remove experimental tags from all symbol definitions
[dpdk.git] / lib / librte_hash / rte_cuckoo_hash.c
index 50e3acd..51198b4 100644 (file)
@@ -1,34 +1,6 @@
-/*-
- *   BSD LICENSE
- *
- *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
- *   All rights reserved.
- *
- *   Redistribution and use in source and binary forms, with or without
- *   modification, are permitted provided that the following conditions
- *   are met:
- *
- *     * Redistributions of source code must retain the above copyright
- *       notice, this list of conditions and the following disclaimer.
- *     * Redistributions in binary form must reproduce the above copyright
- *       notice, this list of conditions and the following disclaimer in
- *       the documentation and/or other materials provided with the
- *       distribution.
- *     * Neither the name of Intel Corporation nor the names of its
- *       contributors may be used to endorse or promote products derived
- *       from this software without specific prior written permission.
- *
- *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2010-2016 Intel Corporation
+ * Copyright(c) 2018 Arm Limited
  */
 
 #include <string.h>
 #include <rte_common.h>
 #include <rte_memory.h>         /* for definition of RTE_CACHE_LINE_SIZE */
 #include <rte_log.h>
-#include <rte_memcpy.h>
 #include <rte_prefetch.h>
 #include <rte_branch_prediction.h>
-#include <rte_memzone.h>
 #include <rte_malloc.h>
 #include <rte_eal.h>
 #include <rte_eal_memconfig.h>
 #include <rte_errno.h>
 #include <rte_string_fns.h>
 #include <rte_cpuflags.h>
-#include <rte_log.h>
 #include <rte_rwlock.h>
 #include <rte_spinlock.h>
 #include <rte_ring.h>
+#include <rte_compat.h>
+#include <rte_vect.h>
 
 #include "rte_hash.h"
+#include "rte_cuckoo_hash.h"
+
+#define FOR_EACH_BUCKET(CURRENT_BKT, START_BUCKET)                            \
+       for (CURRENT_BKT = START_BUCKET;                                      \
+               CURRENT_BKT != NULL;                                          \
+               CURRENT_BKT = CURRENT_BKT->next)
 
 TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
 
@@ -66,80 +43,6 @@ static struct rte_tailq_elem rte_hash_tailq = {
 };
 EAL_REGISTER_TAILQ(rte_hash_tailq)
 
-/* Macro to enable/disable run-time checking of function parameters */
-#if defined(RTE_LIBRTE_HASH_DEBUG)
-#define RETURN_IF_TRUE(cond, retval) do { \
-       if (cond) \
-               return retval; \
-} while (0)
-#else
-#define RETURN_IF_TRUE(cond, retval)
-#endif
-
-/* Hash function used if none is specified */
-#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
-#include <rte_hash_crc.h>
-#define DEFAULT_HASH_FUNC       rte_hash_crc
-#else
-#include <rte_jhash.h>
-#define DEFAULT_HASH_FUNC       rte_jhash
-#endif
-
-/** Number of items per bucket. */
-#define RTE_HASH_BUCKET_ENTRIES                4
-
-#define NULL_SIGNATURE                 0
-
-typedef int (*rte_hash_cmp_eq_t)(const void *key1, const void *key2, size_t key_len);
-static int rte_hash_k16_cmp_eq(const void *key1, const void *key2, size_t key_len);
-static int rte_hash_k32_cmp_eq(const void *key1, const void *key2, size_t key_len);
-static int rte_hash_k48_cmp_eq(const void *key1, const void *key2, size_t key_len);
-static int rte_hash_k64_cmp_eq(const void *key1, const void *key2, size_t key_len);
-static int rte_hash_k80_cmp_eq(const void *key1, const void *key2, size_t key_len);
-static int rte_hash_k96_cmp_eq(const void *key1, const void *key2, size_t key_len);
-static int rte_hash_k112_cmp_eq(const void *key1, const void *key2, size_t key_len);
-static int rte_hash_k128_cmp_eq(const void *key1, const void *key2, size_t key_len);
-
-/** A hash table structure. */
-struct rte_hash {
-       char name[RTE_HASH_NAMESIZE];   /**< Name of the hash. */
-       uint32_t entries;               /**< Total table entries. */
-       uint32_t num_buckets;           /**< Number of buckets in table. */
-       uint32_t key_len;               /**< Length of hash key. */
-       rte_hash_function hash_func;    /**< Function used to calculate hash. */
-       rte_hash_cmp_eq_t rte_hash_cmp_eq; /**< Function used to compare keys. */
-       uint32_t hash_func_init_val;    /**< Init value used by hash_func. */
-       uint32_t bucket_bitmask;        /**< Bitmask for getting bucket index
-                                               from hash signature. */
-       uint32_t key_entry_size;         /**< Size of each key entry. */
-
-       struct rte_ring *free_slots;    /**< Ring that stores all indexes
-                                               of the free slots in the key table */
-       void *key_store;                /**< Table storing all keys and data */
-       struct rte_hash_bucket *buckets;        /**< Table with buckets storing all the
-                                                       hash values and key indexes
-                                                       to the key table*/
-} __rte_cache_aligned;
-
-/* Structure storing both primary and secondary hashes */
-struct rte_hash_signatures {
-       union {
-               struct {
-                       hash_sig_t current;
-                       hash_sig_t alt;
-               };
-               uint64_t sig;
-       };
-};
-
-/** Bucket structure */
-struct rte_hash_bucket {
-       struct rte_hash_signatures signatures[RTE_HASH_BUCKET_ENTRIES];
-       /* Includes dummy key index that always contains index 0 */
-       uint32_t key_idx[RTE_HASH_BUCKET_ENTRIES + 1];
-       uint8_t flag[RTE_HASH_BUCKET_ENTRIES];
-} __rte_cache_aligned;
-
 struct rte_hash *
 rte_hash_find_existing(const char *name)
 {
@@ -164,6 +67,59 @@ rte_hash_find_existing(const char *name)
        return h;
 }
 
+static inline struct rte_hash_bucket *
+rte_hash_get_last_bkt(struct rte_hash_bucket *lst_bkt)
+{
+       while (lst_bkt->next != NULL)
+               lst_bkt = lst_bkt->next;
+       return lst_bkt;
+}
+
+void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
+{
+       h->cmp_jump_table_idx = KEY_CUSTOM;
+       h->rte_hash_custom_cmp_eq = func;
+}
+
+static inline int
+rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
+{
+       if (h->cmp_jump_table_idx == KEY_CUSTOM)
+               return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
+       else
+               return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
+}
+
+/*
+ * We use higher 16 bits of hash as the signature value stored in table.
+ * We use the lower bits for the primary bucket
+ * location. Then we XOR primary bucket location and the signature
+ * to get the secondary bucket location. This is same as
+ * proposed in Bin Fan, et al's paper
+ * "MemC3: Compact and Concurrent MemCache with Dumber Caching and
+ * Smarter Hashing". The benefit to use
+ * XOR is that one could derive the alternative bucket location
+ * by only using the current bucket location and the signature.
+ */
+static inline uint16_t
+get_short_sig(const hash_sig_t hash)
+{
+       return hash >> 16;
+}
+
+static inline uint32_t
+get_prim_bucket_index(const struct rte_hash *h, const hash_sig_t hash)
+{
+       return hash & h->bucket_bitmask;
+}
+
+static inline uint32_t
+get_alt_bucket_index(const struct rte_hash *h,
+                       uint32_t cur_bkt_idx, uint16_t sig)
+{
+       return (cur_bkt_idx ^ sig) & h->bucket_bitmask;
+}
+
 struct rte_hash *
 rte_hash_create(const struct rte_hash_parameters *params)
 {
@@ -171,11 +127,25 @@ rte_hash_create(const struct rte_hash_parameters *params)
        struct rte_tailq_entry *te = NULL;
        struct rte_hash_list *hash_list;
        struct rte_ring *r = NULL;
+       struct rte_ring *r_ext = NULL;
        char hash_name[RTE_HASH_NAMESIZE];
-       void *ptr, *k = NULL;
+       void *k = NULL;
        void *buckets = NULL;
+       void *buckets_ext = NULL;
        char ring_name[RTE_RING_NAMESIZE];
+       char ext_ring_name[RTE_RING_NAMESIZE];
+       unsigned num_key_slots;
        unsigned i;
+       unsigned int hw_trans_mem_support = 0, use_local_cache = 0;
+       unsigned int ext_table_support = 0;
+       unsigned int readwrite_concur_support = 0;
+       unsigned int writer_takes_lock = 0;
+       unsigned int no_free_on_del = 0;
+       uint32_t *ext_bkt_to_free = NULL;
+       uint32_t *tbl_chng_cnt = NULL;
+       unsigned int readwrite_concur_lf_support = 0;
+
+       rte_hash_function default_hash_func = (rte_hash_function)rte_jhash;
 
        hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
 
@@ -187,24 +157,108 @@ rte_hash_create(const struct rte_hash_parameters *params)
        /* Check for valid parameters */
        if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
                        (params->entries < RTE_HASH_BUCKET_ENTRIES) ||
-                       !rte_is_power_of_2(RTE_HASH_BUCKET_ENTRIES) ||
                        (params->key_len == 0)) {
                rte_errno = EINVAL;
                RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
                return NULL;
        }
 
+       /* Validate correct usage of extra options */
+       if ((params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) &&
+           (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF)) {
+               rte_errno = EINVAL;
+               RTE_LOG(ERR, HASH, "rte_hash_create: choose rw concurrency or "
+                       "rw concurrency lock free\n");
+               return NULL;
+       }
+
+       /* Check extra flags field to check extra options. */
+       if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
+               hw_trans_mem_support = 1;
+
+       if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
+               use_local_cache = 1;
+               writer_takes_lock = 1;
+       }
+
+       if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) {
+               readwrite_concur_support = 1;
+               writer_takes_lock = 1;
+       }
+
+       if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_EXT_TABLE)
+               ext_table_support = 1;
+
+       if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL)
+               no_free_on_del = 1;
+
+       if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF) {
+               readwrite_concur_lf_support = 1;
+               /* Enable not freeing internal memory/index on delete */
+               no_free_on_del = 1;
+       }
+
+       /* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
+       if (use_local_cache)
+               /*
+                * Increase number of slots by total number of indices
+                * that can be stored in the lcore caches
+                * except for the first cache
+                */
+               num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
+                                       (LCORE_CACHE_SIZE - 1) + 1;
+       else
+               num_key_slots = params->entries + 1;
+
+       snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
+       /* Create ring (Dummy slot index is not enqueued) */
+       r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots),
+                       params->socket_id, 0);
+       if (r == NULL) {
+               RTE_LOG(ERR, HASH, "memory allocation failed\n");
+               goto err;
+       }
+
+       const uint32_t num_buckets = rte_align32pow2(params->entries) /
+                                               RTE_HASH_BUCKET_ENTRIES;
+
+       /* Create ring for extendable buckets. */
+       if (ext_table_support) {
+               snprintf(ext_ring_name, sizeof(ext_ring_name), "HT_EXT_%s",
+                                                               params->name);
+               r_ext = rte_ring_create(ext_ring_name,
+                               rte_align32pow2(num_buckets + 1),
+                               params->socket_id, 0);
+
+               if (r_ext == NULL) {
+                       RTE_LOG(ERR, HASH, "ext buckets memory allocation "
+                                                               "failed\n");
+                       goto err;
+               }
+       }
+
        snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
 
-       /* Guarantee there's no existing */
-       h = rte_hash_find_existing(params->name);
-       if (h != NULL)
-               return h;
+       rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
+
+       /* guarantee there's no existing: this is normally already checked
+        * by ring creation above */
+       TAILQ_FOREACH(te, hash_list, next) {
+               h = (struct rte_hash *) te->data;
+               if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
+                       break;
+       }
+       h = NULL;
+       if (te != NULL) {
+               rte_errno = EEXIST;
+               te = NULL;
+               goto err_unlock;
+       }
 
        te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
        if (te == NULL) {
                RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
-               goto err;
+               goto err_unlock;
        }
 
        h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
@@ -212,80 +266,122 @@ rte_hash_create(const struct rte_hash_parameters *params)
 
        if (h == NULL) {
                RTE_LOG(ERR, HASH, "memory allocation failed\n");
-               goto err;
+               goto err_unlock;
        }
 
-       const uint32_t num_buckets = rte_align32pow2(params->entries)
-                                       / RTE_HASH_BUCKET_ENTRIES;
-
        buckets = rte_zmalloc_socket(NULL,
                                num_buckets * sizeof(struct rte_hash_bucket),
                                RTE_CACHE_LINE_SIZE, params->socket_id);
 
        if (buckets == NULL) {
-               RTE_LOG(ERR, HASH, "memory allocation failed\n");
-               goto err;
+               RTE_LOG(ERR, HASH, "buckets memory allocation failed\n");
+               goto err_unlock;
        }
 
