remove unneeded tests for NULL when freeing
[dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
index 296f172..6008533 100644 (file)
@@ -1,13 +1,13 @@
 /*-
  *   BSD LICENSE
- * 
+ *
  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
  *   All rights reserved.
- * 
+ *
  *   Redistribution and use in source and binary forms, with or without
  *   modification, are permitted provided that the following conditions
  *   are met:
- * 
+ *
  *     * Redistributions of source code must retain the above copyright
  *       notice, this list of conditions and the following disclaimer.
  *     * Redistributions in binary form must reproduce the above copyright
@@ -17,7 +17,7 @@
  *     * Neither the name of Intel Corporation nor the names of its
  *       contributors may be used to endorse or promote products derived
  *       from this software without specific prior written permission.
- * 
+ *
  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -85,7 +85,6 @@
 #include <rte_memory.h>
 #include <rte_memzone.h>
 #include <rte_launch.h>
-#include <rte_tailq.h>
 #include <rte_eal.h>
 #include <rte_eal_memconfig.h>
 #include <rte_per_lcore.h>
 #include "eal_filesystem.h"
 #include "eal_hugepages.h"
 
+#ifdef RTE_LIBRTE_XEN_DOM0
+int rte_xen_dom0_supported(void)
+{
+       return internal_config.xen_dom0_support;
+}
+#endif
+
 /**
  * @file
  * Huge page mapping under linux
 
 static uint64_t baseaddr_offset;
 
+static unsigned proc_pagemap_readable;
+
 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
 
+static void
+test_proc_pagemap_readable(void)
+{
+       int fd = open("/proc/self/pagemap", O_RDONLY);
+
+       if (fd < 0) {
+               RTE_LOG(ERR, EAL,
+                       "Cannot open /proc/self/pagemap: %s. "
+                       "virt2phys address translation will not work\n",
+                       strerror(errno));
+               return;
+       }
+
+       /* Is readable */
+       close(fd);
+       proc_pagemap_readable = 1;
+}
+
 /* Lock page in physical memory and prevent from swapping. */
 int
 rte_mem_lock_page(const void *virt)
@@ -131,42 +157,46 @@ phys_addr_t
 rte_mem_virt2phy(const void *virtaddr)
 {
        int fd;
-       uint64_t page, physaddr, virtual;
+       uint64_t page, physaddr;
        unsigned long virt_pfn;
        int page_size;
+       off_t offset;
+
+       /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
+       if (!proc_pagemap_readable)
+               return RTE_BAD_PHYS_ADDR;
 
        /* standard page size */
        page_size = getpagesize();
-       virtual = (uint64_t) virtaddr;
 
        fd = open("/proc/self/pagemap", O_RDONLY);
        if (fd < 0) {
                RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
                        __func__, strerror(errno));
-               return (uint64_t) -1;
+               return RTE_BAD_PHYS_ADDR;
        }
 
-       off_t offset;
        virt_pfn = (unsigned long)virtaddr / page_size;
        offset = sizeof(uint64_t) * virt_pfn;
        if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
                RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
                                __func__, strerror(errno));
                close(fd);
-               return (uint64_t) -1;
+               return RTE_BAD_PHYS_ADDR;
        }
        if (read(fd, &page, sizeof(uint64_t)) < 0) {
                RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
                                __func__, strerror(errno));
                close(fd);
-               return (uint64_t) -1;
+               return RTE_BAD_PHYS_ADDR;
        }
 
        /*
         * the pfn (page frame number) are bits 0-54 (see
         * pagemap.txt in linux Documentation)
         */
-       physaddr = ((page & 0x7fffffffffffffULL) * page_size) + (virtual % page_size);
+       physaddr = ((page & 0x7fffffffffffffULL) * page_size)
+               + ((unsigned long)virtaddr % page_size);
        close(fd);
        return physaddr;
 }
@@ -221,7 +251,7 @@ aslr_enabled(void)
 }
 
