acl: use scalar method fastest for some cases
[dpdk.git] / lib / librte_acl / acl_run_sse.c
index 4f3f115..a5a7d36 100644 (file)
  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
-#include "acl_run.h"
-
-enum {
-       SHUFFLE32_SLOT1 = 0xe5,
-       SHUFFLE32_SLOT2 = 0xe6,
-       SHUFFLE32_SLOT3 = 0xe7,
-       SHUFFLE32_SWAP64 = 0x4e,
-};
-
-static const rte_xmm_t mm_type_quad_range = {
-       .u32 = {
-               RTE_ACL_NODE_QRANGE,
-               RTE_ACL_NODE_QRANGE,
-               RTE_ACL_NODE_QRANGE,
-               RTE_ACL_NODE_QRANGE,
-       },
-};
-
-static const rte_xmm_t mm_type_quad_range64 = {
-       .u32 = {
-               RTE_ACL_NODE_QRANGE,
-               RTE_ACL_NODE_QRANGE,
-               0,
-               0,
-       },
-};
-
-static const rte_xmm_t mm_shuffle_input = {
-       .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
-};
-
-static const rte_xmm_t mm_shuffle_input64 = {
-       .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
-};
-
-static const rte_xmm_t mm_ones_16 = {
-       .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
-};
-
-static const rte_xmm_t mm_bytes = {
-       .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
-};
-
-static const rte_xmm_t mm_bytes64 = {
-       .u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
-};
-
-static const rte_xmm_t mm_match_mask = {
-       .u32 = {
-               RTE_ACL_NODE_MATCH,
-               RTE_ACL_NODE_MATCH,
-               RTE_ACL_NODE_MATCH,
-               RTE_ACL_NODE_MATCH,
-       },
-};
-
-static const rte_xmm_t mm_match_mask64 = {
-       .u32 = {
-               RTE_ACL_NODE_MATCH,
-               0,
-               RTE_ACL_NODE_MATCH,
-               0,
-       },
-};
-
-static const rte_xmm_t mm_index_mask = {
-       .u32 = {
-               RTE_ACL_NODE_INDEX,
-               RTE_ACL_NODE_INDEX,
-               RTE_ACL_NODE_INDEX,
-               RTE_ACL_NODE_INDEX,
-       },
-};
-
-static const rte_xmm_t mm_index_mask64 = {
-       .u32 = {
-               RTE_ACL_NODE_INDEX,
-               RTE_ACL_NODE_INDEX,
-               0,
-               0,
-       },
-};
-
-
-/*
- * Resolve priority for multiple results (sse version).
- * This consists comparing the priority of the current traversal with the
- * running set of results for the packet.
- * For each result, keep a running array of the result (rule number) and
- * its priority for each category.
- */
-static inline void
-resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
-       struct parms *parms, const struct rte_acl_match_results *p,
-       uint32_t categories)
-{
-       uint32_t x;
-       xmm_t results, priority, results1, priority1, selector;
-       xmm_t *saved_results, *saved_priority;
-
-       for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
-
-               saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
-               saved_priority =
-                       (xmm_t *)(&parms[n].cmplt->priority[x]);
-
-               /* get results and priorities for completed trie */
-               results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
-               priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
-
-               /* if this is not the first completed trie */
-               if (parms[n].cmplt->count != ctx->num_tries) {
-
-                       /* get running best results and their priorities */
-                       results1 = MM_LOADU(saved_results);
-                       priority1 = MM_LOADU(saved_priority);
-
-                       /* select results that are highest priority */
-                       selector = MM_CMPGT32(priority1, priority);
-                       results = MM_BLENDV8(results, results1, selector);
-                       priority = MM_BLENDV8(priority, priority1, selector);
-               }
-
-               /* save running best results and their priorities */
-               MM_STOREU(saved_results, results);
-               MM_STOREU(saved_priority, priority);
-       }
-}
-
-/*
