net/ice: add AVX512 vector path
authorLeyi Rong <leyi.rong@intel.com>
Fri, 23 Oct 2020 04:14:05 +0000 (12:14 +0800)
committerFerruh Yigit <ferruh.yigit@intel.com>
Tue, 3 Nov 2020 22:24:26 +0000 (23:24 +0100)
Add AVX512 support for ice PMD. This patch adds ice_rxtx_vec_avx512.c
to support ice AVX512 vPMD.

This patch aims to enable AVX512 on ice vPMD. Main changes are focus
on Rx path compared with AVX2 vPMD.

Signed-off-by: Leyi Rong <leyi.rong@intel.com>
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
drivers/net/ice/ice_rxtx.c
drivers/net/ice/ice_rxtx.h
drivers/net/ice/ice_rxtx_vec_avx512.c [new file with mode: 0644]
drivers/net/ice/meson.build

index ee576c3..0785f37 100644 (file)
@@ -1930,6 +1930,10 @@ ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
 #ifdef RTE_ARCH_X86
        if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
            dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
+#ifdef CC_AVX512_SUPPORT
+           dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
+           dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
+#endif
            dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
            dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2)
                return ptypes;
@@ -2987,6 +2991,7 @@ ice_set_rx_function(struct rte_eth_dev *dev)
 #ifdef RTE_ARCH_X86
        struct ice_rx_queue *rxq;
        int i;
+       bool use_avx512 = false;
        bool use_avx2 = false;
 
        if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
@@ -3001,9 +3006,19 @@ ice_set_rx_function(struct rte_eth_dev *dev)
                                }
                        }
 
-                       if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
-                            rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
-                                       rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
+                       if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
+                       rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
+                       rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
+#ifdef CC_AVX512_SUPPORT
+                               use_avx512 = true;
+#else
+                       PMD_DRV_LOG(NOTICE,
+                               "AVX512 is not supported in build env");
+#endif
+                       if (!use_avx512 &&
+                       (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+                       rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
+                       rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
                                use_avx2 = true;
 
                } else {
@@ -3013,20 +3028,41 @@ ice_set_rx_function(struct rte_eth_dev *dev)
 
        if (ad->rx_vec_allowed) {
                if (dev->data->scattered_rx) {
-                       PMD_DRV_LOG(DEBUG,
+                       if (use_avx512) {
+#ifdef CC_AVX512_SUPPORT
+                               PMD_DRV_LOG(NOTICE,
+                                       "Using AVX512 Vector Scattered Rx (port %d).",
+                                       dev->data->port_id);
+                               dev->rx_pkt_burst =
+                                       ice_recv_scattered_pkts_vec_avx512;
+#endif
+                       } else {
+                               PMD_DRV_LOG(DEBUG,
                                        "Using %sVector Scattered Rx (port %d).",
                                        use_avx2 ? "avx2 " : "",
                                        dev->data->port_id);
-                       dev->rx_pkt_burst = use_avx2 ?
+                               dev->rx_pkt_burst = use_avx2 ?
                                        ice_recv_scattered_pkts_vec_avx2 :
                                        ice_recv_scattered_pkts_vec;
+                       }
                } else {
-                       PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
+                       if (use_avx512) {
+#ifdef CC_AVX512_SUPPORT
+                               PMD_DRV_LOG(NOTICE,
+                                       "Using AVX512 Vector Rx (port %d).",
+                                       dev->data->port_id);
+                               dev->rx_pkt_burst =
+                                       ice_recv_pkts_vec_avx512;
+#endif
+                       } else {
+                               PMD_DRV_LOG(DEBUG,
+                                       "Using %sVector Rx (port %d).",
                                        use_avx2 ? "avx2 " : "",
                                        dev->data->port_id);
-                       dev->rx_pkt_burst = use_avx2 ?
-                                               ice_recv_pkts_vec_avx2 :
-                                               ice_recv_pkts_vec;
+                               dev->rx_pkt_burst = use_avx2 ?