-       const uint32_t key_entry_size = params->key_len;
-       /* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
-       const uint64_t key_tbl_size = key_entry_size * (params->entries + 1);
+       /* Allocate same number of extendable buckets */
+       if (ext_table_support) {
+               buckets_ext = rte_zmalloc_socket(NULL,
+                               num_buckets * sizeof(struct rte_hash_bucket),
+                               RTE_CACHE_LINE_SIZE, params->socket_id);
+               if (buckets_ext == NULL) {
+                       RTE_LOG(ERR, HASH, "ext buckets memory allocation "
+                                                       "failed\n");
+                       goto err_unlock;
+               }
+               /* Populate ext bkt ring. We reserve 0 similar to the
+                * key-data slot, just in case in future we want to
+                * use bucket index for the linked list and 0 means NULL
+                * for next bucket
+                */
+               for (i = 1; i <= num_buckets; i++)
+                       rte_ring_sp_enqueue(r_ext, (void *)((uintptr_t) i));
+
+               if (readwrite_concur_lf_support) {
+                       ext_bkt_to_free = rte_zmalloc(NULL, sizeof(uint32_t) *
+                                                               num_key_slots, 0);
+                       if (ext_bkt_to_free == NULL) {
+                               RTE_LOG(ERR, HASH, "ext bkt to free memory allocation "
+                                                               "failed\n");
+                               goto err_unlock;
+                       }
+               }
+       }
+
+       const uint32_t key_entry_size =
+               RTE_ALIGN(sizeof(struct rte_hash_key) + params->key_len,
+                         KEY_ALIGNMENT);
+       const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;
 
        k = rte_zmalloc_socket(NULL, key_tbl_size,
                        RTE_CACHE_LINE_SIZE, params->socket_id);
 
        if (k == NULL) {
                RTE_LOG(ERR, HASH, "memory allocation failed\n");
-               goto err;
+               goto err_unlock;
+       }
+
+       tbl_chng_cnt = rte_zmalloc_socket(NULL, sizeof(uint32_t),
+                       RTE_CACHE_LINE_SIZE, params->socket_id);
+
+       if (tbl_chng_cnt == NULL) {
+               RTE_LOG(ERR, HASH, "memory allocation failed\n");
+               goto err_unlock;
        }
 
+/*
+ * If x86 architecture is used, select appropriate compare function,
+ * which may use x86 intrinsics, otherwise use memcmp
+ */
+#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
        /* Select function to compare keys */
        switch (params->key_len) {
        case 16:
-               h->rte_hash_cmp_eq = rte_hash_k16_cmp_eq;
+               h->cmp_jump_table_idx = KEY_16_BYTES;
                break;
        case 32:
-               h->rte_hash_cmp_eq = rte_hash_k32_cmp_eq;
+               h->cmp_jump_table_idx = KEY_32_BYTES;
                break;
        case 48:
-               h->rte_hash_cmp_eq = rte_hash_k48_cmp_eq;
+               h->cmp_jump_table_idx = KEY_48_BYTES;
                break;
        case 64:
-               h->rte_hash_cmp_eq = rte_hash_k64_cmp_eq;
+               h->cmp_jump_table_idx = KEY_64_BYTES;
                break;
        case 80:
-               h->rte_hash_cmp_eq = rte_hash_k80_cmp_eq;
+               h->cmp_jump_table_idx = KEY_80_BYTES;
                break;
        case 96:
-               h->rte_hash_cmp_eq = rte_hash_k96_cmp_eq;
+               h->cmp_jump_table_idx = KEY_96_BYTES;
                break;
        case 112:
-               h->rte_hash_cmp_eq = rte_hash_k112_cmp_eq;
+               h->cmp_jump_table_idx = KEY_112_BYTES;
                break;
        case 128:
-               h->rte_hash_cmp_eq = rte_hash_k128_cmp_eq;
+               h->cmp_jump_table_idx = KEY_128_BYTES;
                break;
        default:
                /* If key is not multiple of 16, use generic memcmp */
-               h->rte_hash_cmp_eq = memcmp;
+               h->cmp_jump_table_idx = KEY_OTHER_BYTES;
        }
+#else
+       h->cmp_jump_table_idx = KEY_OTHER_BYTES;
+#endif
 
-       snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
-       r = rte_ring_lookup(ring_name);
-       if (r != NULL) {
-               /* clear the free ring */
-               while (rte_ring_dequeue(r, &ptr) == 0)
-                       rte_pause();
-       } else
-               r = rte_ring_create(ring_name, rte_align32pow2(params->entries + 1),
-                               params->socket_id, 0);
-       if (r == NULL) {
-               RTE_LOG(ERR, HASH, "memory allocation failed\n");
-               goto err;
+       if (use_local_cache) {
+               h->local_free_slots = rte_zmalloc_socket(NULL,
+                               sizeof(struct lcore_cache) * RTE_MAX_LCORE,
+                               RTE_CACHE_LINE_SIZE, params->socket_id);
        }
 
+       /* Default hash function */
+#if defined(RTE_ARCH_X86)
+       default_hash_func = (rte_hash_function)rte_hash_crc;
+#elif defined(RTE_ARCH_ARM64)
+       if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_CRC32))
+               default_hash_func = (rte_hash_function)rte_hash_crc;
+#endif
        /* Setup hash context */
-       snprintf(h->name, sizeof(h->name), "%s", params->name);
+       strlcpy(h->name, params->name, sizeof(h->name));
        h->entries = params->entries;
        h->key_len = params->key_len;
        h->key_entry_size = key_entry_size;
@@ -294,27 +390,68 @@ rte_hash_create(const struct rte_hash_parameters *params)
        h->num_buckets = num_buckets;
        h->bucket_bitmask = h->num_buckets - 1;
        h->buckets = buckets;
+       h->buckets_ext = buckets_ext;
+       h->free_ext_bkts = r_ext;
        h->hash_func = (params->hash_func == NULL) ?
-               DEFAULT_HASH_FUNC : params->hash_func;
-
+               default_hash_func : params->hash_func;
        h->key_store = k;
        h->free_slots = r;
+       h->ext_bkt_to_free = ext_bkt_to_free;
+       h->tbl_chng_cnt = tbl_chng_cnt;
+       *h->tbl_chng_cnt = 0;
+       h->hw_trans_mem_support = hw_trans_mem_support;
+       h->use_local_cache = use_local_cache;
+       h->readwrite_concur_support = readwrite_concur_support;
+       h->ext_table_support = ext_table_support;
+       h->writer_takes_lock = writer_takes_lock;
+       h->no_free_on_del = no_free_on_del;
+       h->readwrite_concur_lf_support = readwrite_concur_lf_support;
+
+#if defined(RTE_ARCH_X86)
+       if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE2))
+               h->sig_cmp_fn = RTE_HASH_COMPARE_SSE;
+       else
+#elif defined(RTE_ARCH_ARM64)
+       if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
+               h->sig_cmp_fn = RTE_HASH_COMPARE_NEON;
+       else
+#endif
+               h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR;
+
+       /* Writer threads need to take the lock when:
+        * 1) RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY is enabled OR
+        * 2) RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD is enabled
+        */
+       if (h->writer_takes_lock) {
+               h->readwrite_lock = rte_malloc(NULL, sizeof(rte_rwlock_t),
+                                               RTE_CACHE_LINE_SIZE);
+               if (h->readwrite_lock == NULL)
+                       goto err_unlock;
+
+               rte_rwlock_init(h->readwrite_lock);
+       }
 
-       /* populate the free slots ring. Entry zero is reserved for key misses */
-       for (i = 1; i < params->entries + 1; i++)
+       /* Populate free slots ring. Entry zero is reserved for key misses. */
+       for (i = 1; i < num_key_slots; i++)
                rte_ring_sp_enqueue(r, (void *)((uintptr_t) i));
 
-       rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
        te->data = (void *) h;
        TAILQ_INSERT_TAIL(hash_list, te, next);
        rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
 
        return h;
+err_unlock:
+       rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
 err:
+       rte_ring_free(r);
+       rte_ring_free(r_ext);
        rte_free(te);
        rte_free(h);
        rte_free(buckets);
+       rte_free(buckets_ext);
        rte_free(k);
+       rte_free(tbl_chng_cnt);
+       rte_free(ext_bkt_to_free);
        return NULL;
 }
 
@@ -346,8 +483,17 @@ rte_hash_free(struct rte_hash *h)
 
        rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
 
+       if (h->use_local_cache)
+               rte_free(h->local_free_slots);
+       if (h->writer_takes_lock)
+               rte_free(h->readwrite_lock);
+       rte_ring_free(h->free_slots);
+       rte_ring_free(h->free_ext_bkts);
        rte_free(h->key_store);
        rte_free(h->buckets);
+       rte_free(h->buckets_ext);
+       rte_free(h->tbl_chng_cnt);
+       rte_free(h->ext_bkt_to_free);
        rte_free(h);
        rte_free(te);
 }
@@ -359,178 +505,602 @@ rte_hash_hash(const struct rte_hash *h, const void *key)
        return h->hash_func(key, h->key_len, h->hash_func_init_val);
 }
 
-/* Calc the secondary hash value from the primary hash value of a given key */
-static inline hash_sig_t
-rte_hash_secondary_hash(const hash_sig_t primary_hash)
+int32_t
+rte_hash_count(const struct rte_hash *h)
 {
-       static const unsigned all_bits_shift = 12;
-       static const unsigned alt_bits_xor = 0x5bd1e995;
+       uint32_t tot_ring_cnt, cached_cnt = 0;
+       uint32_t i, ret;
 
-       uint32_t tag = primary_hash >> all_bits_shift;
+       if (h == NULL)
+               return -EINVAL;
+
+       if (h->use_local_cache) {
+               tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
+                                       (LCORE_CACHE_SIZE - 1);
+               for (i = 0; i < RTE_MAX_LCORE; i++)
+                       cached_cnt += h->local_free_slots[i].len;
+
+               ret = tot_ring_cnt - rte_ring_count(h->free_slots) -
+                                                               cached_cnt;
+       } else {
+               tot_ring_cnt = h->entries;
+               ret = tot_ring_cnt - rte_ring_count(h->free_slots);
+       }
+       return ret;
+}
 
-       return (primary_hash ^ ((tag + 1) * alt_bits_xor));
+/* Read write locks implemented using rte_rwlock */
+static inline void
+__hash_rw_writer_lock(const struct rte_hash *h)
+{
+       if (h->writer_takes_lock && h->hw_trans_mem_support)
+               rte_rwlock_write_lock_tm(h->readwrite_lock);
+       else if (h->writer_takes_lock)
+               rte_rwlock_write_lock(h->readwrite_lock);
 }
 
-/* Search for an entry that can be pushed to its alternative location */
-static inline int
-make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt)
+static inline void
+__hash_rw_reader_lock(const struct rte_hash *h)
 {
-       unsigned i, j;
-       int ret;
-       uint32_t next_bucket_idx;
-       struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES];
+       if (h->readwrite_concur_support && h->hw_trans_mem_support)
+               rte_rwlock_read_lock_tm(h->readwrite_lock);
+       else if (h->readwrite_concur_support)
+               rte_rwlock_read_lock(h->readwrite_lock);
+}
+
+static inline void
+__hash_rw_writer_unlock(const struct rte_hash *h)
+{
+       if (h->writer_takes_lock && h->hw_trans_mem_support)
+               rte_rwlock_write_unlock_tm(h->readwrite_lock);
+       else if (h->writer_takes_lock)
+               rte_rwlock_write_unlock(h->readwrite_lock);
+}
+
+static inline void
+__hash_rw_reader_unlock(const struct rte_hash *h)
+{
+       if (h->readwrite_concur_support && h->hw_trans_mem_support)
+               rte_rwlock_read_unlock_tm(h->readwrite_lock);
+       else if (h->readwrite_concur_support)
+               rte_rwlock_read_unlock(h->readwrite_lock);
+}
+
+void
+rte_hash_reset(struct rte_hash *h)
+{
+       void *ptr;
+       uint32_t tot_ring_cnt, i;
+
+       if (h == NULL)
+               return;
+
+       __hash_rw_writer_lock(h);
+       memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
+       memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
+       *h->tbl_chng_cnt = 0;
+
+       /* clear the free ring */
+       while (rte_ring_dequeue(h->free_slots, &ptr) == 0)
+               continue;
+
+       /* clear free extendable bucket ring and memory */
+       if (h->ext_table_support) {
+               memset(h->buckets_ext, 0, h->num_buckets *
+                                               sizeof(struct rte_hash_bucket));
+               while (rte_ring_dequeue(h->free_ext_bkts, &ptr) == 0)
+                       continue;
+       }
+
+       /* Repopulate the free slots ring. Entry zero is reserved for key misses */
+       if (h->use_local_cache)
+               tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
+                                       (LCORE_CACHE_SIZE - 1);
+       else
+               tot_ring_cnt = h->entries;
+
+       for (i = 1; i < tot_ring_cnt + 1; i++)
+               rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i));
+
+       /* Repopulate the free ext bkt ring. */
+       if (h->ext_table_support) {
+               for (i = 1; i <= h->num_buckets; i++)
+                       rte_ring_sp_enqueue(h->free_ext_bkts,
+                                               (void *)((uintptr_t) i));
+       }
+
+       if (h->use_local_cache) {
+               /* Reset local caches per lcore */
+               for (i = 0; i < RTE_MAX_LCORE; i++)
+                       h->local_free_slots[i].len = 0;
+       }
+       __hash_rw_writer_unlock(h);
+}
+
+/*
+ * Function called to enqueue back an index in the cache/ring,
+ * as slot has not being used and it can be used in the
+ * next addition attempt.
+ */
+static inline void
+enqueue_slot_back(const struct rte_hash *h,
+               struct lcore_cache *cached_free_slots,
+               void *slot_id)
+{
+       if (h->use_local_cache) {
+               cached_free_slots->objs[cached_free_slots->len] = slot_id;
+               cached_free_slots->len++;
+       } else
+               rte_ring_sp_enqueue(h->free_slots, slot_id);
+}
+
+/* Search a key from bucket and update its data.
+ * Writer holds the lock before calling this.
+ */
+static inline int32_t
+search_and_update(const struct rte_hash *h, void *data, const void *key,
+       struct rte_hash_bucket *bkt, uint16_t sig)
+{
+       int i;
+       struct rte_hash_key *k, *keys = h->key_store;
 
