               [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
-                       RTE_PTYPE_L4_TCP,
-               [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
-                       RTE_PTYPE_L4_SCTP,
-               [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
-                       RTE_PTYPE_L4_ICMP,
-               /* All others reserved */
-       };
+       const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
+
        const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
                        0, rxq->mbuf_initializer);
        /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
@@ -281,24 +148,24 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
         */
        const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
                        /* shift right 1 bit to make sure it not exceed 255 */
-                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
                         PKT_RX_IP_CKSUM_BAD) >> 1,
-                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD |
                         PKT_RX_L4_CKSUM_BAD) >> 1,
-                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
-                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1,
                        (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
                        (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
                        PKT_RX_IP_CKSUM_BAD >> 1,
                        (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
                        /* second 128-bits */
                        0, 0, 0, 0, 0, 0, 0, 0,
-                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
                         PKT_RX_IP_CKSUM_BAD) >> 1,
-                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD |
                         PKT_RX_L4_CKSUM_BAD) >> 1,
-                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
-                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1,
                        (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
                        (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
                        PKT_RX_IP_CKSUM_BAD >> 1,
@@ -307,7 +174,7 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
        const __m256i cksum_mask =
                 _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
                                   PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
-                                  PKT_RX_EIP_CKSUM_BAD);
+                                  PKT_RX_OUTER_IP_CKSUM_BAD);
 
        RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
 
@@ -631,6 +498,720 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
        return received;
 }
 
+static inline __m256i
+flex_rxd_to_fdir_flags_vec_avx2(const __m256i fdir_id0_7)
+{
+#define FDID_MIS_MAGIC 0xFFFFFFFF
+       RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
+       RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
+       const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
+                       PKT_RX_FDIR_ID);
+       /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
+       const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
+       __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
+                       fdir_mis_mask);
+       /* this XOR op results to bit-reverse the fdir_mask */
+       fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
+       const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
+
+       return fdir_flags;
+}
+
+static inline uint16_t
+_iavf_recv_raw_pkts_vec_avx2_flex_rxd(struct iavf_rx_queue *rxq,
+                                     struct rte_mbuf **rx_pkts,
+                                     uint16_t nb_pkts, uint8_t *split_packet)
+{
+#define IAVF_DESCS_PER_LOOP_AVX 8
+
+       struct iavf_adapter *adapter = rxq->vsi->adapter;
+
+       uint64_t offloads = adapter->dev_data->dev_conf.rxmode.offloads;
+       const uint32_t *type_table = adapter->ptype_tbl;
+
+       const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
+                       0, rxq->mbuf_initializer);
+       struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
+       volatile union iavf_rx_flex_desc *rxdp =
+               (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
+
+       rte_prefetch0(rxdp);
+
+       /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
+       nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
+
+       /* See if we need to rearm the RX queue - gives the prefetch a bit
+        * of time to act
+        */
+       if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
+               iavf_rxq_rearm(rxq);
+
+       /* Before we start moving massive data around, check to see if
+        * there is actually a packet available
+        */
+       if (!(rxdp->wb.status_error0 &
+                       rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
+               return 0;
+
+       /* constants used in processing loop */
+       const __m256i crc_adjust =
+               _mm256_set_epi16
+                       (/* first descriptor */
+                        0, 0, 0,       /* ignore non-length fields */
+                        -rxq->crc_len, /* sub crc on data_len */
+                        0,             /* ignore high-16bits of pkt_len */
+                        -rxq->crc_len, /* sub crc on pkt_len */
+                        0, 0,          /* ignore pkt_type field */
+                        /* second descriptor */
+                        0, 0, 0,       /* ignore non-length fields */
+                        -rxq->crc_len, /* sub crc on data_len */
+                        0,             /* ignore high-16bits of pkt_len */
+                        -rxq->crc_len, /* sub crc on pkt_len */
+                        0, 0           /* ignore pkt_type field */
+                       );
+
+       /* 8 packets DD mask, LSB in each 32-bit value */
+       const __m256i dd_check = _mm256_set1_epi32(1);
+
+       /* 8 packets EOP mask, second-LSB in each 32-bit value */
+       const __m256i eop_check = _mm256_slli_epi32(dd_check,
+                       IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
+
+       /* mask to shuffle from desc. to mbuf (2 descriptors)*/
+       const __m256i shuf_msk =
+               _mm256_set_epi8
+                       (/* first descriptor */
+                        0xFF, 0xFF,
+                        0xFF, 0xFF,    /* rss hash parsed separately */
+                        11, 10,        /* octet 10~11, 16 bits vlan_macip */
+                        5, 4,          /* octet 4~5, 16 bits data_len */
+                        0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
+                        5, 4,          /* octet 4~5, 16 bits pkt_len */
+                        0xFF, 0xFF,    /* pkt_type set as unknown */
+                        0xFF, 0xFF,    /*pkt_type set as unknown */
+                        /* second descriptor */
+                        0xFF, 0xFF,
+                        0xFF, 0xFF,    /* rss hash parsed separately */
+                        11, 10,        /* octet 10~11, 16 bits vlan_macip */
+                        5, 4,          /* octet 4~5, 16 bits data_len */
+                        0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
+                        5, 4,          /* octet 4~5, 16 bits pkt_len */
+                        0xFF, 0xFF,    /* pkt_type set as unknown */
+                        0xFF, 0xFF     /*pkt_type set as unknown */
+                       );
+       /**
+        * compile-time check the above crc and shuffle layout is correct.