+                                       ice_recv_pkts_vec_avx2 :
+                                       ice_recv_pkts_vec;
+                       }
                }
                return;
        }
@@ -3063,6 +3099,10 @@ static const struct {
        { ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
        { ice_recv_pkts,                    "Scalar" },
 #ifdef RTE_ARCH_X86
+#ifdef CC_AVX512_SUPPORT
+       { ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
+       { ice_recv_pkts_vec_avx512,           "Vector AVX512" },
+#endif
        { ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
        { ice_recv_pkts_vec_avx2,           "Vector AVX2" },
        { ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
@@ -3167,6 +3207,7 @@ ice_set_tx_function(struct rte_eth_dev *dev)
 #ifdef RTE_ARCH_X86
        struct ice_tx_queue *txq;
        int i;
+       bool use_avx512 = false;
        bool use_avx2 = false;
 
        if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
@@ -3181,9 +3222,19 @@ ice_set_tx_function(struct rte_eth_dev *dev)
                                }
                        }
 
-                       if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
-                            rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
-                                       rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
+                       if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
+                       rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
+                       rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
+#ifdef CC_AVX512_SUPPORT
+                               use_avx512 = true;
+#else
+                       PMD_DRV_LOG(NOTICE,
+                               "AVX512 is not supported in build env");
+#endif
+                       if (!use_avx512 &&
+                       (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+                       rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
+                       rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
                                use_avx2 = true;
 
                } else {
@@ -3192,12 +3243,20 @@ ice_set_tx_function(struct rte_eth_dev *dev)
        }
 
        if (ad->tx_vec_allowed) {
-               PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
-                           use_avx2 ? "avx2 " : "",
-                           dev->data->port_id);
-               dev->tx_pkt_burst = use_avx2 ?
-                                   ice_xmit_pkts_vec_avx2 :
-                                   ice_xmit_pkts_vec;
+               if (use_avx512) {
+#ifdef CC_AVX512_SUPPORT
+                       PMD_DRV_LOG(NOTICE, "Using AVX512 Vector Tx (port %d).",
+                                   dev->data->port_id);
+                       dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
+#endif
+               } else {
+                       PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
+                                   use_avx2 ? "avx2 " : "",
+                                   dev->data->port_id);
+                       dev->tx_pkt_burst = use_avx2 ?
+                                           ice_xmit_pkts_vec_avx2 :
+                                           ice_xmit_pkts_vec;
+               }
                dev->tx_pkt_prepare = NULL;
 
                return;
@@ -3222,6 +3281,9 @@ static const struct {
        { ice_xmit_pkts_simple,   "Scalar Simple" },
        { ice_xmit_pkts,          "Scalar" },
 #ifdef RTE_ARCH_X86
+#ifdef CC_AVX512_SUPPORT
+       { ice_xmit_pkts_vec_avx512, "Vector AVX512" },
+#endif
        { ice_xmit_pkts_vec_avx2, "Vector AVX2" },
        { ice_xmit_pkts_vec,      "Vector SSE" },
 #endif
index 1c23c75..7cebbc2 100644 (file)
@@ -248,6 +248,13 @@ uint16_t ice_recv_scattered_pkts_vec_avx2(void *rx_queue,
                                          uint16_t nb_pkts);
 uint16_t ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
                                uint16_t nb_pkts);
+uint16_t ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
+                                 uint16_t nb_pkts);
+uint16_t ice_recv_scattered_pkts_vec_avx512(void *rx_queue,
+                                           struct rte_mbuf **rx_pkts,
+                                           uint16_t nb_pkts);
+uint16_t ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+                                 uint16_t nb_pkts);
 int ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc);
 int ice_tx_done_cleanup(void *txq, uint32_t free_cnt);
 
diff --git a/drivers/net/ice/ice_rxtx_vec_avx512.c b/drivers/net/ice/ice_rxtx_vec_avx512.c
new file mode 100644 (file)
index 0000000..73c4ffc
--- /dev/null
@@ -0,0 +1,824 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2019 Intel Corporation
+ */
+
+#include "ice_rxtx_vec_common.h"
+
+#include <x86intrin.h>
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+#define ICE_DESCS_PER_LOOP_AVX 8
+
+static inline void
+ice_rxq_rearm(struct ice_rx_queue *rxq)
+{
+       int i;
+       uint16_t rx_id;
+       volatile union ice_rx_flex_desc *rxdp;
+       struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
+       struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
+                       rte_lcore_id());
+
+       rxdp = rxq->rx_ring + rxq->rxrearm_start;
+
+       /* We need to pull 'n' more MBUFs into the software ring */
+       if (cache->len < ICE_RXQ_REARM_THRESH) {
+               uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
+                               cache->len);
+
+               int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
+                               &cache->objs[cache->len], req);
+               if (ret == 0) {
+                       cache->len += req;
+               } else {
+                       if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
+                           rxq->nb_rx_desc) {
+                               __m128i dma_addr0;
+
+                               dma_addr0 = _mm_setzero_si128();
+                               for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
+                                       rxep[i].mbuf = &rxq->fake_mbuf;
+                                       _mm_store_si128
+                                               ((__m128i *)&rxdp[i].read,
+                                                       dma_addr0);
+                               }
+                       }
+                       rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
+                               ICE_RXQ_REARM_THRESH;
+                       return;
+               }
+       }
+
+       const __m512i iova_offsets =  _mm512_set1_epi64
+               (offsetof(struct rte_mbuf, buf_iova));
+       const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
+
+#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
+       /* shuffle the iova into correct slots. Values 4-7 will contain
+        * zeros, so use 7 for a zero-value.