-       /*
-        * Push existing item (search for bucket with space in
-        * alternative locations) to its alternative location
-        */
        for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
-               /* Search for space in alternative locations */
-               next_bucket_idx = bkt->signatures[i].alt & h->bucket_bitmask;
-               next_bkt[i] = &h->buckets[next_bucket_idx];
-               for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) {
-                       if (next_bkt[i]->signatures[j].sig == NULL_SIGNATURE)
-                               break;
+               if (bkt->sig_current[i] == sig) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       bkt->key_idx[i] * h->key_entry_size);
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               /* 'pdata' acts as the synchronization point
+                                * when an existing hash entry is updated.
+                                * Key is not updated in this case.
+                                */
+                               __atomic_store_n(&k->pdata,
+                                       data,
+                                       __ATOMIC_RELEASE);
+                               /*
+                                * Return index where key is stored,
+                                * subtracting the first dummy index
+                                */
+                               return bkt->key_idx[i] - 1;
+                       }
                }
+       }
+       return -1;
+}
 
-               if (j != RTE_HASH_BUCKET_ENTRIES)
-                       break;
+/* Only tries to insert at one bucket (@prim_bkt) without trying to push
+ * buckets around.
+ * return 1 if matching existing key, return 0 if succeeds, return -1 for no
+ * empty entry.
+ */
+static inline int32_t
+rte_hash_cuckoo_insert_mw(const struct rte_hash *h,
+               struct rte_hash_bucket *prim_bkt,
+               struct rte_hash_bucket *sec_bkt,
+               const struct rte_hash_key *key, void *data,
+               uint16_t sig, uint32_t new_idx,
+               int32_t *ret_val)
+{
+       unsigned int i;
+       struct rte_hash_bucket *cur_bkt;
+       int32_t ret;
+
+       __hash_rw_writer_lock(h);
+       /* Check if key was inserted after last check but before this
+        * protected region in case of inserting duplicated keys.
+        */
+       ret = search_and_update(h, data, key, prim_bkt, sig);
+       if (ret != -1) {
+               __hash_rw_writer_unlock(h);
+               *ret_val = ret;
+               return 1;
        }
 
-       /* Alternative location has spare room (end of recursive function) */
-       if (i != RTE_HASH_BUCKET_ENTRIES) {
-               next_bkt[i]->signatures[j].alt = bkt->signatures[i].current;
-               next_bkt[i]->signatures[j].current = bkt->signatures[i].alt;
-               next_bkt[i]->key_idx[j] = bkt->key_idx[i];
-               return i;
+       FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
+               ret = search_and_update(h, data, key, cur_bkt, sig);
+               if (ret != -1) {
+                       __hash_rw_writer_unlock(h);
+                       *ret_val = ret;
+                       return 1;
+               }
        }
 
-       /* Pick entry that has not been pushed yet */
-       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++)
-               if (bkt->flag[i] == 0)
+       /* Insert new entry if there is room in the primary
+        * bucket.
+        */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               /* Check if slot is available */
+               if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
+                       prim_bkt->sig_current[i] = sig;
+                       /* Key can be of arbitrary length, so it is
+                        * not possible to store it atomically.
+                        * Hence the new key element's memory stores
+                        * (key as well as data) should be complete
+                        * before it is referenced.
+                        */
+                       __atomic_store_n(&prim_bkt->key_idx[i],
+                                        new_idx,
+                                        __ATOMIC_RELEASE);
                        break;
+               }
+       }
+       __hash_rw_writer_unlock(h);
 
-       /* All entries have been pushed, so entry cannot be added */
-       if (i == RTE_HASH_BUCKET_ENTRIES) {
-               /* Reset flag */
-               bkt->flag[i] = 0;
-               return -ENOSPC;
+       if (i != RTE_HASH_BUCKET_ENTRIES)
+               return 0;
+
+       /* no empty entry */
+       return -1;
+}
+
+/* Shift buckets along provided cuckoo_path (@leaf and @leaf_slot) and fill
+ * the path head with new entry (sig, alt_hash, new_idx)
+ * return 1 if matched key found, return -1 if cuckoo path invalided and fail,
+ * return 0 if succeeds.
+ */
+static inline int
+rte_hash_cuckoo_move_insert_mw(const struct rte_hash *h,
+                       struct rte_hash_bucket *bkt,
+                       struct rte_hash_bucket *alt_bkt,
+                       const struct rte_hash_key *key, void *data,
+                       struct queue_node *leaf, uint32_t leaf_slot,
+                       uint16_t sig, uint32_t new_idx,
+                       int32_t *ret_val)
+{
+       uint32_t prev_alt_bkt_idx;
+       struct rte_hash_bucket *cur_bkt;
+       struct queue_node *prev_node, *curr_node = leaf;
+       struct rte_hash_bucket *prev_bkt, *curr_bkt = leaf->bkt;
+       uint32_t prev_slot, curr_slot = leaf_slot;
+       int32_t ret;
+
+       __hash_rw_writer_lock(h);
+
+       /* In case empty slot was gone before entering protected region */
+       if (curr_bkt->key_idx[curr_slot] != EMPTY_SLOT) {
+               __hash_rw_writer_unlock(h);
+               return -1;
        }
 
-       /* Set flag to indicate that this entry is going to be pushed */
-       bkt->flag[i] = 1;
-       /* Need room in alternative bucket to insert the pushed entry */
-       ret = make_space_bucket(h, next_bkt[i]);
-       /*
-        * After recursive function.
-        * Clear flags and insert the pushed entry
-        * in its alternative location if successful,
-        * or return error
+       /* Check if key was inserted after last check but before this
+        * protected region.
         */
-       bkt->flag[i] = 0;
-       if (ret >= 0) {
-               next_bkt[i]->signatures[ret].alt = bkt->signatures[i].current;
-               next_bkt[i]->signatures[ret].current = bkt->signatures[i].alt;
-               next_bkt[i]->key_idx[ret] = bkt->key_idx[i];
-               return i;
-       } else
-               return ret;
+       ret = search_and_update(h, data, key, bkt, sig);
+       if (ret != -1) {
+               __hash_rw_writer_unlock(h);
+               *ret_val = ret;
+               return 1;
+       }
+
+       FOR_EACH_BUCKET(cur_bkt, alt_bkt) {
+               ret = search_and_update(h, data, key, cur_bkt, sig);
+               if (ret != -1) {
+                       __hash_rw_writer_unlock(h);
+                       *ret_val = ret;
+                       return 1;
+               }
+       }
+
+       while (likely(curr_node->prev != NULL)) {
+               prev_node = curr_node->prev;
+               prev_bkt = prev_node->bkt;
+               prev_slot = curr_node->prev_slot;
+
+               prev_alt_bkt_idx = get_alt_bucket_index(h,
+                                       prev_node->cur_bkt_idx,
+                                       prev_bkt->sig_current[prev_slot]);
+
+               if (unlikely(&h->buckets[prev_alt_bkt_idx]
+                               != curr_bkt)) {
+                       /* revert it to empty, otherwise duplicated keys */
+                       __atomic_store_n(&curr_bkt->key_idx[curr_slot],
+                               EMPTY_SLOT,
+                               __ATOMIC_RELEASE);
+                       __hash_rw_writer_unlock(h);
+                       return -1;
+               }
+
+               if (h->readwrite_concur_lf_support) {
+                       /* Inform the previous move. The current move need
+                        * not be informed now as the current bucket entry
+                        * is present in both primary and secondary.
+                        * Since there is one writer, load acquires on
+                        * tbl_chng_cnt are not required.
+                        */
+                       __atomic_store_n(h->tbl_chng_cnt,
+                                        *h->tbl_chng_cnt + 1,
+                                        __ATOMIC_RELEASE);
+                       /* The store to sig_current should not
+                        * move above the store to tbl_chng_cnt.
+                        */
+                       __atomic_thread_fence(__ATOMIC_RELEASE);
+               }
 
+               /* Need to swap current/alt sig to allow later
+                * Cuckoo insert to move elements back to its
+                * primary bucket if available
+                */
+               curr_bkt->sig_current[curr_slot] =
+                       prev_bkt->sig_current[prev_slot];
+               /* Release the updated bucket entry */
+               __atomic_store_n(&curr_bkt->key_idx[curr_slot],
+                       prev_bkt->key_idx[prev_slot],
+                       __ATOMIC_RELEASE);
+
+               curr_slot = prev_slot;
+               curr_node = prev_node;
+               curr_bkt = curr_node->bkt;
+       }
+
+       if (h->readwrite_concur_lf_support) {
+               /* Inform the previous move. The current move need
+                * not be informed now as the current bucket entry
+                * is present in both primary and secondary.
+                * Since there is one writer, load acquires on
+                * tbl_chng_cnt are not required.
+                */
+               __atomic_store_n(h->tbl_chng_cnt,
+                                *h->tbl_chng_cnt + 1,
+                                __ATOMIC_RELEASE);
+               /* The store to sig_current should not
+                * move above the store to tbl_chng_cnt.
+                */
+               __atomic_thread_fence(__ATOMIC_RELEASE);
+       }
+
+       curr_bkt->sig_current[curr_slot] = sig;
+       /* Release the new bucket entry */
+       __atomic_store_n(&curr_bkt->key_idx[curr_slot],
+                        new_idx,
+                        __ATOMIC_RELEASE);
+
+       __hash_rw_writer_unlock(h);
+
+       return 0;
+
+}
+
+/*
+ * Make space for new key, using bfs Cuckoo Search and Multi-Writer safe
+ * Cuckoo
+ */
+static inline int
+rte_hash_cuckoo_make_space_mw(const struct rte_hash *h,
+                       struct rte_hash_bucket *bkt,
+                       struct rte_hash_bucket *sec_bkt,
+                       const struct rte_hash_key *key, void *data,
+                       uint16_t sig, uint32_t bucket_idx,
+                       uint32_t new_idx, int32_t *ret_val)
+{
+       unsigned int i;
+       struct queue_node queue[RTE_HASH_BFS_QUEUE_MAX_LEN];
+       struct queue_node *tail, *head;
+       struct rte_hash_bucket *curr_bkt, *alt_bkt;
+       uint32_t cur_idx, alt_idx;
+
+       tail = queue;
+       head = queue + 1;
+       tail->bkt = bkt;
+       tail->prev = NULL;
+       tail->prev_slot = -1;
+       tail->cur_bkt_idx = bucket_idx;
+
+       /* Cuckoo bfs Search */
+       while (likely(tail != head && head <
+                                       queue + RTE_HASH_BFS_QUEUE_MAX_LEN -
+                                       RTE_HASH_BUCKET_ENTRIES)) {
+               curr_bkt = tail->bkt;
+               cur_idx = tail->cur_bkt_idx;
+               for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+                       if (curr_bkt->key_idx[i] == EMPTY_SLOT) {
+                               int32_t ret = rte_hash_cuckoo_move_insert_mw(h,
+                                               bkt, sec_bkt, key, data,
+                                               tail, i, sig,
+                                               new_idx, ret_val);
+                               if (likely(ret != -1))
+                                       return ret;
+                       }
+
+                       /* Enqueue new node and keep prev node info */
+                       alt_idx = get_alt_bucket_index(h, cur_idx,
+                                               curr_bkt->sig_current[i]);
+                       alt_bkt = &(h->buckets[alt_idx]);
+                       head->bkt = alt_bkt;
+                       head->cur_bkt_idx = alt_idx;
+                       head->prev = tail;
+                       head->prev_slot = i;
+                       head++;
+               }
+               tail++;
+       }
+
+       return -ENOSPC;
 }
 
