bpf: allow self-xor operation
[dpdk.git] / app / test / test_memcpy_perf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <stdio.h>
7 #include <string.h>
8 #include <stdlib.h>
9 #include <sys/time.h>
10
11 #include <rte_common.h>
12 #include <rte_cycles.h>
13 #include <rte_random.h>
14 #include <rte_malloc.h>
15
16 #include <rte_memcpy.h>
17
18 #include "test.h"
19
20 /*
21  * Set this to the maximum buffer size you want to test. If it is 0, then the
22  * values in the buf_sizes[] array below will be used.
23  */
24 #define TEST_VALUE_RANGE        0
25
26 /* List of buffer sizes to test */
27 #if TEST_VALUE_RANGE == 0
28 static size_t buf_sizes[] = {
29         1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128,
30         129, 191, 192, 193, 255, 256, 257, 319, 320, 321, 383, 384, 385, 447, 448,
31         449, 511, 512, 513, 767, 768, 769, 1023, 1024, 1025, 1518, 1522, 1536, 1600,
32         2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192
33 };
34 /* MUST be as large as largest packet size above */
35 #define SMALL_BUFFER_SIZE       8192
36 #else /* TEST_VALUE_RANGE != 0 */
37 static size_t buf_sizes[TEST_VALUE_RANGE];
38 #define SMALL_BUFFER_SIZE       TEST_VALUE_RANGE
39 #endif /* TEST_VALUE_RANGE == 0 */
40
41
42 /*
43  * Arrays of this size are used for measuring uncached memory accesses by
44  * picking a random location within the buffer. Make this smaller if there are
45  * memory allocation errors.
46  */
47 #define LARGE_BUFFER_SIZE       (100 * 1024 * 1024)
48
49 /* How many times to run timing loop for performance tests */
50 #define TEST_ITERATIONS         1000000
51 #define TEST_BATCH_SIZE         100
52
53 /* Data is aligned on this many bytes (power of 2) */
54 #ifdef __AVX512F__
55 #define ALIGNMENT_UNIT          64
56 #elif defined __AVX2__
57 #define ALIGNMENT_UNIT          32
58 #else
59 #define ALIGNMENT_UNIT          16
60 #endif
61
62 /*
63  * Pointers used in performance tests. The two large buffers are for uncached
64  * access where random addresses within the buffer are used for each
65  * memcpy. The two small buffers are for cached access.
66  */
67 static uint8_t *large_buf_read, *large_buf_write;
68 static uint8_t *small_buf_read, *small_buf_write;
69
70 /* Initialise data buffers. */
71 static int
72 init_buffers(void)
73 {
74         unsigned i;
75
76         large_buf_read = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
77         if (large_buf_read == NULL)
78                 goto error_large_buf_read;
79
80         large_buf_write = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
81         if (large_buf_write == NULL)
82                 goto error_large_buf_write;
83
84         small_buf_read = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
85         if (small_buf_read == NULL)
86                 goto error_small_buf_read;
87
88         small_buf_write = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
89         if (small_buf_write == NULL)
90                 goto error_small_buf_write;
91
92         for (i = 0; i < LARGE_BUFFER_SIZE; i++)
93                 large_buf_read[i] = rte_rand();
94         for (i = 0; i < SMALL_BUFFER_SIZE; i++)
95                 small_buf_read[i] = rte_rand();
96
97         return 0;
98
99 error_small_buf_write:
100         rte_free(small_buf_read);
101 error_small_buf_read:
102         rte_free(large_buf_write);
103 error_large_buf_write:
104         rte_free(large_buf_read);
105 error_large_buf_read:
106         printf("ERROR: not enough memory\n");
107         return -1;
108 }
109
110 /* Cleanup data buffers */
111 static void
112 free_buffers(void)
113 {
114         rte_free(large_buf_read);
115         rte_free(large_buf_write);
116         rte_free(small_buf_read);
117         rte_free(small_buf_write);
118 }
119
120 /*
121  * Get a random offset into large array, with enough space needed to perform
122  * max copy size. Offset is aligned, uoffset is used for unalignment setting.
123  */
124 static inline size_t
125 get_rand_offset(size_t uoffset)
126 {
127         return ((rte_rand() % (LARGE_BUFFER_SIZE - SMALL_BUFFER_SIZE)) &
128                         ~(ALIGNMENT_UNIT - 1)) + uoffset;
129 }
130
131 /* Fill in source and destination addresses. */
132 static inline void
133 fill_addr_arrays(size_t *dst_addr, int is_dst_cached, size_t dst_uoffset,
134                                  size_t *src_addr, int is_src_cached, size_t src_uoffset)
135 {
136         unsigned int i;
137
138         for (i = 0; i < TEST_BATCH_SIZE; i++) {
139                 dst_addr[i] = (is_dst_cached) ? dst_uoffset : get_rand_offset(dst_uoffset);
140                 src_addr[i] = (is_src_cached) ? src_uoffset : get_rand_offset(src_uoffset);
141         }
142 }
143
144 /*
145  * WORKAROUND: For some reason the first test doing an uncached write
146  * takes a very long time (~25 times longer than is expected). So we do
147  * it once without timing.