+        */
+       const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
+#else
+       const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
+#endif
+
+       /* fill up the rxd in vector, process 8 mbufs in one loop */
+       for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
+               const __m512i mbuf_ptrs = _mm512_loadu_si512
+                       (&cache->objs[cache->len - 8]);
+               _mm512_store_si512(rxep, mbuf_ptrs);
+
+               /* gather iova of mbuf0-7 into one zmm reg */
+               const __m512i iova_base_addrs = _mm512_i64gather_epi64
+                       (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
+                               0, /* base */
+                               1  /* scale */);
+               const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
+                               headroom);
+#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
+               const __m512i iovas0 = _mm512_castsi256_si512
+                       (_mm512_extracti64x4_epi64(iova_addrs, 0));
+               const __m512i iovas1 = _mm512_castsi256_si512
+                       (_mm512_extracti64x4_epi64(iova_addrs, 1));
+
+               /* permute leaves iova 2-3 in hdr_addr of desc 0-1
+                * but these are ignored by driver since header split not
+                * enabled. Similarly for desc 4 & 5.
+                */
+               const __m512i desc0_1 = _mm512_permutexvar_epi64
+                       (permute_idx, iovas0);
+               const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
+
+               const __m512i desc4_5 = _mm512_permutexvar_epi64
+                       (permute_idx, iovas1);
+               const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
+
+               _mm512_store_si512((void *)rxdp, desc0_1);
+               _mm512_store_si512((void *)(rxdp + 2), desc2_3);
+               _mm512_store_si512((void *)(rxdp + 4), desc4_5);
+               _mm512_store_si512((void *)(rxdp + 6), desc6_7);
+#else
+               /* permute leaves iova 4-7 in hdr_addr of desc 0-3
+                * but these are ignored by driver since header split not
+                * enabled.
+                */
+               const __m512i desc0_3 = _mm512_permutexvar_epi64
+                       (permute_idx, iova_addrs);
+               const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
+
+               _mm512_store_si512((void *)rxdp, desc0_3);
+               _mm512_store_si512((void *)(rxdp + 4), desc4_7);
+#endif
+               rxep += 8, rxdp += 8, cache->len -= 8;
+       }
+
+       rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
+       if (rxq->rxrearm_start >= rxq->nb_rx_desc)
+               rxq->rxrearm_start = 0;
+
+       rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
+
+       rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
+                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
+
+       /* Update the tail pointer on the NIC */
+       ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+}
+
+static inline uint16_t
+_ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
+                             struct rte_mbuf **rx_pkts,
+                             uint16_t nb_pkts, uint8_t *split_packet)
+{
+       const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
+       const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
+                       0, rxq->mbuf_initializer);
+       struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
+       volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
+
+       rte_prefetch0(rxdp);
+
+       /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
+       nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
+
+       /* See if we need to rearm the RX queue - gives the prefetch a bit
+        * of time to act
+        */
+       if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
+               ice_rxq_rearm(rxq);
+
+       /* Before we start moving massive data around, check to see if
+        * there is actually a packet available
+        */
+       if (!(rxdp->wb.status_error0 &
+                       rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
+               return 0;
+
+       /* constants used in processing loop */
+       const __m512i crc_adjust =
+               _mm512_set4_epi32
+                       (0,             /* ignore non-length fields */
+                        -rxq->crc_len, /* sub crc on data_len */
+                        -rxq->crc_len, /* sub crc on pkt_len */
+                        0              /* ignore non-length fields */
+                       );
+
+       /* 8 packets DD mask, LSB in each 32-bit value */
+       const __m256i dd_check = _mm256_set1_epi32(1);
+
+       /* 8 packets EOP mask, second-LSB in each 32-bit value */
+       const __m256i eop_check = _mm256_slli_epi32(dd_check,
+                       ICE_RX_DESC_STATUS_EOF_S);
+
+       /* mask to shuffle from desc. to mbuf (4 descriptors)*/
+       const __m512i shuf_msk =
+               _mm512_set4_epi32
+                       (/* octet 12~15, 32 bits rss */
+                        15 << 24 | 14 << 16 | 13 << 8 | 12,
+                        /* octet 10~11, 16 bits vlan_macip */
+                        /* octet 4~5, 16 bits data_len */
+                        11 << 24 | 10 << 16 | 5 << 8 | 4,
+                        /* skip hi 16 bits pkt_len, zero out */
+                        /* octet 4~5, 16 bits pkt_len */
+                        0xFFFF << 16 | 5 << 8 | 4,
+                        /* pkt_type set as unknown */
+                        0xFFFFFFFF
+                       );
+
+       /**
+        * compile-time check the above crc and shuffle layout is correct.