 static inline int32_t
 __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
-                                               hash_sig_t sig)
+                                               hash_sig_t sig, void *data)
 {
-       hash_sig_t alt_hash;
+       uint16_t short_sig;
        uint32_t prim_bucket_idx, sec_bucket_idx;
-       unsigned i;
-       struct rte_hash_bucket *prim_bkt, *sec_bkt;
-       void *new_k, *k, *keys = h->key_store;
-       void *slot_id;
-       uint32_t new_idx;
+       struct rte_hash_bucket *prim_bkt, *sec_bkt, *cur_bkt;
+       struct rte_hash_key *new_k, *keys = h->key_store;
+       void *slot_id = NULL;
+       void *ext_bkt_id = NULL;
+       uint32_t new_idx, bkt_id;
        int ret;
-
-       prim_bucket_idx = sig & h->bucket_bitmask;
+       unsigned n_slots;
+       unsigned lcore_id;
+       unsigned int i;
+       struct lcore_cache *cached_free_slots = NULL;
+       int32_t ret_val;
+       struct rte_hash_bucket *last;
+
+       short_sig = get_short_sig(sig);
+       prim_bucket_idx = get_prim_bucket_index(h, sig);
+       sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
        prim_bkt = &h->buckets[prim_bucket_idx];
-       rte_prefetch0(prim_bkt);
-
-       alt_hash = rte_hash_secondary_hash(sig);
-       sec_bucket_idx = alt_hash & h->bucket_bitmask;
        sec_bkt = &h->buckets[sec_bucket_idx];
+       rte_prefetch0(prim_bkt);
        rte_prefetch0(sec_bkt);
 
-       /* Get a new slot for storing the new key */
-       if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0)
-               return -ENOSPC;
-       new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
-       rte_prefetch0(new_k);
-       new_idx = (uint32_t)((uintptr_t) slot_id);
-
        /* Check if key is already inserted in primary location */
-       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
-               if (prim_bkt->signatures[i].current == sig &&
-                               prim_bkt->signatures[i].alt == alt_hash)  {
-                       k = (char *)keys + prim_bkt->key_idx[i] * h->key_entry_size;
-                       if (h->rte_hash_cmp_eq(key, k, h->key_len) == 0) {
-                               rte_ring_sp_enqueue(h->free_slots, &slot_id);
-                               /*
-                                * Return index where key is stored,
-                                * substracting the first dummy index
-                                */
-                               return (prim_bkt->key_idx[i] - 1);
-                       }
-               }
+       __hash_rw_writer_lock(h);
+       ret = search_and_update(h, data, key, prim_bkt, short_sig);
+       if (ret != -1) {
+               __hash_rw_writer_unlock(h);
+               return ret;
        }
 
        /* Check if key is already inserted in secondary location */
-       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
-               if (sec_bkt->signatures[i].alt == sig &&
-                               sec_bkt->signatures[i].current == alt_hash)  {
-                       k = (char *)keys + sec_bkt->key_idx[i] * h->key_entry_size;
-                       if (h->rte_hash_cmp_eq(key, k, h->key_len) == 0) {
-                               rte_ring_sp_enqueue(h->free_slots, &slot_id);
-                               /*
-                                * Return index where key is stored,
-                                * substracting the first dummy index
-                                */
-                               return (sec_bkt->key_idx[i] - 1);
+       FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
+               ret = search_and_update(h, data, key, cur_bkt, short_sig);
+               if (ret != -1) {
+                       __hash_rw_writer_unlock(h);
+                       return ret;
+               }
+       }
+
+       __hash_rw_writer_unlock(h);
+
+       /* Did not find a match, so get a new slot for storing the new key */
+       if (h->use_local_cache) {
+               lcore_id = rte_lcore_id();
+               cached_free_slots = &h->local_free_slots[lcore_id];
+               /* Try to get a free slot from the local cache */
+               if (cached_free_slots->len == 0) {
+                       /* Need to get another burst of free slots from global ring */
+                       n_slots = rte_ring_mc_dequeue_burst(h->free_slots,
+                                       cached_free_slots->objs,
+                                       LCORE_CACHE_SIZE, NULL);
+                       if (n_slots == 0) {
+                               return -ENOSPC;
                        }
+
+                       cached_free_slots->len += n_slots;
+               }
+
+               /* Get a free slot from the local cache */
+               cached_free_slots->len--;
+               slot_id = cached_free_slots->objs[cached_free_slots->len];
+       } else {
+               if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0) {
+                       return -ENOSPC;
                }
        }
 
+       new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
+       new_idx = (uint32_t)((uintptr_t) slot_id);
        /* Copy key */
-       rte_memcpy(new_k, key, h->key_len);
+       memcpy(new_k->key, key, h->key_len);
+       /* Key can be of arbitrary length, so it is not possible to store
+        * it atomically. Hence the new key element's memory stores
+        * (key as well as data) should be complete before it is referenced.
+        * 'pdata' acts as the synchronization point when an existing hash
+        * entry is updated.
+        */
+       __atomic_store_n(&new_k->pdata,
+               data,
+               __ATOMIC_RELEASE);
+
+       /* Find an empty slot and insert */
+       ret = rte_hash_cuckoo_insert_mw(h, prim_bkt, sec_bkt, key, data,
+                                       short_sig, new_idx, &ret_val);
+       if (ret == 0)
+               return new_idx - 1;
+       else if (ret == 1) {
+               enqueue_slot_back(h, cached_free_slots, slot_id);
+               return ret_val;
+       }
 
-       /* Insert new entry is there is room in the primary bucket */
-       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
-               /* Check if slot is available */
-               if (likely(prim_bkt->signatures[i].sig == NULL_SIGNATURE)) {
-                       prim_bkt->signatures[i].current = sig;
-                       prim_bkt->signatures[i].alt = alt_hash;
-                       prim_bkt->key_idx[i] = new_idx;
-                       return new_idx - 1;
+       /* Primary bucket full, need to make space for new entry */
+       ret = rte_hash_cuckoo_make_space_mw(h, prim_bkt, sec_bkt, key, data,
+                               short_sig, prim_bucket_idx, new_idx, &ret_val);
+       if (ret == 0)
+               return new_idx - 1;
+       else if (ret == 1) {
+               enqueue_slot_back(h, cached_free_slots, slot_id);
+               return ret_val;
+       }
+
+       /* Also search secondary bucket to get better occupancy */
+       ret = rte_hash_cuckoo_make_space_mw(h, sec_bkt, prim_bkt, key, data,
+                               short_sig, sec_bucket_idx, new_idx, &ret_val);
+
+       if (ret == 0)
+               return new_idx - 1;
+       else if (ret == 1) {
+               enqueue_slot_back(h, cached_free_slots, slot_id);
+               return ret_val;
+       }
+
+       /* if ext table not enabled, we failed the insertion */
+       if (!h->ext_table_support) {
+               enqueue_slot_back(h, cached_free_slots, slot_id);
+               return ret;
+       }
+
+       /* Now we need to go through the extendable bucket. Protection is needed
+        * to protect all extendable bucket processes.
+        */
+       __hash_rw_writer_lock(h);
+       /* We check for duplicates again since could be inserted before the lock */
+       ret = search_and_update(h, data, key, prim_bkt, short_sig);
+       if (ret != -1) {
+               enqueue_slot_back(h, cached_free_slots, slot_id);
+               goto failure;
+       }
+
+       FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
+               ret = search_and_update(h, data, key, cur_bkt, short_sig);
+               if (ret != -1) {
+                       enqueue_slot_back(h, cached_free_slots, slot_id);
+                       goto failure;
                }
        }
 
-       /* Primary bucket is full, so we need to make space for new entry */
-       ret = make_space_bucket(h, prim_bkt);
-       /*
-        * After recursive function.
-        * Insert the new entry in the position of the pushed entry
-        * if successful or return error and
-        * store the new slot back in the ring
+       /* Search sec and ext buckets to find an empty entry to insert. */
+       FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
+               for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+                       /* Check if slot is available */
+                       if (likely(cur_bkt->key_idx[i] == EMPTY_SLOT)) {
+                               cur_bkt->sig_current[i] = short_sig;
+                               /* Store to signature should not leak after
+                                * the store to key_idx
+                                */
+                               __atomic_store_n(&cur_bkt->key_idx[i],
+                                                new_idx,
+                                                __ATOMIC_RELEASE);
+                               __hash_rw_writer_unlock(h);
+                               return new_idx - 1;
+                       }
+               }
+       }
+
+       /* Failed to get an empty entry from extendable buckets. Link a new
+        * extendable bucket. We first get a free bucket from ring.
         */
-       if (ret >= 0) {
-               prim_bkt->signatures[ret].current = sig;
-               prim_bkt->signatures[ret].alt = alt_hash;
-               prim_bkt->key_idx[ret] = new_idx;
-               return (new_idx - 1);
+       if (rte_ring_sc_dequeue(h->free_ext_bkts, &ext_bkt_id) != 0) {
+               ret = -ENOSPC;
+               goto failure;
        }
 
-       /* Error in addition, store new slot back in the ring and return error */
-       rte_ring_sp_enqueue(h->free_slots,
-               (void *)((uintptr_t) new_idx));
+       bkt_id = (uint32_t)((uintptr_t)ext_bkt_id) - 1;
+       /* Use the first location of the new bucket */
+       (h->buckets_ext[bkt_id]).sig_current[0] = short_sig;
+       /* Store to signature should not leak after
+        * the store to key_idx
+        */
+       __atomic_store_n(&(h->buckets_ext[bkt_id]).key_idx[0],
+                        new_idx,
+                        __ATOMIC_RELEASE);
+       /* Link the new bucket to sec bucket linked list */
+       last = rte_hash_get_last_bkt(sec_bkt);
+       last->next = &h->buckets_ext[bkt_id];
+       __hash_rw_writer_unlock(h);
+       return new_idx - 1;
+
+failure:
+       __hash_rw_writer_unlock(h);
        return ret;
 
 }
@@ -540,135 +1110,442 @@ rte_hash_add_key_with_hash(const struct rte_hash *h,
                        const void *key, hash_sig_t sig)
 {
        RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
-       return __rte_hash_add_key_with_hash(h, key, sig);
+       return __rte_hash_add_key_with_hash(h, key, sig, 0);
 }
 
 int32_t
 rte_hash_add_key(const struct rte_hash *h, const void *key)
 {
        RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
-       return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key));
+       return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
 }
 
-static inline int32_t
-__rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
-                                       hash_sig_t sig)
+int
+rte_hash_add_key_with_hash_data(const struct rte_hash *h,
+                       const void *key, hash_sig_t sig, void *data)
 {
-       uint32_t bucket_idx;
-       hash_sig_t alt_hash;
-       unsigned i;
-       struct rte_hash_bucket *bkt;
-       void *k, *keys = h->key_store;
+       int ret;
 
-       bucket_idx = sig & h->bucket_bitmask;
-       bkt = &h->buckets[bucket_idx];
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       ret = __rte_hash_add_key_with_hash(h, key, sig, data);
+       if (ret >= 0)
+               return 0;
+       else
+               return ret;
+}
+
+int
+rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
+{
+       int ret;
+
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+
+       ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
+       if (ret >= 0)
+               return 0;
+       else
+               return ret;
+}
+
+/* Search one bucket to find the match key - uses rw lock */
+static inline int32_t
+search_one_bucket_l(const struct rte_hash *h, const void *key,
+               uint16_t sig, void **data,
+               const struct rte_hash_bucket *bkt)
+{
+       int i;
+       struct rte_hash_key *k, *keys = h->key_store;
 
-       /* Check if key is in primary location */
        for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
-               if (bkt->signatures[i].current == sig &&
-                               bkt->signatures[i].sig != NULL_SIGNATURE) {
-                       k = (char *)keys + bkt->key_idx[i] * h->key_entry_size;
-                       if (h->rte_hash_cmp_eq(key, k, h->key_len) == 0)
+               if (bkt->sig_current[i] == sig &&
+                               bkt->key_idx[i] != EMPTY_SLOT) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       bkt->key_idx[i] * h->key_entry_size);
+
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               if (data != NULL)
+                                       *data = k->pdata;
                                /*
                                 * Return index where key is stored,
-                                * substracting the first dummy index
+                                * subtracting the first dummy index
                                 */
-                               return (bkt->key_idx[i] - 1);
+                               return bkt->key_idx[i] - 1;
+                       }
                }
        }
+       return -1;
+}
 
