acl: deduplicate some SSE and AVX2 code
[dpdk.git] / lib / librte_acl / acl_run_sse.h
index 4a174e9..ad40a67 100644 (file)
@@ -67,6 +67,12 @@ static const rte_xmm_t xmm_index_mask = {
        },
 };
 
+static const rte_xmm_t xmm_range_base = {
+       .u32 = {
+               0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
+       },
+};
+
 /*
  * Resolve priority for multiple results (sse version).
  * This consists comparing the priority of the current traversal with the
@@ -90,25 +96,28 @@ resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
                        (xmm_t *)(&parms[n].cmplt->priority[x]);
 
                /* get results and priorities for completed trie */
-               results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
-               priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
+               results = _mm_loadu_si128(
+                       (const xmm_t *)&p[transition].results[x]);
+               priority = _mm_loadu_si128(
+                       (const xmm_t *)&p[transition].priority[x]);
 
                /* if this is not the first completed trie */
                if (parms[n].cmplt->count != ctx->num_tries) {
 
                        /* get running best results and their priorities */
-                       results1 = MM_LOADU(saved_results);
-                       priority1 = MM_LOADU(saved_priority);
+                       results1 = _mm_loadu_si128(saved_results);
+                       priority1 = _mm_loadu_si128(saved_priority);
 
                        /* select results that are highest priority */
-                       selector = MM_CMPGT32(priority1, priority);
-                       results = MM_BLENDV8(results, results1, selector);
-                       priority = MM_BLENDV8(priority, priority1, selector);
+                       selector = _mm_cmpgt_epi32(priority1, priority);
+                       results = _mm_blendv_epi8(results, results1, selector);
+                       priority = _mm_blendv_epi8(priority, priority1,
+                               selector);
                }
 
                /* save running best results and their priorities */
-               MM_STOREU(saved_results, results);
-               MM_STOREU(saved_priority, priority);
+               _mm_storeu_si128(saved_results, results);
+               _mm_storeu_si128(saved_priority, priority);
        }
 }
 
@@ -122,11 +131,11 @@ acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
        uint64_t transition1, transition2;
 
        /* extract transition from low 64 bits. */
-       transition1 = MM_CVT64(*indices);
+       transition1 = _mm_cvtsi128_si64(*indices);
 
        /* extract transition from high 64 bits. */
-       *indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64);
-       transition2 = MM_CVT64(*indices);
+       *indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64);
+       transition2 = _mm_cvtsi128_si64(*indices);
 
        transition1 = acl_match_check(transition1, slot, ctx,
                parms, flows, resolve_priority_sse);
@@ -134,7 +143,7 @@ acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
                parms, flows, resolve_priority_sse);
 
        /* update indices with new transitions. */
-       *indices = MM_SET64(transition2, transition1);
+       *indices = _mm_set_epi64x(transition2, transition1);
 }
 
 /*
@@ -148,98 +157,24 @@ acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
        xmm_t temp;
 
        /* put low 32 bits of each transition into one register */
-       temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
+       temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
                0x88);
        /* test for match node */
-       temp = MM_AND(match_mask, temp);
+       temp = _mm_and_si128(match_mask, temp);
 
-       while (!MM_TESTZ(temp, temp)) {
+       while (!_mm_testz_si128(temp, temp)) {
                acl_process_matches(indices1, slot, ctx, parms, flows);
                acl_process_matches(indices2, slot + 2, ctx, parms, flows);
 
-               temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
+               temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1,
                                        (__m128)*indices2,
                                        0x88);
-               temp = MM_AND(match_mask, temp);
+               temp = _mm_and_si128(match_mask, temp);
        }
 }
 