 /*
- * Try to mmap *size bytes in /dev/zero. If it is succesful, return the
+ * Try to mmap *size bytes in /dev/zero. If it is successful, return the
  * pointer to the mmap'd area and keep *size unmodified. Else, retry
  * with a smaller zone: decrease *size by hugepage_sz until it reaches
  * 0. In this case, return NULL. Note: this function returns an address
@@ -240,7 +270,7 @@ get_virtual_area(size_t *size, size_t hugepage_sz)
        }
        else addr = NULL;
 
-       RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
+       RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
 
        fd = open("/dev/zero", O_RDONLY);
        if (fd < 0){
@@ -256,7 +286,8 @@ get_virtual_area(size_t *size, size_t hugepage_sz)
 
        if (addr == MAP_FAILED) {
                close(fd);
-               RTE_LOG(INFO, EAL, "Cannot get a virtual area\n");
+               RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
+                       strerror(errno));
                return NULL;
        }
 
@@ -269,7 +300,7 @@ get_virtual_area(size_t *size, size_t hugepage_sz)
        aligned_addr &= (~(hugepage_sz - 1));
        addr = (void *)(aligned_addr);
 
-       RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%zx)\n",
+       RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
                addr, *size);
 
        /* increment offset */
@@ -300,7 +331,7 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
 #endif
 
        for (i = 0; i < hpi->num_pages[0]; i++) {
-               size_t hugepage_sz = hpi->hugepage_sz;
+               uint64_t hugepage_sz = hpi->hugepage_sz;
 
                if (orig) {
                        hugepg_tbl[i].file_id = i;
@@ -316,11 +347,12 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
 #endif
                        hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
                }
-#ifndef RTE_ARCH_X86_64
-               /* for 32-bit systems, don't remap 1G pages, just reuse original
-                * map address as final map address.
+#ifndef RTE_ARCH_64
+               /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
+                * original map address as final map address.
                 */
-               else if (hugepage_sz == RTE_PGSIZE_1G){
+               else if ((hugepage_sz == RTE_PGSIZE_1G)
+                       || (hugepage_sz == RTE_PGSIZE_16G)) {
                        hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
                        hugepg_tbl[i].orig_va = NULL;
                        continue;
@@ -335,9 +367,17 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
                         * physical block: count the number of
                         * contiguous physical pages. */
                        for (j = i+1; j < hpi->num_pages[0] ; j++) {
+#ifdef RTE_ARCH_PPC_64
+                               /* The physical addresses are sorted in
+                                * descending order on PPC64 */
+                               if (hugepg_tbl[j].physaddr !=
+                                   hugepg_tbl[j-1].physaddr - hugepage_sz)
+                                       break;
+#else
                                if (hugepg_tbl[j].physaddr !=
                                    hugepg_tbl[j-1].physaddr + hugepage_sz)
                                        break;
+#endif
                        }
                        num_pages = j - i;
                        vma_len = num_pages * hugepage_sz;
@@ -359,8 +399,10 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
                        return -1;
                }
 
+               /* map the segment, and populate page tables,
+                * the kernel fills this segment with zeros */
                virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
-                               MAP_SHARED, fd, 0);
+                               MAP_SHARED | MAP_POPULATE, fd, 0);
                if (virtaddr == MAP_FAILED) {
                        RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__,
                                        strerror(errno));
@@ -370,7 +412,6 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
 
                if (orig) {
                        hugepg_tbl[i].orig_va = virtaddr;
-                       memset(virtaddr, 0, hugepage_sz);
                }
                else {
                        hugepg_tbl[i].final_va = virtaddr;
@@ -412,11 +453,12 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
 