+        * NOTE: the first field (lowest address) is given last in set_epi
+        * calls above.
+        */
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+       /* Status/Error flag masks */
+       /**
+        * mask everything except Checksum Reports, RSS indication
+        * and VLAN indication.
+        * bit6:4 for IP/L4 checksum errors.
+        * bit12 is for RSS indication.
+        * bit13 is for VLAN indication.
+        */
+       const __m256i flags_mask =
+                _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
+       /**
+        * data to be shuffled by the result of the flags mask shifted by 4
+        * bits.  This gives use the l3_l4 flags.
+        */
+       const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+                       /* shift right 1 bit to make sure it not exceed 255 */
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                        PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                        PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
+                        PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
+                        PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       /* second 128-bits */
+                       0, 0, 0, 0, 0, 0, 0, 0,
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                        PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                        PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
+                        PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
+                        PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
+       const __m256i cksum_mask =
+                _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
+                                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
+                                  PKT_RX_OUTER_IP_CKSUM_BAD);
+       /**
+        * data to be shuffled by result of flag mask, shifted down 12.
+        * If RSS(bit12)/VLAN(bit13) are set,
+        * shuffle moves appropriate flags in place.
+        */
+       const __m256i rss_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       PKT_RX_RSS_HASH, 0,
+                       PKT_RX_RSS_HASH, 0,
+                       /* end up 128-bits */
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       PKT_RX_RSS_HASH, 0,
+                       PKT_RX_RSS_HASH, 0);
+
+       const __m256i vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
+                       PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
+                       0, 0,
+                       /* end up 128-bits */
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
+                       PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
+                       0, 0);
+
+       uint16_t i, received;
+
+       for (i = 0, received = 0; i < nb_pkts;
+            i += IAVF_DESCS_PER_LOOP_AVX,
+            rxdp += IAVF_DESCS_PER_LOOP_AVX) {
+               /* step 1, copy over 8 mbuf pointers to rx_pkts array */
+               _mm256_storeu_si256((void *)&rx_pkts[i],
+                                   _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+               _mm256_storeu_si256
+                       ((void *)&rx_pkts[i + 4],
+                        _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+               __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
+
+               const __m128i raw_desc7 =
+                       _mm_load_si128((void *)(rxdp + 7));
+               rte_compiler_barrier();
+               const __m128i raw_desc6 =
+                       _mm_load_si128((void *)(rxdp + 6));
+               rte_compiler_barrier();
+               const __m128i raw_desc5 =
+                       _mm_load_si128((void *)(rxdp + 5));
+               rte_compiler_barrier();
+               const __m128i raw_desc4 =
+                       _mm_load_si128((void *)(rxdp + 4));
+               rte_compiler_barrier();
+               const __m128i raw_desc3 =
+                       _mm_load_si128((void *)(rxdp + 3));
+               rte_compiler_barrier();
+               const __m128i raw_desc2 =
+                       _mm_load_si128((void *)(rxdp + 2));
+               rte_compiler_barrier();
+               const __m128i raw_desc1 =
+                       _mm_load_si128((void *)(rxdp + 1));
+               rte_compiler_barrier();
+               const __m128i raw_desc0 =
+                       _mm_load_si128((void *)(rxdp + 0));
+
+               raw_desc6_7 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc6),
+                                raw_desc7, 1);
+               raw_desc4_5 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc4),
+                                raw_desc5, 1);
+               raw_desc2_3 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc2),
+                                raw_desc3, 1);
+               raw_desc0_1 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc0),
+                                raw_desc1, 1);
+
+               if (split_packet) {
+                       int j;
+
+                       for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
+                               rte_mbuf_prefetch_part2(rx_pkts[i + j]);
+               }
+
+               /**
+                * convert descriptors 4-7 into mbufs, re-arrange fields.