-       /* Calculate secondary hash */
-       alt_hash = rte_hash_secondary_hash(sig);
-       bucket_idx = alt_hash & h->bucket_bitmask;
-       bkt = &h->buckets[bucket_idx];
+/* Search one bucket to find the match key */
+static inline int32_t
+search_one_bucket_lf(const struct rte_hash *h, const void *key, uint16_t sig,
+                       void **data, const struct rte_hash_bucket *bkt)
+{
+       int i;
+       uint32_t key_idx;
+       void *pdata;
+       struct rte_hash_key *k, *keys = h->key_store;
 
-       /* Check if key is in secondary location */
        for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
-               if (bkt->signatures[i].current == alt_hash &&
-                               bkt->signatures[i].alt == sig) {
-                       k = (char *)keys + bkt->key_idx[i] * h->key_entry_size;
-                       if (h->rte_hash_cmp_eq(key, k, h->key_len) == 0)
+               key_idx = __atomic_load_n(&bkt->key_idx[i],
+                                         __ATOMIC_ACQUIRE);
+               if (bkt->sig_current[i] == sig && key_idx != EMPTY_SLOT) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       key_idx * h->key_entry_size);
+                       pdata = __atomic_load_n(&k->pdata,
+                                       __ATOMIC_ACQUIRE);
+
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               if (data != NULL)
+                                       *data = pdata;
                                /*
                                 * Return index where key is stored,
-                                * substracting the first dummy index
+                                * subtracting the first dummy index
                                 */
-                               return (bkt->key_idx[i] - 1);
+                               return key_idx - 1;
+                       }
                }
        }
+       return -1;
+}
+
+static inline int32_t
+__rte_hash_lookup_with_hash_l(const struct rte_hash *h, const void *key,
+                               hash_sig_t sig, void **data)
+{
+       uint32_t prim_bucket_idx, sec_bucket_idx;
+       struct rte_hash_bucket *bkt, *cur_bkt;
+       int ret;
+       uint16_t short_sig;
+
+       short_sig = get_short_sig(sig);
+       prim_bucket_idx = get_prim_bucket_index(h, sig);
+       sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
+
+       bkt = &h->buckets[prim_bucket_idx];
+
+       __hash_rw_reader_lock(h);
+
+       /* Check if key is in primary location */
+       ret = search_one_bucket_l(h, key, short_sig, data, bkt);
+       if (ret != -1) {
+               __hash_rw_reader_unlock(h);
+               return ret;
+       }
+       /* Calculate secondary hash */
+       bkt = &h->buckets[sec_bucket_idx];
+
+       /* Check if key is in secondary location */
+       FOR_EACH_BUCKET(cur_bkt, bkt) {
+               ret = search_one_bucket_l(h, key, short_sig,
+                                       data, cur_bkt);
+               if (ret != -1) {
+                       __hash_rw_reader_unlock(h);
+                       return ret;
+               }
+       }
+
+       __hash_rw_reader_unlock(h);
+
+       return -ENOENT;
+}
+
+static inline int32_t
+__rte_hash_lookup_with_hash_lf(const struct rte_hash *h, const void *key,
+                                       hash_sig_t sig, void **data)
+{
+       uint32_t prim_bucket_idx, sec_bucket_idx;
+       struct rte_hash_bucket *bkt, *cur_bkt;
+       uint32_t cnt_b, cnt_a;
+       int ret;
+       uint16_t short_sig;
+
+       short_sig = get_short_sig(sig);
+       prim_bucket_idx = get_prim_bucket_index(h, sig);
+       sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
+
+       do {
+               /* Load the table change counter before the lookup
+                * starts. Acquire semantics will make sure that
+                * loads in search_one_bucket are not hoisted.
+                */
+               cnt_b = __atomic_load_n(h->tbl_chng_cnt,
+                               __ATOMIC_ACQUIRE);
+
+               /* Check if key is in primary location */
+               bkt = &h->buckets[prim_bucket_idx];
+               ret = search_one_bucket_lf(h, key, short_sig, data, bkt);
+               if (ret != -1) {
+                       __hash_rw_reader_unlock(h);
+                       return ret;
+               }
+               /* Calculate secondary hash */
+               bkt = &h->buckets[sec_bucket_idx];
+
+               /* Check if key is in secondary location */
+               FOR_EACH_BUCKET(cur_bkt, bkt) {
+                       ret = search_one_bucket_lf(h, key, short_sig,
+                                               data, cur_bkt);
+                       if (ret != -1) {
+                               __hash_rw_reader_unlock(h);
+                               return ret;
+                       }
+               }
+
+               /* The loads of sig_current in search_one_bucket
+                * should not move below the load from tbl_chng_cnt.
+                */
+               __atomic_thread_fence(__ATOMIC_ACQUIRE);
+               /* Re-read the table change counter to check if the
+                * table has changed during search. If yes, re-do
+                * the search.
+                * This load should not get hoisted. The load
+                * acquires on cnt_b, key index in primary bucket
+                * and key index in secondary bucket will make sure
+                * that it does not get hoisted.
+                */
+               cnt_a = __atomic_load_n(h->tbl_chng_cnt,
+                                       __ATOMIC_ACQUIRE);
+       } while (cnt_b != cnt_a);
 
        return -ENOENT;
 }
 
+static inline int32_t
+__rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
+                                       hash_sig_t sig, void **data)
+{
+       if (h->readwrite_concur_lf_support)
+               return __rte_hash_lookup_with_hash_lf(h, key, sig, data);
+       else
+               return __rte_hash_lookup_with_hash_l(h, key, sig, data);
+}
+
 int32_t
 rte_hash_lookup_with_hash(const struct rte_hash *h,
                        const void *key, hash_sig_t sig)
 {
        RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
-       return __rte_hash_lookup_with_hash(h, key, sig);
+       return __rte_hash_lookup_with_hash(h, key, sig, NULL);
 }
 
 int32_t
 rte_hash_lookup(const struct rte_hash *h, const void *key)
 {
        RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
-       return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key));
+       return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
 }
 
-static inline int32_t
-__rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
-                                               hash_sig_t sig)
+int
+rte_hash_lookup_with_hash_data(const struct rte_hash *h,
+                       const void *key, hash_sig_t sig, void **data)
 {
-       uint32_t bucket_idx;
-       hash_sig_t alt_hash;
-       unsigned i;
-       struct rte_hash_bucket *bkt;
-       void *k, *keys = h->key_store;
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_lookup_with_hash(h, key, sig, data);
+}
+
+int
+rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
+{
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
+}
+
+static inline void
+remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
+{
+       unsigned lcore_id, n_slots;
+       struct lcore_cache *cached_free_slots;
+
+       if (h->use_local_cache) {
+               lcore_id = rte_lcore_id();
+               cached_free_slots = &h->local_free_slots[lcore_id];
+               /* Cache full, need to free it. */
+               if (cached_free_slots->len == LCORE_CACHE_SIZE) {
+                       /* Need to enqueue the free slots in global ring. */
+                       n_slots = rte_ring_mp_enqueue_burst(h->free_slots,
+                                               cached_free_slots->objs,
+                                               LCORE_CACHE_SIZE, NULL);
+                       ERR_IF_TRUE((n_slots == 0),
+                               "%s: could not enqueue free slots in global ring\n",
+                               __func__);
+                       cached_free_slots->len -= n_slots;
+               }
+               /* Put index of new free slot in cache. */
+               cached_free_slots->objs[cached_free_slots->len] =
+                               (void *)((uintptr_t)bkt->key_idx[i]);
+               cached_free_slots->len++;
+       } else {
+               rte_ring_sp_enqueue(h->free_slots,
+                               (void *)((uintptr_t)bkt->key_idx[i]));
+       }
+}
 
-       bucket_idx = sig & h->bucket_bitmask;
-       bkt = &h->buckets[bucket_idx];
+/* Compact the linked list by moving key from last entry in linked list to the
+ * empty slot.
+ */
+static inline void
+__rte_hash_compact_ll(const struct rte_hash *h,
+                       struct rte_hash_bucket *cur_bkt, int pos) {
+       int i;
+       struct rte_hash_bucket *last_bkt;
 
-       /* Check if key is in primary location */
-       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
-               if (bkt->signatures[i].current == sig &&
-                               bkt->signatures[i].sig != NULL_SIGNATURE) {
-                       k = (char *)keys + bkt->key_idx[i] * h->key_entry_size;
-                       if (h->rte_hash_cmp_eq(key, k, h->key_len) == 0) {
-                               bkt->signatures[i].sig = NULL_SIGNATURE;
-                               rte_ring_sp_enqueue(h->free_slots,
-                                               (void *)((uintptr_t)bkt->key_idx[i]));
-                               /*
-                                * Return index where key is stored,
-                                * substracting the first dummy index
+       if (!cur_bkt->next)
+               return;
+
+       last_bkt = rte_hash_get_last_bkt(cur_bkt);
+
+       for (i = RTE_HASH_BUCKET_ENTRIES - 1; i >= 0; i--) {
+               if (last_bkt->key_idx[i] != EMPTY_SLOT) {
+                       cur_bkt->sig_current[pos] = last_bkt->sig_current[i];
+                       __atomic_store_n(&cur_bkt->key_idx[pos],
+                                        last_bkt->key_idx[i],
+                                        __ATOMIC_RELEASE);
+                       if (h->readwrite_concur_lf_support) {
+                               /* Inform the readers that the table has changed
+                                * Since there is one writer, load acquire on
+                                * tbl_chng_cnt is not required.
+                                */
+                               __atomic_store_n(h->tbl_chng_cnt,
+                                        *h->tbl_chng_cnt + 1,
+                                        __ATOMIC_RELEASE);
+                               /* The store to sig_current should
+                                * not move above the store to tbl_chng_cnt.
                                 */
-                               return (bkt->key_idx[i] - 1);
+                               __atomic_thread_fence(__ATOMIC_RELEASE);
                        }
+                       last_bkt->sig_current[i] = NULL_SIGNATURE;
+                       __atomic_store_n(&last_bkt->key_idx[i],
+                                        EMPTY_SLOT,
+                                        __ATOMIC_RELEASE);
+                       return;
                }
        }
+}
 
-       /* Calculate secondary hash */
-       alt_hash = rte_hash_secondary_hash(sig);
-       bucket_idx = alt_hash & h->bucket_bitmask;
-       bkt = &h->buckets[bucket_idx];
+/* Search one bucket and remove the matched key.
+ * Writer is expected to hold the lock while calling this
+ * function.
+ */
+static inline int32_t
+search_and_remove(const struct rte_hash *h, const void *key,
+                       struct rte_hash_bucket *bkt, uint16_t sig, int *pos)
+{
+       struct rte_hash_key *k, *keys = h->key_store;
+       unsigned int i;
+       uint32_t key_idx;
 
-       /* Check if key is in secondary location */
+       /* Check if key is in bucket */
        for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
-               if (bkt->signatures[i].current == alt_hash &&
-                               bkt->signatures[i].sig != NULL_SIGNATURE) {
-                       k = (char *)keys + bkt->key_idx[i] * h->key_entry_size;
-                       if (h->rte_hash_cmp_eq(key, k, h->key_len) == 0) {
-                               bkt->signatures[i].sig = NULL_SIGNATURE;
-                               rte_ring_sp_enqueue(h->free_slots,
-                                               (void *)((uintptr_t)bkt->key_idx[i]));
+               key_idx = __atomic_load_n(&bkt->key_idx[i],
+                                         __ATOMIC_ACQUIRE);
+               if (bkt->sig_current[i] == sig && key_idx != EMPTY_SLOT) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       key_idx * h->key_entry_size);
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               bkt->sig_current[i] = NULL_SIGNATURE;
+                               /* Free the key store index if
+                                * no_free_on_del is disabled.
+                                */
+                               if (!h->no_free_on_del)
+                                       remove_entry(h, bkt, i);
+
+                               __atomic_store_n(&bkt->key_idx[i],
+                                                EMPTY_SLOT,
+                                                __ATOMIC_RELEASE);
+
+                               *pos = i;
                                /*
                                 * Return index where key is stored,
-                                * substracting the first dummy index
+                                * subtracting the first dummy index
                                 */
-                               return (bkt->key_idx[i] - 1);
+                               return key_idx - 1;
                        }
                }
        }
+       return -1;
+}
 