+        * NOTE: the first field (lowest address) is given last in set_epi
+        * calls above.
+        */
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+       RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+                       offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+       /* Status/Error flag masks */
+       /**
+        * mask everything except Checksum Reports, RSS indication
+        * and VLAN indication.
+        * bit6:4 for IP/L4 checksum errors.
+        * bit12 is for RSS indication.
+        * bit13 is for VLAN indication.
+        */
+       const __m256i flags_mask =
+                _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
+       /**
+        * data to be shuffled by the result of the flags mask shifted by 4
+        * bits.  This gives use the l3_l4 flags.
+        */
+       const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+                       /* shift right 1 bit to make sure it not exceed 255 */
+                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                        PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                        PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
+                        PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
+                        PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       /* 2nd 128-bits */
+                       0, 0, 0, 0, 0, 0, 0, 0,
+                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                        PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+                        PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
+                        PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
+                        PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
+                       (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
+                       (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
+       const __m256i cksum_mask =
+                _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
+                                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
+                                  PKT_RX_EIP_CKSUM_BAD);
+       /**
+        * data to be shuffled by result of flag mask, shifted down 12.
+        * If RSS(bit12)/VLAN(bit13) are set,
+        * shuffle moves appropriate flags in place.
+        */
+       const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
+                       PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
+                       PKT_RX_RSS_HASH, 0,
+                       /* 2nd 128-bits */
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       0, 0, 0, 0,
+                       PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
+                       PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
+                       PKT_RX_RSS_HASH, 0);
+
+       uint16_t i, received;
+
+       for (i = 0, received = 0; i < nb_pkts;
+            i += ICE_DESCS_PER_LOOP_AVX,
+            rxdp += ICE_DESCS_PER_LOOP_AVX) {
+               /* step 1, copy over 8 mbuf pointers to rx_pkts array */
+               _mm256_storeu_si256((void *)&rx_pkts[i],
+                                   _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+               _mm256_storeu_si256
+                       ((void *)&rx_pkts[i + 4],
+                        _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+               __m512i raw_desc0_3, raw_desc4_7;
+               __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
+
+               /* load in descriptors, in reverse order */
+               const __m128i raw_desc7 =
+                       _mm_load_si128((void *)(rxdp + 7));
+               rte_compiler_barrier();
+               const __m128i raw_desc6 =
+                       _mm_load_si128((void *)(rxdp + 6));
+               rte_compiler_barrier();
+               const __m128i raw_desc5 =
+                       _mm_load_si128((void *)(rxdp + 5));
+               rte_compiler_barrier();
+               const __m128i raw_desc4 =
+                       _mm_load_si128((void *)(rxdp + 4));
+               rte_compiler_barrier();
+               const __m128i raw_desc3 =
+                       _mm_load_si128((void *)(rxdp + 3));
+               rte_compiler_barrier();
+               const __m128i raw_desc2 =
+                       _mm_load_si128((void *)(rxdp + 2));
+               rte_compiler_barrier();
+               const __m128i raw_desc1 =
+                       _mm_load_si128((void *)(rxdp + 1));
+               rte_compiler_barrier();
+               const __m128i raw_desc0 =
+                       _mm_load_si128((void *)(rxdp + 0));
+
+               raw_desc6_7 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc6),
+                                raw_desc7, 1);
+               raw_desc4_5 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc4),
+                                raw_desc5, 1);
+               raw_desc2_3 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc2),
+                                raw_desc3, 1);
+               raw_desc0_1 =
+                       _mm256_inserti128_si256
+                               (_mm256_castsi128_si256(raw_desc0),
+                                raw_desc1, 1);
+
+               raw_desc4_7 =
+                       _mm512_inserti64x4
+                               (_mm512_castsi256_si512(raw_desc4_5),
+                                raw_desc6_7, 1);
+               raw_desc0_3 =
+                       _mm512_inserti64x4
+                               (_mm512_castsi256_si512(raw_desc0_1),
+                                raw_desc2_3, 1);
+
+               if (split_packet) {
+                       int j;
+
+                       for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
+                               rte_mbuf_prefetch_part2(rx_pkts[i + j]);
+               }
+
+               /**
+                * convert descriptors 0-7 into mbufs, re-arrange fields.