+                * Then write into the mbuf.
+                */
+               __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
+               __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
+
+               mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
+               mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
+               /**
+                * to get packet types, ptype is located in bit16-25
+                * of each 128bits
+                */
+               const __m256i ptype_mask =
+                       _mm256_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M);
+               const __m256i ptypes6_7 =
+                       _mm256_and_si256(raw_desc6_7, ptype_mask);
+               const __m256i ptypes4_5 =
+                       _mm256_and_si256(raw_desc4_5, ptype_mask);
+               const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
+               const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
+               const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
+               const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
+
+               mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
+               mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
+               mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
+               mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
+               /* merge the status bits into one register */
+               const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
+                               raw_desc4_5);
+
+               /**
+                * convert descriptors 0-3 into mbufs, re-arrange fields.
+                * Then write into the mbuf.
+                */
+               __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
+               __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
+
+               mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
+               mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
+               /**
+                * to get packet types, ptype is located in bit16-25
+                * of each 128bits
+                */
+               const __m256i ptypes2_3 =
+                       _mm256_and_si256(raw_desc2_3, ptype_mask);
+               const __m256i ptypes0_1 =
+                       _mm256_and_si256(raw_desc0_1, ptype_mask);
+               const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
+               const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
+               const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
+               const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
+
+               mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
+               mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
+               mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
+               mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
+               /* merge the status bits into one register */
+               const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
+                                                               raw_desc0_1);
+
+               /**
+                * take the two sets of status bits and merge to one
+                * After merge, the packets status flags are in the
+                * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+                */
+               __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
+                                                         status0_3);
+
+               /* now do flag manipulation */
+
+               /* get only flag/error bits we want */
+               const __m256i flag_bits =
+                       _mm256_and_si256(status0_7, flags_mask);
+               /**
+                * l3_l4_error flags, shuffle, then shift to correct adjustment
+                * of flags in flags_shuf, and finally mask out extra bits
+                */
+               __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+                               _mm256_srli_epi32(flag_bits, 4));
+               l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+               l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+
+               /* set rss and vlan flags */
+               const __m256i rss_vlan_flag_bits =
+                       _mm256_srli_epi32(flag_bits, 12);
+               const __m256i rss_flags =
+                       _mm256_shuffle_epi8(rss_flags_shuf,
+                                           rss_vlan_flag_bits);
+
+               __m256i vlan_flags = _mm256_setzero_si256();
+
+               if (rxq->rx_flags == IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1)
+                       vlan_flags =
+                               _mm256_shuffle_epi8(vlan_flags_shuf,
+                                                   rss_vlan_flag_bits);
+
+               const __m256i rss_vlan_flags =
+                       _mm256_or_si256(rss_flags, vlan_flags);
+
+               /* merge flags */
+               __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
+                               rss_vlan_flags);
+
+               if (rxq->fdir_enabled) {
+                       const __m256i fdir_id4_7 =
+                               _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
+
+                       const __m256i fdir_id0_3 =
+                               _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
+
+                       const __m256i fdir_id0_7 =
+                               _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
+
+                       const __m256i fdir_flags =
+                               flex_rxd_to_fdir_flags_vec_avx2(fdir_id0_7);
+
+                       /* merge with fdir_flags */
+                       mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
+
+                       /* write to mbuf: have to use scalar store here */
+                       rx_pkts[i + 0]->hash.fdir.hi =
+                               _mm256_extract_epi32(fdir_id0_7, 3);
+
+                       rx_pkts[i + 1]->hash.fdir.hi =
+                               _mm256_extract_epi32(fdir_id0_7, 7);
+
+                       rx_pkts[i + 2]->hash.fdir.hi =
+                               _mm256_extract_epi32(fdir_id0_7, 2);
+
+                       rx_pkts[i + 3]->hash.fdir.hi =
+                               _mm256_extract_epi32(fdir_id0_7, 6);
+
+                       rx_pkts[i + 4]->hash.fdir.hi =
+                               _mm256_extract_epi32(fdir_id0_7, 1);
+
+                       rx_pkts[i + 5]->hash.fdir.hi =
+                               _mm256_extract_epi32(fdir_id0_7, 5);
+
+                       rx_pkts[i + 6]->hash.fdir.hi =
+                               _mm256_extract_epi32(fdir_id0_7, 0);
+
+                       rx_pkts[i + 7]->hash.fdir.hi =
+                               _mm256_extract_epi32(fdir_id0_7, 4);
+               } /* if() on fdir_enabled */
+
+#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
+               /**
+                * needs to load 2nd 16B of each desc for RSS hash parsing,
+                * will cause performance drop to get into this context.