+static inline int32_t
+__rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
+                                               hash_sig_t sig)
+{
+       uint32_t prim_bucket_idx, sec_bucket_idx;
+       struct rte_hash_bucket *prim_bkt, *sec_bkt, *prev_bkt, *last_bkt;
+       struct rte_hash_bucket *cur_bkt;
+       int pos;
+       int32_t ret, i;
+       uint16_t short_sig;
+
+       short_sig = get_short_sig(sig);
+       prim_bucket_idx = get_prim_bucket_index(h, sig);
+       sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
+       prim_bkt = &h->buckets[prim_bucket_idx];
+
+       __hash_rw_writer_lock(h);
+       /* look for key in primary bucket */
+       ret = search_and_remove(h, key, prim_bkt, short_sig, &pos);
+       if (ret != -1) {
+               __rte_hash_compact_ll(h, prim_bkt, pos);
+               last_bkt = prim_bkt->next;
+               prev_bkt = prim_bkt;
+               goto return_bkt;
+       }
+
+       /* Calculate secondary hash */
+       sec_bkt = &h->buckets[sec_bucket_idx];
+
+       FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
+               ret = search_and_remove(h, key, cur_bkt, short_sig, &pos);
+               if (ret != -1) {
+                       __rte_hash_compact_ll(h, cur_bkt, pos);
+                       last_bkt = sec_bkt->next;
+                       prev_bkt = sec_bkt;
+                       goto return_bkt;
+               }
+       }
+
+       __hash_rw_writer_unlock(h);
        return -ENOENT;
+
+/* Search last bucket to see if empty to be recycled */
+return_bkt:
+       if (!last_bkt) {
+               __hash_rw_writer_unlock(h);
+               return ret;
+       }
+       while (last_bkt->next) {
+               prev_bkt = last_bkt;
+               last_bkt = last_bkt->next;
+       }
+
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               if (last_bkt->key_idx[i] != EMPTY_SLOT)
+                       break;
+       }
+       /* found empty bucket and recycle */
+       if (i == RTE_HASH_BUCKET_ENTRIES) {
+               prev_bkt->next = NULL;
+               uint32_t index = last_bkt - h->buckets_ext + 1;
+               /* Recycle the empty bkt if
+                * no_free_on_del is disabled.
+                */
+               if (h->no_free_on_del)
+                       /* Store index of an empty ext bkt to be recycled
+                        * on calling rte_hash_del_xxx APIs.
+                        * When lock free read-write concurrency is enabled,
+                        * an empty ext bkt cannot be put into free list
+                        * immediately (as readers might be using it still).
+                        * Hence freeing of the ext bkt is piggy-backed to
+                        * freeing of the key index.
+                        */
+                       h->ext_bkt_to_free[ret] = index;
+               else
+                       rte_ring_sp_enqueue(h->free_ext_bkts, (void *)(uintptr_t)index);
+       }
+       __hash_rw_writer_unlock(h);
+       return ret;
 }
 
 int32_t
@@ -686,261 +1563,559 @@ rte_hash_del_key(const struct rte_hash *h, const void *key)
        return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
 }
 
-/* Lookup bulk stage 0: Prefetch input key */
-static inline void
-lookup_stage0(unsigned *idx, uint64_t *lookup_mask,
-               const void * const *keys)
+int
+rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position,
+                              void **key)
 {
-       *idx = __builtin_ctzl(*lookup_mask);
-       if (*lookup_mask == 0)
-               *idx = 0;
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+
+       struct rte_hash_key *k, *keys = h->key_store;
+       k = (struct rte_hash_key *) ((char *) keys + (position + 1) *
+                                    h->key_entry_size);
+       *key = k->key;
+
+       if (position !=
+           __rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key),
+                                       NULL)) {
+               return -ENOENT;
+       }
 
-       rte_prefetch0(keys[*idx]);
-       *lookup_mask &= ~(1llu << *idx);
+       return 0;
 }
 
-/*
- * Lookup bulk stage 1: Calculate primary/secondary hashes
- * and prefetch primary/secondary buckets
- */
-static inline void
-lookup_stage1(unsigned idx, hash_sig_t *prim_hash, hash_sig_t *sec_hash,
-               const struct rte_hash_bucket **primary_bkt,
-               const struct rte_hash_bucket **secondary_bkt,
-               hash_sig_t *hash_vals, const void * const *keys,
-               const struct rte_hash *h)
+int
+rte_hash_free_key_with_position(const struct rte_hash *h,
+                               const int32_t position)
 {
-       *prim_hash = rte_hash_hash(h, keys[idx]);
-       hash_vals[idx] = *prim_hash;
-       *sec_hash = rte_hash_secondary_hash(*prim_hash);
+       /* Key index where key is stored, adding the first dummy index */
+       uint32_t key_idx = position + 1;
+
+       RETURN_IF_TRUE(((h == NULL) || (key_idx == EMPTY_SLOT)), -EINVAL);
+
+       unsigned int lcore_id, n_slots;
+       struct lcore_cache *cached_free_slots;
+       const uint32_t total_entries = h->use_local_cache ?
+               h->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1) + 1
+                                                       : h->entries + 1;
+
+       /* Out of bounds */
+       if (key_idx >= total_entries)
+               return -EINVAL;
+       if (h->ext_table_support && h->readwrite_concur_lf_support) {
+               uint32_t index = h->ext_bkt_to_free[position];
+               if (index) {
+                       /* Recycle empty ext bkt to free list. */
+                       rte_ring_sp_enqueue(h->free_ext_bkts, (void *)(uintptr_t)index);
+                       h->ext_bkt_to_free[position] = 0;
+               }
+       }
 
-       *primary_bkt = &h->buckets[*prim_hash & h->bucket_bitmask];
-       *secondary_bkt = &h->buckets[*sec_hash & h->bucket_bitmask];
+       if (h->use_local_cache) {
+               lcore_id = rte_lcore_id();
+               cached_free_slots = &h->local_free_slots[lcore_id];
+               /* Cache full, need to free it. */
+               if (cached_free_slots->len == LCORE_CACHE_SIZE) {
+                       /* Need to enqueue the free slots in global ring. */
+                       n_slots = rte_ring_mp_enqueue_burst(h->free_slots,
+                                               cached_free_slots->objs,
+                                               LCORE_CACHE_SIZE, NULL);
+                       RETURN_IF_TRUE((n_slots == 0), -EFAULT);
+                       cached_free_slots->len -= n_slots;
+               }
+               /* Put index of new free slot in cache. */
+               cached_free_slots->objs[cached_free_slots->len] =
+                                       (void *)((uintptr_t)key_idx);
+               cached_free_slots->len++;
+       } else {
+               rte_ring_sp_enqueue(h->free_slots,
+                               (void *)((uintptr_t)key_idx));
+       }
 
-       rte_prefetch0(*primary_bkt);
-       rte_prefetch0(*secondary_bkt);
+       return 0;
 }
 
-/*
- * Lookup bulk stage 2:  Search for match hashes in primary/secondary locations
- * and prefetch first key slot
- */
 static inline void
-lookup_stage2(unsigned idx, hash_sig_t prim_hash, hash_sig_t sec_hash,
-               const struct rte_hash_bucket *prim_bkt,
-               const struct rte_hash_bucket *sec_bkt,
-               const void **key_slot, int32_t *positions,
-               uint64_t *extra_hits_mask, const void *keys,
-               const struct rte_hash *h)
+compare_signatures(uint32_t *prim_hash_matches, uint32_t *sec_hash_matches,
+                       const struct rte_hash_bucket *prim_bkt,
+                       const struct rte_hash_bucket *sec_bkt,
+                       uint16_t sig,
+                       enum rte_hash_sig_compare_function sig_cmp_fn)
 {
-       unsigned prim_hash_matches, sec_hash_matches, key_idx, i;
-       unsigned total_hash_matches;
-
-       prim_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
-       sec_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
-       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
-               prim_hash_matches |= ((prim_hash == prim_bkt->signatures[i].current) << i);
-               sec_hash_matches |= ((sec_hash == sec_bkt->signatures[i].current) << i);
+       unsigned int i;
+
+       /* For match mask the first bit of every two bits indicates the match */
+       switch (sig_cmp_fn) {
+#if defined(RTE_MACHINE_CPUFLAG_SSE2)
+       case RTE_HASH_COMPARE_SSE:
+               /* Compare all signatures in the bucket */
+               *prim_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16(
+                               _mm_load_si128(
+                                       (__m128i const *)prim_bkt->sig_current),
+                               _mm_set1_epi16(sig)));
+               /* Compare all signatures in the bucket */
+               *sec_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16(
+                               _mm_load_si128(
+                                       (__m128i const *)sec_bkt->sig_current),
+                               _mm_set1_epi16(sig)));
+               break;
+#elif defined(RTE_MACHINE_CPUFLAG_NEON)
+       case RTE_HASH_COMPARE_NEON: {
+               uint16x8_t vmat, vsig, x;
+               int16x8_t shift = {-15, -13, -11, -9, -7, -5, -3, -1};
+
+               vsig = vld1q_dup_u16((uint16_t const *)&sig);
+               /* Compare all signatures in the primary bucket */
+               vmat = vceqq_u16(vsig,
+                       vld1q_u16((uint16_t const *)prim_bkt->sig_current));
+               x = vshlq_u16(vandq_u16(vmat, vdupq_n_u16(0x8000)), shift);
+               *prim_hash_matches = (uint32_t)(vaddvq_u16(x));
+               /* Compare all signatures in the secondary bucket */
+               vmat = vceqq_u16(vsig,
+                       vld1q_u16((uint16_t const *)sec_bkt->sig_current));
+               x = vshlq_u16(vandq_u16(vmat, vdupq_n_u16(0x8000)), shift);
+               *sec_hash_matches = (uint32_t)(vaddvq_u16(x));
+               }
+               break;
+#endif
+       default:
+               for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+                       *prim_hash_matches |=
+                               ((sig == prim_bkt->sig_current[i]) << (i << 1));
+                       *sec_hash_matches |=
+                               ((sig == sec_bkt->sig_current[i]) << (i << 1));
+               }
        }
+}
 
-       key_idx = prim_bkt->key_idx[__builtin_ctzl(prim_hash_matches)];
-       if (key_idx == 0)
-               key_idx = sec_bkt->key_idx[__builtin_ctzl(sec_hash_matches)];
-
-       total_hash_matches = (prim_hash_matches |
-                               (sec_hash_matches << (RTE_HASH_BUCKET_ENTRIES + 1)));
-       *key_slot = (const char *)keys + key_idx * h->key_entry_size;
+#define PREFETCH_OFFSET 4
+static inline void
+__rte_hash_lookup_bulk_l(const struct rte_hash *h, const void **keys,
+                       int32_t num_keys, int32_t *positions,
+                       uint64_t *hit_mask, void *data[])
+{
+       uint64_t hits = 0;
+       int32_t i;
+       int32_t ret;
+       uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX];
+       uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
+       uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
+       uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
+       const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
+       const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
+       uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
+       uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
+       struct rte_hash_bucket *cur_bkt, *next_bkt;
+
+       /* Prefetch first keys */
+       for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++)
+               rte_prefetch0(keys[i]);
 
-       rte_prefetch0(*key_slot);
        /*
-        * Return index where key is stored,
-        * substracting the first dummy index
+        * Prefetch rest of the keys, calculate primary and
+        * secondary bucket and prefetch them
         */
-       positions[idx] = (key_idx - 1);
+       for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) {
+               rte_prefetch0(keys[i + PREFETCH_OFFSET]);
 
-       *extra_hits_mask |= (uint64_t)(__builtin_popcount(total_hash_matches) > 3) << idx;
+               prim_hash[i] = rte_hash_hash(h, keys[i]);
 
-}
+               sig[i] = get_short_sig(prim_hash[i]);
+               prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
+               sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
+
+               primary_bkt[i] = &h->buckets[prim_index[i]];
+               secondary_bkt[i] = &h->buckets[sec_index[i]];
 