        while (i < hpi->num_pages[0]) {
 
-#ifndef RTE_ARCH_X86_64
-               /* for 32-bit systems, don't remap 1G pages, just reuse original
-                * map address as final map address.
+#ifndef RTE_ARCH_64
+               /* for 32-bit systems, don't remap 1G pages and 16G pages,
+                * just reuse original map address as final map address.
                 */
-               if (hugepage_sz == RTE_PGSIZE_1G){
+               if ((hugepage_sz == RTE_PGSIZE_1G)
+                       || (hugepage_sz == RTE_PGSIZE_16G)) {
                        hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
                        hugepg_tbl[i].orig_va = NULL;
                        i++;
@@ -428,8 +470,17 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
                 * physical block: count the number of
                 * contiguous physical pages. */
                for (j = i+1; j < hpi->num_pages[0] ; j++) {
-                       if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr + hugepage_sz)
+#ifdef RTE_ARCH_PPC_64
+                       /* The physical addresses are sorted in descending
+                        * order on PPC64 */
+                       if (hugepg_tbl[j].physaddr !=
+                               hugepg_tbl[j-1].physaddr - hugepage_sz)
                                break;
+#else
+                       if (hugepg_tbl[j].physaddr !=
+                               hugepg_tbl[j-1].physaddr + hugepage_sz)
+                               break;
+#endif
                }
                num_pages = j - i;
                vma_len = num_pages * hugepage_sz;
@@ -479,22 +530,16 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
 
                        old_addr = vma_addr;
 
-                       /* map new, bigger segment */
+                       /* map new, bigger segment, and populate page tables,
+                        * the kernel fills this segment with zeros */
                        vma_addr = mmap(vma_addr, total_size,
-                                       PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
+                                       PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd, 0);
 
                        if (vma_addr == MAP_FAILED || vma_addr != old_addr) {
                                RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno));
                                close(fd);
                                return -1;
                        }
-
-                       /* touch the page. this is needed because kernel postpones mapping
-                        * creation until the first page fault. with this, we pin down
-                        * the page and it is marked as used and gets into process' pagemap.
-                        */
-                       for (offset = 0; offset < total_size; offset += hugepage_sz)
-                               *((volatile uint8_t*) RTE_PTR_ADD(vma_addr, offset));
                }
 
                /* set shared flock on the file. */
@@ -505,7 +550,7 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
                        return -1;
                }
 
-               rte_snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s",
+               snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s",
                                filepath);
 
                physaddr = rte_mem_virt2phy(vma_addr);
@@ -542,9 +587,6 @@ remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
                        }
                }
 
-               /* zero out the whole segment */
-               memset(hugepg_tbl[page_idx].final_va, 0, total_size);
-
                page_idx++;
        }
 
@@ -586,13 +628,13 @@ find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
 
        f = fopen("/proc/self/numa_maps", "r");
        if (f == NULL) {
-               RTE_LOG(INFO, EAL, "cannot open /proc/self/numa_maps,"
+               RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
                                " consider that all memory is in socket_id 0\n");
                return 0;
        }
 
-       rte_snprintf(hugedir_str, sizeof(hugedir_str),
-                       "%s/", hpi->hugedir);
+       snprintf(hugedir_str, sizeof(hugedir_str),
+                       "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
 
        /* parse numa map */
        while (fgets(buf, sizeof(buf), f) != NULL) {
@@ -652,21 +694,21 @@ error:
 }
 
 /*
- * Sort the hugepg_tbl by physical address (lower addresses first). We
- * use a slow algorithm, but we won't have millions of pages, and this
- * is only done at init time.
+ * Sort the hugepg_tbl by physical address (lower addresses first on x86,
+ * higher address first on powerpc). We use a slow algorithm, but we won't
+ * have millions of pages, and this is only done at init time.
  */
 static int
 sort_by_physaddr(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
 {
        unsigned i, j;
-       int smallest_idx;
-       uint64_t smallest_addr;
+       int compare_idx;
+       uint64_t compare_addr;
        struct hugepage_file tmp;
 
        for (i = 0; i < hpi->num_pages[0]; i++) {
-               smallest_addr = 0;
-               smallest_idx = -1;
+               compare_addr = 0;
+               compare_idx = -1;
 