- * Extract transitions from an XMM register and check for any matches
- */
-static void
-acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
-       struct parms *parms, struct acl_flow_data *flows)
-{
-       uint64_t transition1, transition2;
-
-       /* extract transition from low 64 bits. */
-       transition1 = MM_CVT64(*indicies);
-
-       /* extract transition from high 64 bits. */
-       *indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
-       transition2 = MM_CVT64(*indicies);
-
-       transition1 = acl_match_check(transition1, slot, ctx,
-               parms, flows, resolve_priority_sse);
-       transition2 = acl_match_check(transition2, slot + 1, ctx,
-               parms, flows, resolve_priority_sse);
-
-       /* update indicies with new transitions. */
-       *indicies = MM_SET64(transition2, transition1);
-}
-
-/*
- * Check for a match in 2 transitions (contained in SSE register)
- */
-static inline void
-acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
-       struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
-{
-       xmm_t temp;
-
-       temp = MM_AND(match_mask, *indicies);
-       while (!MM_TESTZ(temp, temp)) {
-               acl_process_matches(indicies, slot, ctx, parms, flows);
-               temp = MM_AND(match_mask, *indicies);
-       }
-}
-
-/*
- * Check for any match in 4 transitions (contained in 2 SSE registers)
- */
-static inline void
-acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
-       struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
-       xmm_t match_mask)
-{
-       xmm_t temp;
-
-       /* put low 32 bits of each transition into one register */
-       temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
-               0x88);
-       /* test for match node */
-       temp = MM_AND(match_mask, temp);
-
-       while (!MM_TESTZ(temp, temp)) {
-               acl_process_matches(indicies1, slot, ctx, parms, flows);
-               acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
-
-               temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
-                                       (__m128)*indicies2,
-                                       0x88);
-               temp = MM_AND(match_mask, temp);
-       }
-}
-
-/*
- * Calculate the address of the next transition for
- * all types of nodes. Note that only DFA nodes and range
- * nodes actually transition to another node. Match
- * nodes don't move.
- */
-static inline xmm_t
-acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-       xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
-       xmm_t *indicies1, xmm_t *indicies2)
-{
-       xmm_t addr, node_types, temp;
-
-       /*
-        * Note that no transition is done for a match
-        * node and therefore a stream freezes when
-        * it reaches a match.
-        */
-
-       /* Shuffle low 32 into temp and high 32 into indicies2 */
-       temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
-               0x88);
-       *indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
-               (__m128)*indicies2, 0xdd);
-
-       /* Calc node type and node addr */
-       node_types = MM_ANDNOT(index_mask, temp);
-       addr = MM_AND(index_mask, temp);
-
-       /*
-        * Calc addr for DFAs - addr = dfa_index + input_byte
-        */
-
-       /* mask for DFA type (0) nodes */
-       temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
-
-       /* add input byte to DFA position */
-       temp = MM_AND(temp, bytes);
-       temp = MM_AND(temp, next_input);
-       addr = MM_ADD32(addr, temp);
-
-       /*
-        * Calc addr for Range nodes -> range_index + range(input)
-        */
-       node_types = MM_CMPEQ32(node_types, type_quad_range);
-
-       /*
-        * Calculate number of range boundaries that are less than the
-        * input value. Range boundaries for each node are in signed 8 bit,
-        * ordered from -128 to 127 in the indicies2 register.
-        * This is effectively a popcnt of bytes that are greater than the
-        * input byte.