+                */
+               if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH ||
+                   rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
+                       /* load bottom half of every 32B desc */
+                       const __m128i raw_desc_bh7 =
+                               _mm_load_si128
+                                       ((void *)(&rxdp[7].wb.status_error1));
+                       rte_compiler_barrier();
+                       const __m128i raw_desc_bh6 =
+                               _mm_load_si128
+                                       ((void *)(&rxdp[6].wb.status_error1));
+                       rte_compiler_barrier();
+                       const __m128i raw_desc_bh5 =
+                               _mm_load_si128
+                                       ((void *)(&rxdp[5].wb.status_error1));
+                       rte_compiler_barrier();
+                       const __m128i raw_desc_bh4 =
+                               _mm_load_si128
+                                       ((void *)(&rxdp[4].wb.status_error1));
+                       rte_compiler_barrier();
+                       const __m128i raw_desc_bh3 =
+                               _mm_load_si128
+                                       ((void *)(&rxdp[3].wb.status_error1));
+                       rte_compiler_barrier();
+                       const __m128i raw_desc_bh2 =
+                               _mm_load_si128
+                                       ((void *)(&rxdp[2].wb.status_error1));
+                       rte_compiler_barrier();
+                       const __m128i raw_desc_bh1 =
+                               _mm_load_si128
+                                       ((void *)(&rxdp[1].wb.status_error1));
+                       rte_compiler_barrier();
+                       const __m128i raw_desc_bh0 =
+                               _mm_load_si128
+                                       ((void *)(&rxdp[0].wb.status_error1));
+
+                       __m256i raw_desc_bh6_7 =
+                               _mm256_inserti128_si256
+                                       (_mm256_castsi128_si256(raw_desc_bh6),
+                                       raw_desc_bh7, 1);
+                       __m256i raw_desc_bh4_5 =
+                               _mm256_inserti128_si256
+                                       (_mm256_castsi128_si256(raw_desc_bh4),
+                                       raw_desc_bh5, 1);
+                       __m256i raw_desc_bh2_3 =
+                               _mm256_inserti128_si256
+                                       (_mm256_castsi128_si256(raw_desc_bh2),
+                                       raw_desc_bh3, 1);
+                       __m256i raw_desc_bh0_1 =
+                               _mm256_inserti128_si256
+                                       (_mm256_castsi128_si256(raw_desc_bh0),
+                                       raw_desc_bh1, 1);
+
+                       if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
+                               /**
+                                * to shift the 32b RSS hash value to the
+                                * highest 32b of each 128b before mask
+                                */
+                               __m256i rss_hash6_7 =
+                                       _mm256_slli_epi64(raw_desc_bh6_7, 32);
+                               __m256i rss_hash4_5 =
+                                       _mm256_slli_epi64(raw_desc_bh4_5, 32);
+                               __m256i rss_hash2_3 =
+                                       _mm256_slli_epi64(raw_desc_bh2_3, 32);
+                               __m256i rss_hash0_1 =
+                                       _mm256_slli_epi64(raw_desc_bh0_1, 32);
+
+                               const __m256i rss_hash_msk =
+                                       _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
+                                                        0xFFFFFFFF, 0, 0, 0);
+
+                               rss_hash6_7 = _mm256_and_si256
+                                               (rss_hash6_7, rss_hash_msk);
+                               rss_hash4_5 = _mm256_and_si256
+                                               (rss_hash4_5, rss_hash_msk);
+                               rss_hash2_3 = _mm256_and_si256
+                                               (rss_hash2_3, rss_hash_msk);
+                               rss_hash0_1 = _mm256_and_si256
+                                               (rss_hash0_1, rss_hash_msk);
+
+                               mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
+                               mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