148  */
149 static void
150 do_uncached_write(uint8_t *dst, int is_dst_cached,
151                                   const uint8_t *src, int is_src_cached, size_t size)
152 {
153         unsigned i, j;
154         size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE];
155
156         for (i = 0; i < (TEST_ITERATIONS / TEST_BATCH_SIZE); i++) {
157                 fill_addr_arrays(dst_addrs, is_dst_cached, 0,
158                                                  src_addrs, is_src_cached, 0);
159                 for (j = 0; j < TEST_BATCH_SIZE; j++) {
160                         rte_memcpy(dst+dst_addrs[j], src+src_addrs[j], size);
161                 }
162         }
163 }
164
165 /*
166  * Run a single memcpy performance test. This is a macro to ensure that if
167  * the "size" parameter is a constant it won't be converted to a variable.
168  */
169 #define SINGLE_PERF_TEST(dst, is_dst_cached, dst_uoffset,                   \
170                          src, is_src_cached, src_uoffset, size)             \
171 do {                                                                        \
172     unsigned int iter, t;                                                   \
173     size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE];          \
174     uint64_t start_time, total_time = 0;                                    \
175     uint64_t total_time2 = 0;                                               \
176     for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) {    \
177         fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset,             \
178                          src_addrs, is_src_cached, src_uoffset);            \
179         start_time = rte_rdtsc();                                           \
180         for (t = 0; t < TEST_BATCH_SIZE; t++)                               \
181             rte_memcpy(dst+dst_addrs[t], src+src_addrs[t], size);           \
182         total_time += rte_rdtsc() - start_time;                             \
183     }                                                                       \
184     for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) {    \
185         fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset,             \
186                          src_addrs, is_src_cached, src_uoffset);            \
187         start_time = rte_rdtsc();                                           \
188         for (t = 0; t < TEST_BATCH_SIZE; t++)                               \
189             memcpy(dst+dst_addrs[t], src+src_addrs[t], size);               \
190         total_time2 += rte_rdtsc() - start_time;                            \
191     }                                                                       \
192     printf("%3.0f -", (double)total_time  / TEST_ITERATIONS);                 \
193     printf("%3.0f",   (double)total_time2 / TEST_ITERATIONS);                 \
194     printf("(%6.2f%%) ", ((double)total_time - total_time2)*100/total_time2); \
195 } while (0)
196
197 /* Run aligned memcpy tests for each cached/uncached permutation */
198 #define ALL_PERF_TESTS_FOR_SIZE(n)                                       \
199 do {                                                                     \
200     if (__builtin_constant_p(n))                                         \
201         printf("\nC%6u", (unsigned)n);                                   \
202     else                                                                 \
203         printf("\n%7u", (unsigned)n);                                    \
204     SINGLE_PERF_TEST(small_buf_write, 1, 0, small_buf_read, 1, 0, n);    \
205     SINGLE_PERF_TEST(large_buf_write, 0, 0, small_buf_read, 1, 0, n);    \
206     SINGLE_PERF_TEST(small_buf_write, 1, 0, large_buf_read, 0, 0, n);    \
207     SINGLE_PERF_TEST(large_buf_write, 0, 0, large_buf_read, 0, 0, n);    \
208 } while (0)
209
210 /* Run unaligned memcpy tests for each cached/uncached permutation */
211 #define ALL_PERF_TESTS_FOR_SIZE_UNALIGNED(n)                             \
212 do {                                                                     \
213     if (__builtin_constant_p(n))                                         \
214         printf("\nC%6u", (unsigned)n);                                   \
215     else                                                                 \
216         printf("\n%7u", (unsigned)n);                                    \
217     SINGLE_PERF_TEST(small_buf_write, 1, 1, small_buf_read, 1, 5, n);    \
218     SINGLE_PERF_TEST(large_buf_write, 0, 1, small_buf_read, 1, 5, n);    \
219     SINGLE_PERF_TEST(small_buf_write, 1, 1, large_buf_read, 0, 5, n);    \
220     SINGLE_PERF_TEST(large_buf_write, 0, 1, large_buf_read, 0, 5, n);    \
221 } while (0)
222
223 /* Run memcpy tests for constant length */
224 #define ALL_PERF_TEST_FOR_CONSTANT                                      \
225 do {                                                                    \
226     TEST_CONSTANT(6U); TEST_CONSTANT(64U); TEST_CONSTANT(128U);         \
227     TEST_CONSTANT(192U); TEST_CONSTANT(256U); TEST_CONSTANT(512U);      \