-        */
-
-       /* shuffle input byte to all 4 positions of 32 bit value */
-       temp = MM_SHUFFLE8(next_input, shuffle_input);
-
-       /* check ranges */
-       temp = MM_CMPGT8(temp, *indicies2);
-
-       /* convert -1 to 1 (bytes greater than input byte */
-       temp = MM_SIGN8(temp, temp);
-
-       /* horizontal add pairs of bytes into words */
-       temp = MM_MADD8(temp, temp);
-
-       /* horizontal add pairs of words into dwords */
-       temp = MM_MADD16(temp, ones_16);
-
-       /* mask to range type nodes */
-       temp = MM_AND(temp, node_types);
-
-       /* add index into node position */
-       return MM_ADD32(addr, temp);
-}
-
-/*
- * Process 4 transitions (in 2 SIMD registers) in parallel
- */
-static inline xmm_t
-transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-       xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
-       const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
-{
-       xmm_t addr;
-       uint64_t trans0, trans2;
-
-        /* Calculate the address (array index) for all 4 transitions. */
-
-       addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
-               bytes, type_quad_range, indicies1, indicies2);
-
-        /* Gather 64 bit transitions and pack back into 2 registers. */
-
-       trans0 = trans[MM_CVT32(addr)];
-
-       /* get slot 2 */
-
-       /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
-       trans2 = trans[MM_CVT32(addr)];
-
-       /* get slot 1 */
-
-       /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
-       *indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
-
-       /* get slot 3 */
-
-       /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
-       *indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
-
-       return MM_SRL32(next_input, 8);
-}
-
-/*
- * Execute trie traversal with 8 traversals in parallel
- */
-static inline int
-search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
-       uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
-       int n;
-       struct acl_flow_data flows;
-       uint64_t index_array[MAX_SEARCHES_SSE8];
-       struct completion cmplt[MAX_SEARCHES_SSE8];
-       struct parms parms[MAX_SEARCHES_SSE8];
-       xmm_t input0, input1;
-       xmm_t indicies1, indicies2, indicies3, indicies4;
-
-       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
-               total_packets, categories, ctx->trans_table);
-
-       for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
-               cmplt[n].count = 0;
-               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
-       }
-
-       /*
-        * indicies1 contains index_array[0,1]
-        * indicies2 contains index_array[2,3]
-        * indicies3 contains index_array[4,5]
-        * indicies4 contains index_array[6,7]
-        */
-
-       indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
-       indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
-
-       indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
-       indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
-
-        /* Check for any matches. */
-       acl_match_check_x4(0, ctx, parms, &flows,
-               &indicies1, &indicies2, mm_match_mask.m);
-       acl_match_check_x4(4, ctx, parms, &flows,
-               &indicies3, &indicies4, mm_match_mask.m);
-
-       while (flows.started > 0) {
-
-               /* Gather 4 bytes of input data for each stream. */
-               input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
-                       0);
-               input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
-                       0);
-
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
-
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
-
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
-
-                /* Process the 4 bytes of input on each stream. */
-
-               input0 = transition4(mm_index_mask.m, input0,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               input1 = transition4(mm_index_mask.m, input1,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies3, &indicies4);
-
-               input0 = transition4(mm_index_mask.m, input0,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               input1 = transition4(mm_index_mask.m, input1,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies3, &indicies4);
-
-               input0 = transition4(mm_index_mask.m, input0,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               input1 = transition4(mm_index_mask.m, input1,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies3, &indicies4);
-
-               input0 = transition4(mm_index_mask.m, input0,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               input1 = transition4(mm_index_mask.m, input1,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies3, &indicies4);
-
-                /* Check for any matches. */
-               acl_match_check_x4(0, ctx, parms, &flows,
-                       &indicies1, &indicies2, mm_match_mask.m);
-               acl_match_check_x4(4, ctx, parms, &flows,
-                       &indicies3, &indicies4, mm_match_mask.m);
-       }
-
-       return 0;
-}
-
-/*
- * Execute trie traversal with 4 traversals in parallel
- */
-static inline int
-search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
-        uint32_t *results, int total_packets, uint32_t categories)
-{
-       int n;
-       struct acl_flow_data flows;