+                               mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
+                               mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
+                       }
+
+                       if (rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
+                               /* merge the status/error-1 bits into one register */
+                               const __m256i status1_4_7 =
+                                       _mm256_unpacklo_epi32(raw_desc_bh6_7,
+                                                             raw_desc_bh4_5);
+                               const __m256i status1_0_3 =
+                                       _mm256_unpacklo_epi32(raw_desc_bh2_3,
+                                                             raw_desc_bh0_1);
+
+                               const __m256i status1_0_7 =
+                                       _mm256_unpacklo_epi64(status1_4_7,
+                                                             status1_0_3);
+
+                               const __m256i l2tag2p_flag_mask =
+                                       _mm256_set1_epi32
+                                       (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
+
+                               __m256i l2tag2p_flag_bits =
+                                       _mm256_and_si256
+                                       (status1_0_7, l2tag2p_flag_mask);
+
+                               l2tag2p_flag_bits =
+                                       _mm256_srli_epi32(l2tag2p_flag_bits,
+                                               IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
+
+                               const __m256i l2tag2_flags_shuf =
+                                       _mm256_set_epi8(0, 0, 0, 0,
+                                                       0, 0, 0, 0,
+                                                       0, 0, 0, 0,
+                                                       0, 0, 0, 0,
+                                                       /* end up 128-bits */
+                                                       0, 0, 0, 0,
+                                                       0, 0, 0, 0,
+                                                       0, 0, 0, 0,
+                                                       0, 0,
+                                                       PKT_RX_VLAN |
+                                                       PKT_RX_VLAN_STRIPPED,
+                                                       0);
+
+                               vlan_flags =
+                                       _mm256_shuffle_epi8(l2tag2_flags_shuf,
+                                                           l2tag2p_flag_bits);
+
+                               /* merge with vlan_flags */
+                               mbuf_flags = _mm256_or_si256
+                                               (mbuf_flags, vlan_flags);
+
+                               /* L2TAG2_2 */
+                               __m256i vlan_tci6_7 =
+                                       _mm256_slli_si256(raw_desc_bh6_7, 4);
+                               __m256i vlan_tci4_5 =
+                                       _mm256_slli_si256(raw_desc_bh4_5, 4);
+                               __m256i vlan_tci2_3 =
+                                       _mm256_slli_si256(raw_desc_bh2_3, 4);
+                               __m256i vlan_tci0_1 =
+                                       _mm256_slli_si256(raw_desc_bh0_1, 4);
+
+                               const __m256i vlan_tci_msk =
+                                       _mm256_set_epi32(0, 0xFFFF0000, 0, 0,
+                                                        0, 0xFFFF0000, 0, 0);
+
+                               vlan_tci6_7 = _mm256_and_si256
+                                               (vlan_tci6_7, vlan_tci_msk);
+                               vlan_tci4_5 = _mm256_and_si256
+                                               (vlan_tci4_5, vlan_tci_msk);
+                               vlan_tci2_3 = _mm256_and_si256
+                                               (vlan_tci2_3, vlan_tci_msk);
+                               vlan_tci0_1 = _mm256_and_si256
+                                               (vlan_tci0_1, vlan_tci_msk);
+
+                               mb6_7 = _mm256_or_si256(mb6_7, vlan_tci6_7);
+                               mb4_5 = _mm256_or_si256(mb4_5, vlan_tci4_5);
+                               mb2_3 = _mm256_or_si256(mb2_3, vlan_tci2_3);
+                               mb0_1 = _mm256_or_si256(mb0_1, vlan_tci0_1);
+                       }
+               } /* if() on RSS hash parsing */
+#endif
+
+               /**
+                * At this point, we have the 8 sets of flags in the low 16-bits
+                * of each 32-bit value in vlan0.