                /*
                 * browse all entries starting at 'i', and find the
@@ -674,23 +716,28 @@ sort_by_physaddr(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
                 */
                for (j=i; j< hpi->num_pages[0]; j++) {
 
-                       if (smallest_addr == 0 ||
-                           hugepg_tbl[j].physaddr < smallest_addr) {
-                               smallest_addr = hugepg_tbl[j].physaddr;
-                               smallest_idx = j;
+                       if (compare_addr == 0 ||
+#ifdef RTE_ARCH_PPC_64
+                               hugepg_tbl[j].physaddr > compare_addr) {
+#else
+                               hugepg_tbl[j].physaddr < compare_addr) {
+#endif
+                               compare_addr = hugepg_tbl[j].physaddr;
+                               compare_idx = j;
                        }
                }
 
                /* should not happen */
-               if (smallest_idx == -1) {
+               if (compare_idx == -1) {
                        RTE_LOG(ERR, EAL, "%s(): error in physaddr sorting\n", __func__);
                        return -1;
                }
 
                /* swap the 2 entries in the table */
-               memcpy(&tmp, &hugepg_tbl[smallest_idx], sizeof(struct hugepage_file));
-               memcpy(&hugepg_tbl[smallest_idx], &hugepg_tbl[i],
-                               sizeof(struct hugepage_file));
+               memcpy(&tmp, &hugepg_tbl[compare_idx],
+                       sizeof(struct hugepage_file));
+               memcpy(&hugepg_tbl[compare_idx], &hugepg_tbl[i],
+                       sizeof(struct hugepage_file));
                memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage_file));
        }
        return 0;
@@ -738,6 +785,30 @@ copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
        return 0;
 }
 
+static int
+unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
+               unsigned num_hp_info)
+{
+       unsigned socket, size;
+       int page, nrpages = 0;
+
+       /* get total number of hugepages */
+       for (size = 0; size < num_hp_info; size++)
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
+                       nrpages +=
+                       internal_config.hugepage_info[size].num_pages[socket];
+
+       for (page = 0; page < nrpages; page++) {
+               struct hugepage_file *hp = &hugepg_tbl[page];
+
+               if (hp->final_va != NULL && unlink(hp->filepath)) {
+                       RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
+                               __func__, hp->filepath, strerror(errno));
+               }
+       }
+       return 0;
+}
+
 /*
  * unmaps hugepages that are not going to be used. since we originally allocate
  * ALL hugepages (not just those we need), additional unmapping needs to be done.
@@ -857,7 +928,7 @@ get_socket_mem_size(int socket)
                        size += hpi->hugepage_sz * hpi->num_pages[socket];
        }
 
-       return (size);
+       return size;
 }
 
 /*
@@ -881,13 +952,53 @@ calc_num_pages_per_socket(uint64_t * memory,
        if (num_hp_info == 0)
                return -1;
 