+                * Then write into the mbuf.
+                */
+               __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
+               __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
+
+               mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
+               mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
+
+               /**
+                * to get packet types, ptype is located in bit16-25
+                * of each 128bits
+                */
+               const __m512i ptype_mask =
+                       _mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
+
+               /**
+                * to get packet types, ptype is located in bit16-25
+                * of each 128bits
+                */
+               const __m512i ptypes4_7 =
+                       _mm512_and_si512(raw_desc4_7, ptype_mask);
+               const __m512i ptypes0_3 =
+                       _mm512_and_si512(raw_desc0_3, ptype_mask);
+
+               const __m256i ptypes6_7 =
+                       _mm512_extracti64x4_epi64(ptypes4_7, 1);
+               const __m256i ptypes4_5 =
+                       _mm512_extracti64x4_epi64(ptypes4_7, 0);
+               const __m256i ptypes2_3 =
+                       _mm512_extracti64x4_epi64(ptypes0_3, 1);
+               const __m256i ptypes0_1 =
+                       _mm512_extracti64x4_epi64(ptypes0_3, 0);
+               const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
+               const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
+               const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
+               const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
+               const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
+               const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
+               const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
+               const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
+
+               const __m512i ptype4_7 = _mm512_set_epi32
+                       (0, 0, 0, ptype_tbl[ptype7],
+                        0, 0, 0, ptype_tbl[ptype6],
+                        0, 0, 0, ptype_tbl[ptype5],
+                        0, 0, 0, ptype_tbl[ptype4]);
+               const __m512i ptype0_3 = _mm512_set_epi32
+                       (0, 0, 0, ptype_tbl[ptype3],
+                        0, 0, 0, ptype_tbl[ptype2],
+                        0, 0, 0, ptype_tbl[ptype1],
+                        0, 0, 0, ptype_tbl[ptype0]);
+
+               mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
+               mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
+
+               /**
+                * use permute/extract to get status content
+                * After the operations, the packets status flags are in the
+                * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+                */
+               /* merge the status bits into one register */
+               const __m512i status_permute_msk = _mm512_set_epi32
+                       (0, 0, 0, 0,
+                        0, 0, 0, 0,
+                        22, 30, 6, 14,
+                        18, 26, 2, 10);
+               const __m512i raw_status0_7 = _mm512_permutex2var_epi32
+                       (raw_desc4_7, status_permute_msk, raw_desc0_3);
+               __m256i status0_7 = _mm512_extracti64x4_epi64
+                       (raw_status0_7, 0);
+
+               /* now do flag manipulation */
+
+               /* get only flag/error bits we want */
+               const __m256i flag_bits =
+                       _mm256_and_si256(status0_7, flags_mask);
+               /**
+                * l3_l4_error flags, shuffle, then shift to correct adjustment
+                * of flags in flags_shuf, and finally mask out extra bits
+                */
+               __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+                               _mm256_srli_epi32(flag_bits, 4));
+               l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+               l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+               /* set rss and vlan flags */
+               const __m256i rss_vlan_flag_bits =
+                       _mm256_srli_epi32(flag_bits, 12);
+               const __m256i rss_vlan_flags =
+                       _mm256_shuffle_epi8(rss_vlan_flags_shuf,
+                                           rss_vlan_flag_bits);
+
+               /* merge flags */
+               const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
+                               rss_vlan_flags);
+               /**
+                * At this point, we have the 8 sets of flags in the low 16-bits
+                * of each 32-bit value in vlan0.