 /*
- * Calculate the address of the next transition for
- * all types of nodes. Note that only DFA nodes and range
- * nodes actually transition to another node. Match
- * nodes don't move.
- */
-static inline __attribute__((always_inline)) xmm_t
-calc_addr_sse(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
-       xmm_t ones_16, xmm_t tr_lo, xmm_t tr_hi)
-{
-       xmm_t addr, node_types;
-       xmm_t dfa_msk, dfa_ofs, quad_ofs;
-       xmm_t in, r, t;
-
-       const xmm_t range_base = _mm_set_epi32(0xffffff0c, 0xffffff08,
-               0xffffff04, 0xffffff00);
-
-       /*
-        * Note that no transition is done for a match
-        * node and therefore a stream freezes when
-        * it reaches a match.
-        */
-
-       t = MM_XOR(index_mask, index_mask);
-
-       /* shuffle input byte to all 4 positions of 32 bit value */
-       in = MM_SHUFFLE8(next_input, shuffle_input);
-
-       /* Calc node type and node addr */
-       node_types = MM_ANDNOT(index_mask, tr_lo);
-       addr = MM_AND(index_mask, tr_lo);
-
-       /*
-        * Calc addr for DFAs - addr = dfa_index + input_byte
-        */
-
-       /* mask for DFA type (0) nodes */
-       dfa_msk = MM_CMPEQ32(node_types, t);
-
-       r = _mm_srli_epi32(in, 30);
-       r = _mm_add_epi8(r, range_base);
-
-       t = _mm_srli_epi32(in, 24);
-       r = _mm_shuffle_epi8(tr_hi, r);
-
-       dfa_ofs = _mm_sub_epi32(t, r);
-
-       /*
-        * Calculate number of range boundaries that are less than the
-        * input value. Range boundaries for each node are in signed 8 bit,
-        * ordered from -128 to 127 in the indices2 register.
-        * This is effectively a popcnt of bytes that are greater than the
-        * input byte.
-        */
-
-       /* check ranges */
-       t = MM_CMPGT8(in, tr_hi);
-
-       /* convert -1 to 1 (bytes greater than input byte */
-       t = MM_SIGN8(t, t);
-
-       /* horizontal add pairs of bytes into words */
-       t = MM_MADD8(t, t);
-
-       /* horizontal add pairs of words into dwords */
-       quad_ofs = MM_MADD16(t, ones_16);
-
-       /* blend DFA and QUAD/SINGLE. */
-       t = _mm_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
-
-       /* add index into node position */
-       return MM_ADD32(addr, t);
-}
-
-/*
- * Process 4 transitions (in 2 SIMD registers) in parallel
+ * Process 4 transitions (in 2 XMM registers) in parallel
  */
 static inline __attribute__((always_inline)) xmm_t
 transition4(xmm_t next_input, const uint64_t *trans,
@@ -249,39 +184,36 @@ transition4(xmm_t next_input, const uint64_t *trans,
        uint64_t trans0, trans2;
 
        /* Shuffle low 32 into tr_lo and high 32 into tr_hi */
-       tr_lo = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
-               0x88);
-       tr_hi = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
-               0xdd);
+       ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi);
 
         /* Calculate the address (array index) for all 4 transitions. */
-
-       addr = calc_addr_sse(xmm_index_mask.x, next_input, xmm_shuffle_input.x,
-               xmm_ones_16.x, tr_lo, tr_hi);
+       ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input,
+               xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x,
+               tr_lo, tr_hi);
 
         /* Gather 64 bit transitions and pack back into 2 registers. */
 
-       trans0 = trans[MM_CVT32(addr)];
+       trans0 = trans[_mm_cvtsi128_si32(addr)];
 
        /* get slot 2 */
 
        /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
-       trans2 = trans[MM_CVT32(addr)];
+       addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2);
+       trans2 = trans[_mm_cvtsi128_si32(addr)];
 
        /* get slot 1 */
 
        /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
-       *indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
+       addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1);
+       *indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0);
 
        /* get slot 3 */
 
        /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
-       addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
-       *indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
+       addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3);
+       *indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2);
 
-       return MM_SRL32(next_input, CHAR_BIT);
+       return _mm_srli_epi32(next_input, CHAR_BIT);
 }
 
 /*
@@ -314,11 +246,11 @@ search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
         * indices4 contains index_array[6,7]
         */
 
-       indices1 = MM_LOADU((xmm_t *) &index_array[0]);
-       indices2 = MM_LOADU((xmm_t *) &index_array[2]);
+       indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
+       indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
 
-       indices3 = MM_LOADU((xmm_t *) &index_array[4]);
-       indices4 = MM_LOADU((xmm_t *) &index_array[6]);
+       indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]);
+       indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]);
 
         /* Check for any matches. */
        acl_match_check_x4(0, ctx, parms, &flows,
@@ -332,14 +264,14 @@ search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
                input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
                input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
 
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
+               input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1);
+               input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1);
 
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
+               input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2);
+               input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2);
 
-               input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
-               input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
+               input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3);
+               input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3);
 
                 /* Process the 4 bytes of input on each stream. */
 
@@ -395,8 +327,8 @@ search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
                index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
        }
 
-       indices1 = MM_LOADU((xmm_t *) &index_array[0]);
-       indices2 = MM_LOADU((xmm_t *) &index_array[2]);
+       indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
+       indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
 
        /* Check for any matches. */
        acl_match_check_x4(0, ctx, parms, &flows,
@@ -406,9 +338,9 @@ search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
 
                /* Gather 4 bytes of input data for each stream. */
                input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
-               input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
+               input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1);
+               input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2);
+               input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3);
 
                /* Process the 4 bytes of input on each stream. */
                input = transition4(input, flows.trans, &indices1, &indices2);