-       for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
-               /* if specific memory amounts per socket weren't requested */
-               if (internal_config.force_sockets == 0) {
+       /* if specific memory amounts per socket weren't requested */
+       if (internal_config.force_sockets == 0) {
+               int cpu_per_socket[RTE_MAX_NUMA_NODES];
+               size_t default_size, total_size;
+               unsigned lcore_id;
+
+               /* Compute number of cores per socket */
+               memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
+               RTE_LCORE_FOREACH(lcore_id) {
+                       cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
+               }
+
+               /*
+                * Automatically spread requested memory amongst detected sockets according
+                * to number of cores from cpu mask present on each socket
+                */
+               total_size = internal_config.memory;
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
+
+                       /* Set memory amount per socket */
+                       default_size = (internal_config.memory * cpu_per_socket[socket])
+                                       / rte_lcore_count();
+
+                       /* Limit to maximum available memory on socket */
+                       default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
+
+                       /* Update sizes */
+                       memory[socket] = default_size;
+                       total_size -= default_size;
+               }
+
+               /*
+                * If some memory is remaining, try to allocate it by getting all
+                * available memory from sockets, one after the other
+                */
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
                        /* take whatever is available */
-                       memory[socket] = RTE_MIN(get_socket_mem_size(socket),
-                                       total_mem);
+                       default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
+                                              total_size);
+
+                       /* Update sizes */
+                       memory[socket] += default_size;
+                       total_size -= default_size;
                }
+       }
+
+       for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
                /* skips if the memory on specific socket wasn't requested */
                for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
                        hp_used[i].hugedir = hp_info[i].hugedir;
@@ -938,7 +1049,7 @@ calc_num_pages_per_socket(uint64_t * memory,
                                        0x100000);
                        available = requested -
                                        ((unsigned) (memory[socket] / 0x100000));
-                       RTE_LOG(INFO, EAL, "Not enough memory available on socket %u! "
+                       RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
                                        "Requested: %uMB, available: %uMB\n", socket,
                                        requested, available);
                        return -1;
@@ -949,7 +1060,7 @@ calc_num_pages_per_socket(uint64_t * memory,
        if (total_mem > 0) {
                requested = (unsigned) (internal_config.memory / 0x100000);
                available = requested - (unsigned) (total_mem / 0x100000);
-               RTE_LOG(INFO, EAL, "Not enough memory available! Requested: %uMB,"
+               RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
                                " available: %uMB\n", requested, available);
                return -1;
        }
@@ -967,7 +1078,7 @@ calc_num_pages_per_socket(uint64_t * memory,
  *  6. unmap the first mapping
  *  7. fill memsegs in configuration with contiguous zones
  */
-static int
+int
 rte_eal_hugepage_init(void)
 {
        struct rte_mem_config *mcfg;
@@ -984,6 +1095,8 @@ rte_eal_hugepage_init(void)
        int new_pages_count[MAX_HUGEPAGE_SIZES];
 #endif
 
+       test_proc_pagemap_readable();
+
        memset(used_hp, 0, sizeof(used_hp));
 
        /* get pointer to global configuration */
@@ -991,11 +1104,18 @@ rte_eal_hugepage_init(void)
 
        /* hugetlbfs can be disabled */
        if (internal_config.no_hugetlbfs) {
-               addr = malloc(internal_config.memory);
+               addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
+                               MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
+               if (addr == MAP_FAILED) {
+                       RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
+                                       strerror(errno));
+                       return -1;
+               }
                mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
                mcfg->memseg[0].addr = addr;
+               mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
                mcfg->memseg[0].len = internal_config.memory;
-               mcfg->memseg[0].socket_id = SOCKET_ID_ANY;
+               mcfg->memseg[0].socket_id = 0;
                return 0;
        }
 
@@ -1010,7 +1130,6 @@ rte_eal_hugepage_init(void)
 #endif
        }
 
-
        /* calculate total number of hugepages available. at this point we haven't
         * yet started sorting them so they all are on socket 0 */
        for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
@@ -1119,7 +1238,9 @@ rte_eal_hugepage_init(void)
                int socket = tmp_hp[i].socket_id;
 
                /* find a hugepage info with right size and increment num_pages */
-               for (j = 0; j < (int) internal_config.num_hugepage_sizes; j++) {
+               const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
+                               (int)internal_config.num_hugepage_sizes);
+               for (j = 0; j < nb_hpsizes; j++) {
                        if (tmp_hp[i].size ==
                                        internal_config.hugepage_info[j].hugepage_sz) {
 #ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
@@ -1149,13 +1270,13 @@ rte_eal_hugepage_init(void)
        for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
                for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
                        if (used_hp[i].num_pages[j] > 0) {
-                               RTE_LOG(INFO, EAL,
-                                               "Requesting %u pages of size %uMB"
-                                               " from socket %i\n",
-                                               used_hp[i].num_pages[j],
-                                               (unsigned)
-                                                       (used_hp[i].hugepage_sz / 0x100000),
-                                               j);
+                               RTE_LOG(DEBUG, EAL,
+                                       "Requesting %u pages of size %uMB"
+                                       " from socket %i\n",
+                                       used_hp[i].num_pages[j],
+                                       (unsigned)
+                                       (used_hp[i].hugepage_sz / 0x100000),
+                                       j);
                        }
                }
        }
@@ -1191,6 +1312,13 @@ rte_eal_hugepage_init(void)
                goto fail;
        }
 