+                * We want to extract these, and merge them with the mbuf init
+                * data so we can do a single write to the mbuf to set the flags
+                * and all the other initialization fields. Extracting the
+                * appropriate flags means that we have to do a shift and blend
+                * for each mbuf before we do the write. However, we can also
+                * add in the previously computed rx_descriptor fields to
+                * make a single 256-bit write per mbuf
+                */
+               /* check the structure matches expectations */
+               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+                                offsetof(struct rte_mbuf, rearm_data) + 8);
+               RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+                                RTE_ALIGN(offsetof(struct rte_mbuf,
+                                                   rearm_data),
+                                          16));
+               /* build up data and do writes */
+               __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+                       rearm6, rearm7;
+
+               rearm6 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(mbuf_flags, 8),
+                                           0x04);
+               rearm4 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(mbuf_flags, 4),
+                                           0x04);
+               rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
+               rearm0 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_srli_si256(mbuf_flags, 4),
+                                           0x04);
+
+               const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
+               const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
+               const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
+               const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
+
+               /* permute to add in the rx_descriptor e.g. rss fields */
+               rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+               rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+               rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+               rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+
+               /* write to mbuf */
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
+                                   rearm6);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
+                                   rearm4);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
+                                   rearm2);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
+                                   rearm0);
+
+               /* repeat for the odd mbufs */
+               const __m256i odd_flags =
+                       _mm256_castsi128_si256
+                               (_mm256_extracti128_si256(mbuf_flags, 1));
+               rearm7 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(odd_flags, 8),
+                                           0x04);
+               rearm5 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_slli_si256(odd_flags, 4),
+                                           0x04);
+               rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
+               rearm1 = _mm256_blend_epi32(mbuf_init,
+                                           _mm256_srli_si256(odd_flags, 4),
+                                           0x04);
+
+               /* since odd mbufs are already in hi 128-bits use blend */
+               rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+               rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+               rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+               rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+               /* again write to mbufs */
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
+                                   rearm7);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
+                                   rearm5);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
+                                   rearm3);
+               _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
+                                   rearm1);
+
+               /* extract and record EOP bit */
+               if (split_packet) {
+                       const __m128i eop_mask =
+                               _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
+                       const __m256i eop_bits256 = _mm256_and_si256(status0_7,
+                                                                    eop_check);
+                       /* pack status bits into a single 128-bit register */
+                       const __m128i eop_bits =
+                               _mm_packus_epi32
+                                       (_mm256_castsi256_si128(eop_bits256),
+                                        _mm256_extractf128_si256(eop_bits256,
+                                                                 1));
+                       /**
+                        * flip bits, and mask out the EOP bit, which is now
+                        * a split-packet bit i.e. !EOP, rather than EOP one.
+                        */
+                       __m128i split_bits = _mm_andnot_si128(eop_bits,
+                                       eop_mask);
+                       /**
+                        * eop bits are out of order, so we need to shuffle them
+                        * back into order again. In doing so, only use low 8
+                        * bits, which acts like another pack instruction
+                        * The original order is (hi->lo): 1,3,5,7,0,2,4,6
+                        * [Since we use epi8, the 16-bit positions are
+                        * multiplied by 2 in the eop_shuffle value.]