-       uint64_t index_array[MAX_SEARCHES_SSE4];
-       struct completion cmplt[MAX_SEARCHES_SSE4];
-       struct parms parms[MAX_SEARCHES_SSE4];
-       xmm_t input, indicies1, indicies2;
-
-       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
-               total_packets, categories, ctx->trans_table);
-
-       for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
-               cmplt[n].count = 0;
-               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
-       }
-
-       indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
-       indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
-
-       /* Check for any matches. */
-       acl_match_check_x4(0, ctx, parms, &flows,
-               &indicies1, &indicies2, mm_match_mask.m);
-
-       while (flows.started > 0) {
-
-               /* Gather 4 bytes of input data for each stream. */
-               input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
-
-               /* Process the 4 bytes of input on each stream. */
-               input = transition4(mm_index_mask.m, input,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-                input = transition4(mm_index_mask.m, input,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-                input = transition4(mm_index_mask.m, input,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-                input = transition4(mm_index_mask.m, input,
-                       mm_shuffle_input.m, mm_ones_16.m,
-                       mm_bytes.m, mm_type_quad_range.m,
-                       flows.trans, &indicies1, &indicies2);
-
-               /* Check for any matches. */
-               acl_match_check_x4(0, ctx, parms, &flows,
-                       &indicies1, &indicies2, mm_match_mask.m);
-       }
-
-       return 0;
-}
-
-static inline xmm_t
-transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-       xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
-       const uint64_t *trans, xmm_t *indicies1)
-{
-       uint64_t t;
-       xmm_t addr, indicies2;
-
-       indicies2 = MM_XOR(ones_16, ones_16);
-
-       addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
-               bytes, type_quad_range, indicies1, &indicies2);
-
-       /* Gather 64 bit transitions and pack 2 per register. */
-
-       t = trans[MM_CVT32(addr)];
-
-       /* get slot 1 */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
-       *indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
-
-       return MM_SRL32(next_input, 8);
-}
-
-/*
- * Execute trie traversal with 2 traversals in parallel.
- */
-static inline int
-search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
-       uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
-       int n;
-       struct acl_flow_data flows;
-       uint64_t index_array[MAX_SEARCHES_SSE2];
-       struct completion cmplt[MAX_SEARCHES_SSE2];
-       struct parms parms[MAX_SEARCHES_SSE2];
-       xmm_t input, indicies;
-
-       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
-               total_packets, categories, ctx->trans_table);
-
-       for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
-               cmplt[n].count = 0;
-               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
-       }
-
-       indicies = MM_LOADU((xmm_t *) &index_array[0]);
-
-       /* Check for any matches. */
-       acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
-
-       while (flows.started > 0) {
-
-               /* Gather 4 bytes of input data for each stream. */
-               input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-
-               /* Process the 4 bytes of input on each stream. */
-
-               input = transition2(mm_index_mask64.m, input,
-                       mm_shuffle_input64.m, mm_ones_16.m,
-                       mm_bytes64.m, mm_type_quad_range64.m,
-                       flows.trans, &indicies);
-
-               input = transition2(mm_index_mask64.m, input,
-                       mm_shuffle_input64.m, mm_ones_16.m,
-                       mm_bytes64.m, mm_type_quad_range64.m,
-                       flows.trans, &indicies);
-
-               input = transition2(mm_index_mask64.m, input,
-                       mm_shuffle_input64.m, mm_ones_16.m,
-                       mm_bytes64.m, mm_type_quad_range64.m,
-                       flows.trans, &indicies);
-
-               input = transition2(mm_index_mask64.m, input,
-                       mm_shuffle_input64.m, mm_ones_16.m,
-                       mm_bytes64.m, mm_type_quad_range64.m,
-                       flows.trans, &indicies);
-
-               /* Check for any matches. */
-               acl_match_check_x2(0, ctx, parms, &flows, &indicies,
-                       mm_match_mask64.m);
-       }
-
-       return 0;
-}
+#include "acl_run_sse.h"
 
 int
 rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
        uint32_t *results, uint32_t num, uint32_t categories)
 {
-       if (categories != 1 &&
-               ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
-               return -EINVAL;
-
        if (likely(num >= MAX_SEARCHES_SSE8))
                return search_sse_8(ctx, data, results, num, categories);
        else if (num >= MAX_SEARCHES_SSE4)
                return search_sse_4(ctx, data, results, num, categories);
        else
-               return search_sse_2(ctx, data, results, num, categories);
+               return rte_acl_classify_scalar(ctx, data, results, num,
+                       categories);
 }