+       /* free the hugepage backing files */
+       if (internal_config.hugepage_unlink &&
+               unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
+               RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
+               goto fail;
+       }
+
        /* free the temporary hugepage table */
        free(tmp_hp);
        tmp_hp = NULL;
@@ -1214,12 +1342,25 @@ rte_eal_hugepage_init(void)
                        new_memseg = 1;
                else if (hugepage[i].size != hugepage[i-1].size)
                        new_memseg = 1;
+
+#ifdef RTE_ARCH_PPC_64
+               /* On PPC64 architecture, the mmap always start from higher
+                * virtual address to lower address. Here, both the physical
+                * address and virtual address are in descending order */
+               else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
+                   hugepage[i].size)
+                       new_memseg = 1;
+               else if (((unsigned long)hugepage[i-1].final_va -
+                   (unsigned long)hugepage[i].final_va) != hugepage[i].size)
+                       new_memseg = 1;
+#else
                else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
                    hugepage[i].size)
                        new_memseg = 1;
                else if (((unsigned long)hugepage[i].final_va -
                    (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
                        new_memseg = 1;
+#endif
 
                if (new_memseg) {
                        j += 1;
@@ -1238,6 +1379,12 @@ rte_eal_hugepage_init(void)
                }
                /* continuation of previous memseg */
                else {
+#ifdef RTE_ARCH_PPC_64
+               /* Use the phy and virt address of the last page as segment
+                * address for IBM Power architecture */
+                       mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
+                       mcfg->memseg[j].addr = hugepage[i].final_va;
+#endif
                        mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
                }
                hugepage[i].memseg_id = j;
@@ -1251,14 +1398,13 @@ rte_eal_hugepage_init(void)
                        "of memory.\n",
                        i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
                        RTE_MAX_MEMSEG);
-               return (-ENOMEM);
+               return -ENOMEM;
        }
 
        return 0;
 
 fail:
-       if (tmp_hp)
-               free(tmp_hp);
+       free(tmp_hp);
        return -1;
 }
 
@@ -1280,7 +1426,7 @@ getFileSize(int fd)
  * configuration and finds the hugepages which form that segment, mapping them
  * in order to form a contiguous block in the virtual memory space
  */
-static int
+int
 rte_eal_hugepage_attach(void)
 {
        const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
@@ -1297,6 +1443,8 @@ rte_eal_hugepage_attach(void)
                                "into secondary processes\n");
        }
 
+       test_proc_pagemap_readable();
+
        if (internal_config.xen_dom0_support) {
 #ifdef RTE_LIBRTE_XEN_DOM0
                if (rte_xen_dom0_memory_attach() < 0) {
@@ -1440,36 +1588,3 @@ error:
                close(fd_hugepage);
        return -1;
 }
-
-static int
-rte_eal_memdevice_init(void)
-{
-       struct rte_config *config;
-
-       if (rte_eal_process_type() == RTE_PROC_SECONDARY)
-               return 0;
-
-       config = rte_eal_get_configuration();
-       config->mem_config->nchannel = internal_config.force_nchannel;
-       config->mem_config->nrank = internal_config.force_nrank;
-
-       return 0;
-}
-
-
-/* init memory subsystem */
-int
-rte_eal_memory_init(void)
-{
-       RTE_LOG(INFO, EAL, "Setting up memory...\n");
-       const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
-                       rte_eal_hugepage_init() :
-                       rte_eal_hugepage_attach();
-       if (retval < 0)
-               return -1;
-
-       if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
-               return -1;
-
-       return 0;
-}