+                        */
+                       __m128i eop_shuffle =
+                               _mm_set_epi8(/* zero hi 64b */
+                                            0xFF, 0xFF, 0xFF, 0xFF,
+                                            0xFF, 0xFF, 0xFF, 0xFF,
+                                            /* move values to lo 64b */
+                                            8, 0, 10, 2,
+                                            12, 4, 14, 6);
+                       split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
+                       *(uint64_t *)split_packet =
+                               _mm_cvtsi128_si64(split_bits);
+                       split_packet += ICE_DESCS_PER_LOOP_AVX;
+               }
+
+               /* perform dd_check */
+               status0_7 = _mm256_and_si256(status0_7, dd_check);
+               status0_7 = _mm256_packs_epi32(status0_7,
+                                              _mm256_setzero_si256());
+
+               uint64_t burst = __builtin_popcountll
+                                       (_mm_cvtsi128_si64
+                                               (_mm256_extracti128_si256
+                                                       (status0_7, 1)));
+               burst += __builtin_popcountll
+                               (_mm_cvtsi128_si64
+                                       (_mm256_castsi256_si128(status0_7)));
+               received += burst;
+               if (burst != ICE_DESCS_PER_LOOP_AVX)
+                       break;
+       }
+
+       /* update tail pointers */
+       rxq->rx_tail += received;
+       rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+       if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
+               rxq->rx_tail--;
+               received--;
+       }
+       rxq->rxrearm_nb += received;
+       return received;
+}
+
+/**
+ * Notice:
+ * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
+                        uint16_t nb_pkts)
+{
+       return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
+}
+
+/**
+ * vPMD receive routine that reassembles single burst of 32 scattered packets
+ * Notice:
+ * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
+ */
+static uint16_t
+ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
+                                   uint16_t nb_pkts)
+{
+       struct ice_rx_queue *rxq = rx_queue;
+       uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
+
+       /* get some new buffers */
+       uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
+                                                      split_flags);
+       if (nb_bufs == 0)
+               return 0;
+
+       /* happy day case, full burst + no packets to be joined */
+       const uint64_t *split_fl64 = (uint64_t *)split_flags;
+
+       if (!rxq->pkt_first_seg &&
+           split_fl64[0] == 0 && split_fl64[1] == 0 &&
+           split_fl64[2] == 0 && split_fl64[3] == 0)
+               return nb_bufs;
+
+       /* reassemble any packets that need reassembly */
+       unsigned int i = 0;
+
+       if (!rxq->pkt_first_seg) {
+               /* find the first split flag, and only reassemble then */
+               while (i < nb_bufs && !split_flags[i])
+                       i++;
+               if (i == nb_bufs)
+                       return nb_bufs;
+               rxq->pkt_first_seg = rx_pkts[i];
+       }
+       return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
+                                            &split_flags[i]);
+}
+
+/**
+ * vPMD receive routine that reassembles scattered packets.
+ * Main receive routine that can handle arbitrary burst sizes
+ * Notice:
+ * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
+                                  uint16_t nb_pkts)
+{
+       uint16_t retval = 0;
+
+       while (nb_pkts > ICE_VPMD_RX_BURST) {
+               uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
+                               rx_pkts + retval, ICE_VPMD_RX_BURST);
+               retval += burst;
+               nb_pkts -= burst;
+               if (burst < ICE_VPMD_RX_BURST)
+                       return retval;
+       }
+       return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
+                               rx_pkts + retval, nb_pkts);
+}
+
+static inline void
+ice_vtx1(volatile struct ice_tx_desc *txdp,
+        struct rte_mbuf *pkt, uint64_t flags)
+{
+       uint64_t high_qw =
+               (ICE_TX_DESC_DTYPE_DATA |
+                ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
+                ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
+
+       __m128i descriptor = _mm_set_epi64x(high_qw,
+                               pkt->buf_iova + pkt->data_off);
+       _mm_store_si128((__m128i *)txdp, descriptor);
+}
+
+static inline void
+ice_vtx(volatile struct ice_tx_desc *txdp,
+       struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
+{
+       const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
+                       ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
+
+       /* if unaligned on 32-bit boundary, do one to align */
+       if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
+               ice_vtx1(txdp, *pkt, flags);
+               nb_pkts--, txdp++, pkt++;
+       }
+
+       /* do two at a time while possible, in bursts */
+       for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
+               uint64_t hi_qw3 =
+                       hi_qw_tmpl |
+                       ((uint64_t)pkt[3]->data_len <<
+                        ICE_TXD_QW1_TX_BUF_SZ_S);
+               uint64_t hi_qw2 =
+                       hi_qw_tmpl |