+               rte_prefetch0(primary_bkt[i]);
+               rte_prefetch0(secondary_bkt[i]);
+       }
+
+       /* Calculate and prefetch rest of the buckets */
+       for (; i < num_keys; i++) {
+               prim_hash[i] = rte_hash_hash(h, keys[i]);
+
+               sig[i] = get_short_sig(prim_hash[i]);
+               prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
+               sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
+
+               primary_bkt[i] = &h->buckets[prim_index[i]];
+               secondary_bkt[i] = &h->buckets[sec_index[i]];
+
+               rte_prefetch0(primary_bkt[i]);
+               rte_prefetch0(secondary_bkt[i]);
+       }
+
+       __hash_rw_reader_lock(h);
+
+       /* Compare signatures and prefetch key slot of first hit */
+       for (i = 0; i < num_keys; i++) {
+               compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
+                       primary_bkt[i], secondary_bkt[i],
+                       sig[i], h->sig_cmp_fn);
+
+               if (prim_hitmask[i]) {
+                       uint32_t first_hit =
+                                       __builtin_ctzl(prim_hitmask[i])
+                                       >> 1;
+                       uint32_t key_idx =
+                               primary_bkt[i]->key_idx[first_hit];
+                       const struct rte_hash_key *key_slot =
+                               (const struct rte_hash_key *)(
+                               (const char *)h->key_store +
+                               key_idx * h->key_entry_size);
+                       rte_prefetch0(key_slot);
+                       continue;
+               }
+
+               if (sec_hitmask[i]) {
+                       uint32_t first_hit =
+                                       __builtin_ctzl(sec_hitmask[i])
+                                       >> 1;
+                       uint32_t key_idx =
+                               secondary_bkt[i]->key_idx[first_hit];
+                       const struct rte_hash_key *key_slot =
+                               (const struct rte_hash_key *)(
+                               (const char *)h->key_store +
+                               key_idx * h->key_entry_size);
+                       rte_prefetch0(key_slot);
+               }
+       }
+
+       /* Compare keys, first hits in primary first */
+       for (i = 0; i < num_keys; i++) {
+               positions[i] = -ENOENT;
+               while (prim_hitmask[i]) {
+                       uint32_t hit_index =
+                                       __builtin_ctzl(prim_hitmask[i])
+                                       >> 1;
+                       uint32_t key_idx =
+                               primary_bkt[i]->key_idx[hit_index];
+                       const struct rte_hash_key *key_slot =
+                               (const struct rte_hash_key *)(
+                               (const char *)h->key_store +
+                               key_idx * h->key_entry_size);
+
+                       /*
+                        * If key index is 0, do not compare key,
+                        * as it is checking the dummy slot
+                        */
+                       if (!!key_idx &
+                               !rte_hash_cmp_eq(
+                                       key_slot->key, keys[i], h)) {
+                               if (data != NULL)
+                                       data[i] = key_slot->pdata;
+
+                               hits |= 1ULL << i;
+                               positions[i] = key_idx - 1;
+                               goto next_key;
+                       }
+                       prim_hitmask[i] &= ~(3ULL << (hit_index << 1));
+               }
+
+               while (sec_hitmask[i]) {
+                       uint32_t hit_index =
+                                       __builtin_ctzl(sec_hitmask[i])
+                                       >> 1;
+                       uint32_t key_idx =
+                               secondary_bkt[i]->key_idx[hit_index];
+                       const struct rte_hash_key *key_slot =
+                               (const struct rte_hash_key *)(
+                               (const char *)h->key_store +
+                               key_idx * h->key_entry_size);
+
+                       /*
+                        * If key index is 0, do not compare key,
+                        * as it is checking the dummy slot
+                        */
+
+                       if (!!key_idx &
+                               !rte_hash_cmp_eq(
+                                       key_slot->key, keys[i], h)) {
+                               if (data != NULL)
+                                       data[i] = key_slot->pdata;
+
+                               hits |= 1ULL << i;
+                               positions[i] = key_idx - 1;
+                               goto next_key;
+                       }
+                       sec_hitmask[i] &= ~(3ULL << (hit_index << 1));
+               }
+next_key:
+               continue;
+       }
+
+       /* all found, do not need to go through ext bkt */
+       if ((hits == ((1ULL << num_keys) - 1)) || !h->ext_table_support) {
+               if (hit_mask != NULL)
+                       *hit_mask = hits;
+               __hash_rw_reader_unlock(h);
+               return;
+       }
+
+       /* need to check ext buckets for match */
+       for (i = 0; i < num_keys; i++) {
+               if ((hits & (1ULL << i)) != 0)
+                       continue;
+               next_bkt = secondary_bkt[i]->next;
+               FOR_EACH_BUCKET(cur_bkt, next_bkt) {
+                       if (data != NULL)
+                               ret = search_one_bucket_l(h, keys[i],
+                                               sig[i], &data[i], cur_bkt);
+                       else
+                               ret = search_one_bucket_l(h, keys[i],
+                                               sig[i], NULL, cur_bkt);
+                       if (ret != -1) {
+                               positions[i] = ret;
+                               hits |= 1ULL << i;
+                               break;
+                       }
+               }
+       }
+
+       __hash_rw_reader_unlock(h);
+
+       if (hit_mask != NULL)
+               *hit_mask = hits;
+}
 
-/* Lookup bulk stage 3: Check if key matches, update hit mask */
 static inline void
-lookup_stage3(unsigned idx, const void *key_slot, const void * const *keys,
-               uint64_t *hits, const struct rte_hash *h)
+__rte_hash_lookup_bulk_lf(const struct rte_hash *h, const void **keys,
+                       int32_t num_keys, int32_t *positions,
+                       uint64_t *hit_mask, void *data[])
 {
-       unsigned hit;
+       uint64_t hits = 0;
+       int32_t i;
+       int32_t ret;
+       uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX];
+       uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
+       uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
+       uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
+       const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
+       const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
+       uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
+       uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
+       struct rte_hash_bucket *cur_bkt, *next_bkt;
+       void *pdata[RTE_HASH_LOOKUP_BULK_MAX];
+       uint32_t cnt_b, cnt_a;
+
+       /* Prefetch first keys */
+       for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++)
+               rte_prefetch0(keys[i]);
+
+       /*
+        * Prefetch rest of the keys, calculate primary and
+        * secondary bucket and prefetch them
+        */
+       for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) {
+               rte_prefetch0(keys[i + PREFETCH_OFFSET]);
+
+               prim_hash[i] = rte_hash_hash(h, keys[i]);
+
+               sig[i] = get_short_sig(prim_hash[i]);
+               prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
+               sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
+
+               primary_bkt[i] = &h->buckets[prim_index[i]];
+               secondary_bkt[i] = &h->buckets[sec_index[i]];
+
+               rte_prefetch0(primary_bkt[i]);
+               rte_prefetch0(secondary_bkt[i]);
+       }
+
+       /* Calculate and prefetch rest of the buckets */
+       for (; i < num_keys; i++) {
+               prim_hash[i] = rte_hash_hash(h, keys[i]);
+
+               sig[i] = get_short_sig(prim_hash[i]);
+               prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
+               sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
+
+               primary_bkt[i] = &h->buckets[prim_index[i]];
+               secondary_bkt[i] = &h->buckets[sec_index[i]];
+
+               rte_prefetch0(primary_bkt[i]);
+               rte_prefetch0(secondary_bkt[i]);
+       }
+
+       for (i = 0; i < num_keys; i++)
+               positions[i] = -ENOENT;
+
+       do {
+               /* Load the table change counter before the lookup
+                * starts. Acquire semantics will make sure that
+                * loads in compare_signatures are not hoisted.
+                */
+               cnt_b = __atomic_load_n(h->tbl_chng_cnt,
+                                       __ATOMIC_ACQUIRE);
+
+               /* Compare signatures and prefetch key slot of first hit */
+               for (i = 0; i < num_keys; i++) {
+                       compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
+                               primary_bkt[i], secondary_bkt[i],
+                               sig[i], h->sig_cmp_fn);
+
+                       if (prim_hitmask[i]) {
+                               uint32_t first_hit =
+                                               __builtin_ctzl(prim_hitmask[i])
+                                               >> 1;
+                               uint32_t key_idx =
+                                       primary_bkt[i]->key_idx[first_hit];
+                               const struct rte_hash_key *key_slot =
+                                       (const struct rte_hash_key *)(
+                                       (const char *)h->key_store +
+                                       key_idx * h->key_entry_size);
+                               rte_prefetch0(key_slot);
+                               continue;
+                       }
+
+                       if (sec_hitmask[i]) {
+                               uint32_t first_hit =
+                                               __builtin_ctzl(sec_hitmask[i])
+                                               >> 1;
+                               uint32_t key_idx =
+                                       secondary_bkt[i]->key_idx[first_hit];
+                               const struct rte_hash_key *key_slot =
+                                       (const struct rte_hash_key *)(
+                                       (const char *)h->key_store +
+                                       key_idx * h->key_entry_size);
+                               rte_prefetch0(key_slot);
+                       }
+               }
+
+               /* Compare keys, first hits in primary first */
+               for (i = 0; i < num_keys; i++) {
+                       while (prim_hitmask[i]) {
+                               uint32_t hit_index =
+                                               __builtin_ctzl(prim_hitmask[i])
+                                               >> 1;
+                               uint32_t key_idx =
+                               __atomic_load_n(
+                                       &primary_bkt[i]->key_idx[hit_index],
+                                       __ATOMIC_ACQUIRE);
+                               const struct rte_hash_key *key_slot =
+                                       (const struct rte_hash_key *)(
+                                       (const char *)h->key_store +
+                                       key_idx * h->key_entry_size);
+
+                               if (key_idx != EMPTY_SLOT)
+                                       pdata[i] = __atomic_load_n(
+                                                       &key_slot->pdata,
+                                                       __ATOMIC_ACQUIRE);
+                               /*
+                                * If key index is 0, do not compare key,
+                                * as it is checking the dummy slot
+                                */
+                               if (!!key_idx &
+                                       !rte_hash_cmp_eq(
+                                               key_slot->key, keys[i], h)) {
+                                       if (data != NULL)
+                                               data[i] = pdata[i];
+
+                                       hits |= 1ULL << i;
+                                       positions[i] = key_idx - 1;
+                                       goto next_key;
+                               }
+                               prim_hitmask[i] &= ~(3ULL << (hit_index << 1));
+                       }
+
+                       while (sec_hitmask[i]) {
+                               uint32_t hit_index =
+                                               __builtin_ctzl(sec_hitmask[i])
+                                               >> 1;
+                               uint32_t key_idx =
+                               __atomic_load_n(
+                                       &secondary_bkt[i]->key_idx[hit_index],
+                                       __ATOMIC_ACQUIRE);
+                               const struct rte_hash_key *key_slot =
+                                       (const struct rte_hash_key *)(
+                                       (const char *)h->key_store +
+                                       key_idx * h->key_entry_size);
+
+                               if (key_idx != EMPTY_SLOT)
+                                       pdata[i] = __atomic_load_n(
+                                                       &key_slot->pdata,
+                                                       __ATOMIC_ACQUIRE);
+                               /*
+                                * If key index is 0, do not compare key,
+                                * as it is checking the dummy slot
+                                */
+
+                               if (!!key_idx &
+                                       !rte_hash_cmp_eq(
+                                               key_slot->key, keys[i], h)) {
+                                       if (data != NULL)
+                                               data[i] = pdata[i];
+
+                                       hits |= 1ULL << i;
+                                       positions[i] = key_idx - 1;
+                                       goto next_key;
+                               }
+                               sec_hitmask[i] &= ~(3ULL << (hit_index << 1));
+                       }
+next_key:
+                       continue;
+               }
 
-       hit = !h->rte_hash_cmp_eq(key_slot, keys[idx], h->key_len);
-       *hits |= (uint64_t)(hit) << idx;
+               /* all found, do not need to go through ext bkt */
+               if (hits == ((1ULL << num_keys) - 1)) {
+                       if (hit_mask != NULL)
+                               *hit_mask = hits;
+                       return;
+               }
+               /* need to check ext buckets for match */
+               if (h->ext_table_support) {
+                       for (i = 0; i < num_keys; i++) {
+                               if ((hits & (1ULL << i)) != 0)
+                                       continue;
+                               next_bkt = secondary_bkt[i]->next;
+                               FOR_EACH_BUCKET(cur_bkt, next_bkt) {
+                                       if (data != NULL)
+                                               ret = search_one_bucket_lf(h,
+                                                       keys[i], sig[i],
+                                                       &data[i], cur_bkt);
+                                       else
+                                               ret = search_one_bucket_lf(h,
+                                                               keys[i], sig[i],
+                                                               NULL, cur_bkt);
+                                       if (ret != -1) {
+                                               positions[i] = ret;
+                                               hits |= 1ULL << i;
+                                               break;
+                                       }
+                               }
+                       }
+               }
+               /* The loads of sig_current in compare_signatures
+                * should not move below the load from tbl_chng_cnt.
+                */
+               __atomic_thread_fence(__ATOMIC_ACQUIRE);
+               /* Re-read the table change counter to check if the
+                * table has changed during search. If yes, re-do
+                * the search.
+                * This load should not get hoisted. The load
+                * acquires on cnt_b, primary key index and secondary
+                * key index will make sure that it does not get
+                * hoisted.
+                */
+               cnt_a = __atomic_load_n(h->tbl_chng_cnt,
+                                       __ATOMIC_ACQUIRE);
+       } while (cnt_b != cnt_a);
+
+       if (hit_mask != NULL)
+               *hit_mask = hits;
 }
 