+                * We want to extract these, and merge them with the mbuf init
+                * data so we can do a single write to the mbuf to set the flags
+                * and all the other initialization fields. Extracting the
+                * appropriate flags means that we have to do a shift and blend
+                * for each mbuf before we do the write. However, we can also
+                * add in the previously computed rx_descriptor fields to
+                * make a single 256-bit write per mbuf
+                */
+               /* check the structure matches expectations */
+               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+                                offsetof(struct rte_mbuf, rearm_data) + 8);
+               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+                                RTE_ALIGN(offsetof(struct rte_mbuf,
+                                                   rearm_data),
+                                          16));
+               /* build up data and do writes */
+               __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+                       rearm6, rearm7;
+               rearm6 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(mbuf_flags, 8),
+                                           0x04);
+               rearm4 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(mbuf_flags, 4),
+                                           0x04);
+               rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
+               rearm0 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_srli_si256(mbuf_flags, 4),
+                                           0x04);
+               /* permute to add in the rx_descriptor e.g. rss fields */
+               rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+               rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+               rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+               rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+               /* write to mbuf */
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
+                                   rearm6);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
+                                   rearm4);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
+                                   rearm2);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
+                                   rearm0);
+
+               /* repeat for the odd mbufs */
+               const __m256i odd_flags =
+                       _mm256_castsi128_si256
+                               (_mm256_extracti128_si256(mbuf_flags, 1));
+               rearm7 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(odd_flags, 8),
+                                           0x04);
+               rearm5 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(odd_flags, 4),
+                                           0x04);
+               rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
+               rearm1 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_srli_si256(odd_flags, 4),
+                                           0x04);
+               /* since odd mbufs are already in hi 128-bits use blend */
+               rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+               rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+               rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+               rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+               /* again write to mbufs */
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
+                                   rearm7);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
+                                   rearm5);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
+                                   rearm3);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
+                                   rearm1);
+
+               /* extract and record EOP bit */
+               if (split_packet) {
+                       const __m128i eop_mask =
+                               _mm_set1_epi16(1 <<
+                                              IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
+                       const __m256i eop_bits256 = _mm256_and_si256(status0_7,
+                                                                    eop_check);
+                       /* pack status bits into a single 128-bit register */
+                       const __m128i eop_bits =
+                               _mm_packus_epi32
+                                       (_mm256_castsi256_si128(eop_bits256),
+                                        _mm256_extractf128_si256(eop_bits256,
+                                                                 1));
+                       /**
+                        * flip bits, and mask out the EOP bit, which is now
+                        * a split-packet bit i.e. !EOP, rather than EOP one.
+                        */
+                       __m128i split_bits = _mm_andnot_si128(eop_bits,
+                                       eop_mask);
+                       /**
+                        * eop bits are out of order, so we need to shuffle them
+                        * back into order again. In doing so, only use low 8
+                        * bits, which acts like another pack instruction
+                        * The original order is (hi->lo): 1,3,5,7,0,2,4,6
+                        * [Since we use epi8, the 16-bit positions are
+                        * multiplied by 2 in the eop_shuffle value.]
+                        */
+                       __m128i eop_shuffle =
+                               _mm_set_epi8(/* zero hi 64b */
+                                            0xFF, 0xFF, 0xFF, 0xFF,
+                                            0xFF, 0xFF, 0xFF, 0xFF,
+                                            /* move values to lo 64b */
+                                            8, 0, 10, 2,
+                                            12, 4, 14, 6);
+                       split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
+                       *(uint64_t *)split_packet =
+                               _mm_cvtsi128_si64(split_bits);