+                       ((uint64_t)pkt[2]->data_len <<
+                        ICE_TXD_QW1_TX_BUF_SZ_S);
+               uint64_t hi_qw1 =
+                       hi_qw_tmpl |
+                       ((uint64_t)pkt[1]->data_len <<
+                        ICE_TXD_QW1_TX_BUF_SZ_S);
+               uint64_t hi_qw0 =
+                       hi_qw_tmpl |
+                       ((uint64_t)pkt[0]->data_len <<
+                        ICE_TXD_QW1_TX_BUF_SZ_S);
+
+               __m256i desc2_3 =
+                       _mm256_set_epi64x
+                               (hi_qw3,
+                                pkt[3]->buf_iova + pkt[3]->data_off,
+                                hi_qw2,
+                                pkt[2]->buf_iova + pkt[2]->data_off);
+               __m256i desc0_1 =
+                       _mm256_set_epi64x
+                               (hi_qw1,
+                                pkt[1]->buf_iova + pkt[1]->data_off,
+                                hi_qw0,
+                                pkt[0]->buf_iova + pkt[0]->data_off);
+               _mm256_store_si256((void *)(txdp + 2), desc2_3);
+               _mm256_store_si256((void *)txdp, desc0_1);
+       }
+
+       /* do any last ones */
+       while (nb_pkts) {
+               ice_vtx1(txdp, *pkt, flags);
+               txdp++, pkt++, nb_pkts--;
+       }
+}
+
+static inline uint16_t
+ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+                               uint16_t nb_pkts)
+{
+       struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
+       volatile struct ice_tx_desc *txdp;
+       struct ice_tx_entry *txep;
+       uint16_t n, nb_commit, tx_id;
+       uint64_t flags = ICE_TD_CMD;
+       uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
+
+       /* cross rx_thresh boundary is not allowed */
+       nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
+
+       if (txq->nb_tx_free < txq->tx_free_thresh)
+               ice_tx_free_bufs(txq);
+
+       nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
+       if (unlikely(nb_pkts == 0))
+               return 0;
+
+       tx_id = txq->tx_tail;
+       txdp = &txq->tx_ring[tx_id];
+       txep = &txq->sw_ring[tx_id];
+
+       txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
+
+       n = (uint16_t)(txq->nb_tx_desc - tx_id);
+       if (nb_commit >= n) {
+               ice_tx_backlog_entry(txep, tx_pkts, n);
+
+               ice_vtx(txdp, tx_pkts, n - 1, flags);
+               tx_pkts += (n - 1);
+               txdp += (n - 1);
+
+               ice_vtx1(txdp, *tx_pkts++, rs);
+
+               nb_commit = (uint16_t)(nb_commit - n);
+
+               tx_id = 0;
+               txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+
+               /* avoid reach the end of ring */
+               txdp = &txq->tx_ring[tx_id];
+               txep = &txq->sw_ring[tx_id];
+       }
+
+       ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
+
+       ice_vtx(txdp, tx_pkts, nb_commit, flags);
+
+       tx_id = (uint16_t)(tx_id + nb_commit);
+       if (tx_id > txq->tx_next_rs) {
+               txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
+                       rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
+                                        ICE_TXD_QW1_CMD_S);
+               txq->tx_next_rs =
+                       (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
+       }
+
+       txq->tx_tail = tx_id;
+
+       ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+
+       return nb_pkts;
+}
+
+uint16_t
+ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+                        uint16_t nb_pkts)
+{
+       uint16_t nb_tx = 0;
+       struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
+
+       while (nb_pkts) {
+               uint16_t ret, num;
+
+               num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
+               ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
+                                                     &tx_pkts[nb_tx], num);
+               nb_tx += ret;
+               nb_pkts -= ret;
+               if (ret < num)
+                       break;
+       }
+
+       return nb_tx;
+}
index 40cae3c..7b29126 100644 (file)
@@ -34,6 +34,30 @@ if arch_subdir == 'x86'
                                c_args: [cflags, '-mavx2'])
                objs += ice_avx2_lib.extract_objects('ice_rxtx_vec_avx2.c')
        endif
+
+       ice_avx512_cpu_support = (
+               cc.get_define('__AVX512F__', args: machine_args) != '' and
+               cc.get_define('__AVX512BW__', args: machine_args) != '')
+
+       ice_avx512_cc_support = (
+               not machine_args.contains('-mno-avx512f') and
+               cc.has_argument('-mavx512f') and
+               cc.has_argument('-mavx512bw'))
+
+       if ice_avx512_cpu_support == true or ice_avx512_cc_support == true
+               cflags += ['-DCC_AVX512_SUPPORT']
+               avx512_args = [cflags, '-mavx512f', '-mavx512bw']
+               if cc.has_argument('-march=skylake-avx512')
+                       avx512_args += '-march=skylake-avx512'
+               endif
+               ice_avx512_lib = static_library('ice_avx512_lib',
+                               'ice_rxtx_vec_avx512.c',
+                               dependencies: [static_rte_ethdev,
+                                       static_rte_kvargs, static_rte_hash],
+                               include_directories: includes,
+                               c_args: avx512_args)
+               objs += ice_avx512_lib.extract_objects('ice_rxtx_vec_avx512.c')
+       endif
 endif
 
 sources += files('ice_dcf.c',