228     TEST_CONSTANT(768U); TEST_CONSTANT(1024U); TEST_CONSTANT(1536U);    \
229 } while (0)
230
231 /* Run all memcpy tests for aligned constant cases */
232 static inline void
233 perf_test_constant_aligned(void)
234 {
235 #define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE
236         ALL_PERF_TEST_FOR_CONSTANT;
237 #undef TEST_CONSTANT
238 }
239
240 /* Run all memcpy tests for unaligned constant cases */
241 static inline void
242 perf_test_constant_unaligned(void)
243 {
244 #define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE_UNALIGNED
245         ALL_PERF_TEST_FOR_CONSTANT;
246 #undef TEST_CONSTANT
247 }
248
249 /* Run all memcpy tests for aligned variable cases */
250 static inline void
251 perf_test_variable_aligned(void)
252 {
253         unsigned i;
254         for (i = 0; i < RTE_DIM(buf_sizes); i++) {
255                 ALL_PERF_TESTS_FOR_SIZE((size_t)buf_sizes[i]);
256         }
257 }
258
259 /* Run all memcpy tests for unaligned variable cases */
260 static inline void
261 perf_test_variable_unaligned(void)
262 {
263         unsigned i;
264         for (i = 0; i < RTE_DIM(buf_sizes); i++) {
265                 ALL_PERF_TESTS_FOR_SIZE_UNALIGNED((size_t)buf_sizes[i]);
266         }
267 }
268
269 /* Run all memcpy tests */
270 static int
271 perf_test(void)
272 {
273         int ret;
274         struct timeval tv_begin, tv_end;
275         double time_aligned, time_unaligned;
276         double time_aligned_const, time_unaligned_const;
277
278         ret = init_buffers();
279         if (ret != 0)
280                 return ret;
281
282 #if TEST_VALUE_RANGE != 0
283         /* Set up buf_sizes array, if required */
284         unsigned i;
285         for (i = 0; i < TEST_VALUE_RANGE; i++)
286                 buf_sizes[i] = i;
287 #endif
288
289         /* See function comment */
290         do_uncached_write(large_buf_write, 0, small_buf_read, 1, SMALL_BUFFER_SIZE);
291
292         printf("\n** rte_memcpy() - memcpy perf. tests (C = compile-time constant) **\n"
293                    "======= ================= ================= ================= =================\n"
294                    "   Size   Cache to cache     Cache to mem      Mem to cache        Mem to mem\n"
295                    "(bytes)          (ticks)          (ticks)           (ticks)           (ticks)\n"
296                    "------- ----------------- ----------------- ----------------- -----------------");
297
298         printf("\n================================= %2dB aligned =================================",
299                 ALIGNMENT_UNIT);
300         /* Do aligned tests where size is a variable */
301         gettimeofday(&tv_begin, NULL);
302         perf_test_variable_aligned();
303         gettimeofday(&tv_end, NULL);
304         time_aligned = (double)(tv_end.tv_sec - tv_begin.tv_sec)
305                 + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
306         printf("\n------- ----------------- ----------------- ----------------- -----------------");
307         /* Do aligned tests where size is a compile-time constant */
308         gettimeofday(&tv_begin, NULL);
309         perf_test_constant_aligned();
310         gettimeofday(&tv_end, NULL);
311         time_aligned_const = (double)(tv_end.tv_sec - tv_begin.tv_sec)
312                 + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
313         printf("\n================================== Unaligned ==================================");
314         /* Do unaligned tests where size is a variable */
315         gettimeofday(&tv_begin, NULL);
316         perf_test_variable_unaligned();
317         gettimeofday(&tv_end, NULL);
318         time_unaligned = (double)(tv_end.tv_sec - tv_begin.tv_sec)
319                 + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
320         printf("\n------- ----------------- ----------------- ----------------- -----------------");
321         /* Do unaligned tests where size is a compile-time constant */
322         gettimeofday(&tv_begin, NULL);
323         perf_test_constant_unaligned();
324         gettimeofday(&tv_end, NULL);
325         time_unaligned_const = (double)(tv_end.tv_sec - tv_begin.tv_sec)
326                 + ((double)tv_end.tv_usec - tv_begin.tv_usec)/1000000;
327         printf("\n======= ================= ================= ================= =================\n\n");
328
329         printf("Test Execution Time (seconds):\n");
330         printf("Aligned variable copy size   = %8.3f\n", time_aligned);
331         printf("Aligned constant copy size   = %8.3f\n", time_aligned_const);
332         printf("Unaligned variable copy size = %8.3f\n", time_unaligned);
333         printf("Unaligned constant copy size = %8.3f\n", time_unaligned_const);
334         free_buffers();
335
336         return 0;
337 }
338
339 static int
340 test_memcpy_perf(void)
341 {
342         int ret;
343
344         ret = perf_test();
345         if (ret != 0)
346                 return -1;
347         return 0;
348 }
349
350 REGISTER_TEST_COMMAND(memcpy_perf_autotest, test_memcpy_perf);