+                       split_packet += IAVF_DESCS_PER_LOOP_AVX;
+               }
+
+               /* perform dd_check */
+               status0_7 = _mm256_and_si256(status0_7, dd_check);
+               status0_7 = _mm256_packs_epi32(status0_7,
+                                              _mm256_setzero_si256());
+
+               uint64_t burst = __builtin_popcountll
+                                       (_mm_cvtsi128_si64
+                                               (_mm256_extracti128_si256
+                                                       (status0_7, 1)));
+               burst += __builtin_popcountll
+                               (_mm_cvtsi128_si64
+                                       (_mm256_castsi256_si128(status0_7)));
+               received += burst;
+               if (burst != IAVF_DESCS_PER_LOOP_AVX)
+                       break;
+       }
+
+       /* update tail pointers */
+       rxq->rx_tail += received;
+       rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+       if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
+               rxq->rx_tail--;
+               received--;
+       }
+       rxq->rxrearm_nb += received;
+       return received;
+}
+
 /**
  * Notice:
  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
@@ -642,6 +1223,18 @@ iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
        return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
 }
 
+/**
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
+                                uint16_t nb_pkts)
+{
+       return _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rx_queue, rx_pkts,
+                                                    nb_pkts, NULL);
+}
+
 /**
  * vPMD receive routine that reassembles single burst of 32 scattered packets
  * Notice:
@@ -707,6 +1300,75 @@ iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
                                rx_pkts + retval, nb_pkts);
 }
 
+/**
+ * vPMD receive routine that reassembles single burst of
+ * 32 scattered packets for flex RxD
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+static uint16_t
+iavf_recv_scattered_burst_vec_avx2_flex_rxd(void *rx_queue,
+                                           struct rte_mbuf **rx_pkts,
+                                           uint16_t nb_pkts)
+{
+       struct iavf_rx_queue *rxq = rx_queue;
+       uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
+
+       /* get some new buffers */
+       uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rxq,
+                                       rx_pkts, nb_pkts, split_flags);
+       if (nb_bufs == 0)
+               return 0;
+
+       /* happy day case, full burst + no packets to be joined */
+       const uint64_t *split_fl64 = (uint64_t *)split_flags;
+
+       if (!rxq->pkt_first_seg &&
+           split_fl64[0] == 0 && split_fl64[1] == 0 &&
+           split_fl64[2] == 0 && split_fl64[3] == 0)
+               return nb_bufs;
+
+       /* reassemble any packets that need reassembly*/
+       unsigned int i = 0;
+
+       if (!rxq->pkt_first_seg) {
+               /* find the first split flag, and only reassemble then*/
+               while (i < nb_bufs && !split_flags[i])
+                       i++;
+               if (i == nb_bufs)
+                       return nb_bufs;
+               rxq->pkt_first_seg = rx_pkts[i];
+       }
+       return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
+                                            &split_flags[i]);
+}
+
+/**
+ * vPMD receive routine that reassembles scattered packets for flex RxD.
+ * Main receive routine that can handle arbitrary burst sizes
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue,
+                                          struct rte_mbuf **rx_pkts,
+                                          uint16_t nb_pkts)
+{
+       uint16_t retval = 0;
+
+       while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
+               uint16_t burst =
+                       iavf_recv_scattered_burst_vec_avx2_flex_rxd
+                       (rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
+               retval += burst;
+               nb_pkts -= burst;
+               if (burst < IAVF_VPMD_RX_MAX_BURST)
+                       return retval;
+       }
+       return retval + iavf_recv_scattered_burst_vec_avx2_flex_rxd(rx_queue,
+                               rx_pkts + retval, nb_pkts);
+}
+
 static inline void
 iavf_vtx1(volatile struct iavf_tx_desc *txdp,
          struct rte_mbuf *pkt, uint64_t flags)
@@ -717,7 +1379,7 @@ iavf_vtx1(volatile struct iavf_tx_desc *txdp,
                 ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
 
        __m128i descriptor = _mm_set_epi64x(high_qw,
-                               pkt->buf_physaddr + pkt->data_off);
+                               pkt->buf_iova + pkt->data_off);
        _mm_store_si128((__m128i *)txdp, descriptor);
 }
 
@@ -756,15 +1418,15 @@ iavf_vtx(volatile struct iavf_tx_desc *txdp,
                __m256i desc2_3 =
                        _mm256_set_epi64x
                                (hi_qw3,
-                                pkt[3]->buf_physaddr + pkt[3]->data_off,
+                                pkt[3]->buf_iova + pkt[3]->data_off,
                                 hi_qw2,
-                                pkt[2]->buf_physaddr + pkt[2]->data_off);
+                                pkt[2]->buf_iova + pkt[2]->data_off);
                __m256i desc0_1 =
                        _mm256_set_epi64x
                                (hi_qw1,
-                                pkt[1]->buf_physaddr + pkt[1]->data_off,
+                                pkt[1]->buf_iova + pkt[1]->data_off,
                                 hi_qw0,
-                                pkt[0]->buf_physaddr + pkt[0]->data_off);
+                                pkt[0]->buf_iova + pkt[0]->data_off);
                _mm256_store_si256((void *)(txdp + 2), desc2_3);
                _mm256_store_si256((void *)txdp, desc0_1);
        }
@@ -839,7 +1501,7 @@ iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
 
        txq->tx_tail = tx_id;
 
-       IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+       IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
 
        return nb_pkts;
 }