 static inline void
 __rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
-                     uint32_t num_keys, int32_t *positions)
+                       int32_t num_keys, int32_t *positions,
+                       uint64_t *hit_mask, void *data[])
 {
-       uint64_t hits = 0;
-       uint64_t extra_hits_mask = 0;
-       uint64_t lookup_mask, miss_mask;
-       unsigned idx;
-       const void *key_store = h->key_store;
-       hash_sig_t hash_vals[RTE_HASH_LOOKUP_BULK_MAX];
-
-       unsigned idx00, idx01, idx10, idx11, idx20, idx21, idx30, idx31;
-       const struct rte_hash_bucket *primary_bkt10, *primary_bkt11;
-       const struct rte_hash_bucket *secondary_bkt10, *secondary_bkt11;
-       const struct rte_hash_bucket *primary_bkt20, *primary_bkt21;
-       const struct rte_hash_bucket *secondary_bkt20, *secondary_bkt21;
-       const void *k_slot20, *k_slot21, *k_slot30, *k_slot31;
-       hash_sig_t primary_hash10, primary_hash11;
-       hash_sig_t secondary_hash10, secondary_hash11;
-       hash_sig_t primary_hash20, primary_hash21;
-       hash_sig_t secondary_hash20, secondary_hash21;
-
-       lookup_mask = (uint64_t) -1 >> (64 - num_keys);
-       miss_mask = lookup_mask;
-
-       lookup_stage0(&idx00, &lookup_mask, keys);
-       lookup_stage0(&idx01, &lookup_mask, keys);
-
-       idx10 = idx00, idx11 = idx01;
-
-       lookup_stage0(&idx00, &lookup_mask, keys);
-       lookup_stage0(&idx01, &lookup_mask, keys);
-       lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
-                       &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
-       lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
-                       &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
-
-       primary_bkt20 = primary_bkt10;
-       primary_bkt21 = primary_bkt11;
-       secondary_bkt20 = secondary_bkt10;
-       secondary_bkt21 = secondary_bkt11;
-       primary_hash20 = primary_hash10;
-       primary_hash21 = primary_hash11;
-       secondary_hash20 = secondary_hash10;
-       secondary_hash21 = secondary_hash11;
-       idx20 = idx10, idx21 = idx11;
-       idx10 = idx00, idx11 = idx01;
-
-       lookup_stage0(&idx00, &lookup_mask, keys);
-       lookup_stage0(&idx01, &lookup_mask, keys);
-       lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
-                       &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
-       lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
-                       &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
-       lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
-                       secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
-                       key_store, h);
-       lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
-                       secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
-                       key_store, h);
-
-       while (lookup_mask) {
-               k_slot30 = k_slot20, k_slot31 = k_slot21;
-               idx30 = idx20, idx31 = idx21;
-               primary_bkt20 = primary_bkt10;
-               primary_bkt21 = primary_bkt11;
-               secondary_bkt20 = secondary_bkt10;
-               secondary_bkt21 = secondary_bkt11;
-               primary_hash20 = primary_hash10;
-               primary_hash21 = primary_hash11;
-               secondary_hash20 = secondary_hash10;
-               secondary_hash21 = secondary_hash11;
-               idx20 = idx10, idx21 = idx11;
-               idx10 = idx00, idx11 = idx01;
-
-               lookup_stage0(&idx00, &lookup_mask, keys);
-               lookup_stage0(&idx01, &lookup_mask, keys);
-               lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
-                       &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
-               lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
-                       &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
-               lookup_stage2(idx20, primary_hash20, secondary_hash20,
-                       primary_bkt20, secondary_bkt20, &k_slot20, positions,
-                       &extra_hits_mask, key_store, h);
-               lookup_stage2(idx21, primary_hash21, secondary_hash21,
-                       primary_bkt21, secondary_bkt21, &k_slot21, positions,
-                       &extra_hits_mask, key_store, h);
-               lookup_stage3(idx30, k_slot30, keys, &hits, h);
-               lookup_stage3(idx31, k_slot31, keys, &hits, h);
-       }
-
-       k_slot30 = k_slot20, k_slot31 = k_slot21;
-       idx30 = idx20, idx31 = idx21;
-       primary_bkt20 = primary_bkt10;
-       primary_bkt21 = primary_bkt11;
-       secondary_bkt20 = secondary_bkt10;
-       secondary_bkt21 = secondary_bkt11;
-       primary_hash20 = primary_hash10;
-       primary_hash21 = primary_hash11;
-       secondary_hash20 = secondary_hash10;
-       secondary_hash21 = secondary_hash11;
-       idx20 = idx10, idx21 = idx11;
-       idx10 = idx00, idx11 = idx01;
-
-       lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
-               &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
-       lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
-               &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
-       lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
-               secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
-               key_store, h);
-       lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
-               secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
-               key_store, h);
-       lookup_stage3(idx30, k_slot30, keys, &hits, h);
-       lookup_stage3(idx31, k_slot31, keys, &hits, h);
-
-       k_slot30 = k_slot20, k_slot31 = k_slot21;
-       idx30 = idx20, idx31 = idx21;
-       primary_bkt20 = primary_bkt10;
-       primary_bkt21 = primary_bkt11;
-       secondary_bkt20 = secondary_bkt10;
-       secondary_bkt21 = secondary_bkt11;
-       primary_hash20 = primary_hash10;
-       primary_hash21 = primary_hash11;
-       secondary_hash20 = secondary_hash10;
-       secondary_hash21 = secondary_hash11;
-       idx20 = idx10, idx21 = idx11;
-
-       lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
-               secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
-               key_store, h);
-       lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
-               secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
-               key_store, h);
-       lookup_stage3(idx30, k_slot30, keys, &hits, h);
-       lookup_stage3(idx31, k_slot31, keys, &hits, h);
-
-       k_slot30 = k_slot20, k_slot31 = k_slot21;
-       idx30 = idx20, idx31 = idx21;
-
-       lookup_stage3(idx30, k_slot30, keys, &hits, h);
-       lookup_stage3(idx31, k_slot31, keys, &hits, h);
-
-       /* ignore any items we have already found */
-       extra_hits_mask &= ~hits;
-
-       if (unlikely(extra_hits_mask)) {
-               /* run a single search for each remaining item */
-               do {
-                       idx = __builtin_ctzl(extra_hits_mask);
-                       positions[idx] = rte_hash_lookup_with_hash(h, keys[idx],
-                                                       hash_vals[idx]);
-                       extra_hits_mask &= ~(1llu << idx);
-                       if (positions[idx] >= 0)
-                               hits |= 1llu << idx;
-               } while (extra_hits_mask);
-       }
-
-       miss_mask &= ~hits;
-       if (unlikely(miss_mask)) {
-               do {
-                       idx = __builtin_ctzl(miss_mask);
-                       positions[idx] = -ENOENT;
-                       miss_mask &= ~(1llu << idx);
-               } while (miss_mask);
-       }
+       if (h->readwrite_concur_lf_support)
+               __rte_hash_lookup_bulk_lf(h, keys, num_keys, positions,
+                                         hit_mask, data);
+       else
+               __rte_hash_lookup_bulk_l(h, keys, num_keys, positions,
+                                        hit_mask, data);
 }
 
 int
@@ -951,77 +2126,98 @@ rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
                        (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
                        (positions == NULL)), -EINVAL);
 
-       __rte_hash_lookup_bulk(h, keys, num_keys, positions);
+       __rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
        return 0;
 }
 
-/* Functions to compare multiple of 16 byte keys (up to 128 bytes) */
-static int
-rte_hash_k16_cmp_eq(const void *key1, const void *key2, size_t key_len __rte_unused)
+int
+rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
+                     uint32_t num_keys, uint64_t *hit_mask, void *data[])
 {
-       const __m128i k1 = _mm_loadu_si128((const __m128i *) key1);
-       const __m128i k2 = _mm_loadu_si128((const __m128i *) key2);
-       const __m128i x = _mm_xor_si128(k1, k2);
+       RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
+                       (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
+                       (hit_mask == NULL)), -EINVAL);
 
-       return !_mm_test_all_zeros(x, x);
-}
+       int32_t positions[num_keys];
 
-static int
-rte_hash_k32_cmp_eq(const void *key1, const void *key2, size_t key_len)
-{
-       return rte_hash_k16_cmp_eq(key1, key2, key_len) ||
-               rte_hash_k16_cmp_eq((const char *) key1 + 16,
-                               (const char *) key2 + 16, key_len);
-}
+       __rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);
 
-static int
-rte_hash_k48_cmp_eq(const void *key1, const void *key2, size_t key_len)
-{
-       return rte_hash_k16_cmp_eq(key1, key2, key_len) ||
-               rte_hash_k16_cmp_eq((const char *) key1 + 16,
-                               (const char *) key2 + 16, key_len) ||
-               rte_hash_k16_cmp_eq((const char *) key1 + 32,
-                               (const char *) key2 + 32, key_len);
+       /* Return number of hits */
+       return __builtin_popcountl(*hit_mask);
 }
 
-static int
-rte_hash_k64_cmp_eq(const void *key1, const void *key2, size_t key_len)
+int32_t
+rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
 {
-       return rte_hash_k32_cmp_eq(key1, key2, key_len) ||
-               rte_hash_k32_cmp_eq((const char *) key1 + 32,
-                               (const char *) key2 + 32, key_len);
-}
+       uint32_t bucket_idx, idx, position;
+       struct rte_hash_key *next_key;
+
+       RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);
+
+       const uint32_t total_entries_main = h->num_buckets *
+                                                       RTE_HASH_BUCKET_ENTRIES;
+       const uint32_t total_entries = total_entries_main << 1;
+
+       /* Out of bounds of all buckets (both main table and ext table) */
+       if (*next >= total_entries_main)
+               goto extend_table;
+
+       /* Calculate bucket and index of current iterator */
+       bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
+       idx = *next % RTE_HASH_BUCKET_ENTRIES;
+
+       /* If current position is empty, go to the next one */
+       while ((position = __atomic_load_n(&h->buckets[bucket_idx].key_idx[idx],
+                                       __ATOMIC_ACQUIRE)) == EMPTY_SLOT) {
+               (*next)++;
+               /* End of table */
+               if (*next == total_entries_main)
+                       goto extend_table;
+               bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
+               idx = *next % RTE_HASH_BUCKET_ENTRIES;
+       }
 
-static int
-rte_hash_k80_cmp_eq(const void *key1, const void *key2, size_t key_len)
-{
-       return rte_hash_k64_cmp_eq(key1, key2, key_len) ||
-               rte_hash_k16_cmp_eq((const char *) key1 + 64,
-                               (const char *) key2 + 64, key_len);
-}
+       __hash_rw_reader_lock(h);
+       next_key = (struct rte_hash_key *) ((char *)h->key_store +
+                               position * h->key_entry_size);
+       /* Return key and data */
+       *key = next_key->key;
+       *data = next_key->pdata;
 
-static int
-rte_hash_k96_cmp_eq(const void *key1, const void *key2, size_t key_len)
-{
-       return rte_hash_k64_cmp_eq(key1, key2, key_len) ||
-               rte_hash_k32_cmp_eq((const char *) key1 + 64,
-                               (const char *) key2 + 64, key_len);
-}
+       __hash_rw_reader_unlock(h);
 
-static int
-rte_hash_k112_cmp_eq(const void *key1, const void *key2, size_t key_len)
-{
-       return rte_hash_k64_cmp_eq(key1, key2, key_len) ||
-               rte_hash_k32_cmp_eq((const char *) key1 + 64,
-                               (const char *) key2 + 64, key_len) ||
-               rte_hash_k16_cmp_eq((const char *) key1 + 96,
-                               (const char *) key2 + 96, key_len);
-}
+       /* Increment iterator */
+       (*next)++;
 
-static int
-rte_hash_k128_cmp_eq(const void *key1, const void *key2, size_t key_len)
-{
-       return rte_hash_k64_cmp_eq(key1, key2, key_len) ||
-               rte_hash_k64_cmp_eq((const char *) key1 + 64,
-                               (const char *) key2 + 64, key_len);
+       return position - 1;
+
+/* Begin to iterate extendable buckets */
+extend_table:
+       /* Out of total bound or if ext bucket feature is not enabled */
+       if (*next >= total_entries || !h->ext_table_support)
+               return -ENOENT;
+
+       bucket_idx = (*next - total_entries_main) / RTE_HASH_BUCKET_ENTRIES;
+       idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES;
+
+       while ((position = h->buckets_ext[bucket_idx].key_idx[idx]) == EMPTY_SLOT) {
+               (*next)++;
+               if (*next == total_entries)
+                       return -ENOENT;
+               bucket_idx = (*next - total_entries_main) /
+                                               RTE_HASH_BUCKET_ENTRIES;
+               idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES;
+       }
+       __hash_rw_reader_lock(h);
+       next_key = (struct rte_hash_key *) ((char *)h->key_store +
+                               position * h->key_entry_size);
+       /* Return key and data */
+       *key = next_key->key;
+       *data = next_key->pdata;
+
+       __hash_rw_reader_unlock(h);
+
+       /* Increment iterator */
+       (*next)++;
+       return position - 1;
 }