4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 * The objective of the timer stress tests is to check that there are no
43 * race conditions in list and status management. This test launches,
44 * resets and stops the timer very often on many cores at the same
47 * - Only one timer is used for this test.
48 * - On each core, the rte_timer_manage() function is called from the main
49 * loop every 3 microseconds.
50 * - In the main loop, the timer may be reset (randomly, with a
51 * probability of 0.5 %) 100 microseconds later on a random core, or
52 * stopped (with a probability of 0.5 % also).
53 * - In callback, the timer is can be reset (randomly, with a
54 * probability of 0.5 %) 100 microseconds later on the same core or
55 * on another core (same probability), or stopped (same
60 * The objective of this test is similar to the first in that it attempts
61 * to find if there are any race conditions in the timer library. However,
62 * it is less complex in terms of operations performed and duration, as it
63 * is designed to have a predictable outcome that can be tested.
65 * - A set of timers is initialized for use by the test
66 * - All cores then simultaneously are set to schedule all the timers at
67 * the same time, so conflicts should occur.
68 * - Then there is a delay while we wait for the timers to expire
69 * - Then the master lcore calls timer_manage() and we check that all
70 * timers have had their callbacks called exactly once - no more no less.
71 * - Then we repeat the process, except after setting up the timers, we have
72 * all cores randomly reschedule them.
73 * - Again we check that the expected number of callbacks has occurred when
74 * we call timer-manage.
78 * This test performs basic functional checks of the timers. The test
79 * uses four different timers that are loaded and stopped under
80 * specific conditions in specific contexts.
82 * - Four timers are used for this test.
83 * - On each core, the rte_timer_manage() function is called from main loop
84 * every 3 microseconds.
86 * The autotest python script checks that the behavior is correct:
90 * - At initialization, timer0 is loaded by the master core, on master core
91 * in "single" mode (time = 1 second).
92 * - In the first 19 callbacks, timer0 is reloaded on the same core,
93 * then, it is explicitly stopped at the 20th call.
94 * - At t=25s, timer0 is reloaded once by timer2.
98 * - At initialization, timer1 is loaded by the master core, on the
99 * master core in "single" mode (time = 2 seconds).
100 * - In the first 9 callbacks, timer1 is reloaded on another
101 * core. After the 10th callback, timer1 is not reloaded anymore.
105 * - At initialization, timer2 is loaded by the master core, on the
106 * master core in "periodical" mode (time = 1 second).
107 * - In the callback, when t=25s, it stops timer3 and reloads timer0
108 * on the current core.
112 * - At initialization, timer3 is loaded by the master core, on
113 * another core in "periodical" mode (time = 1 second).
114 * - It is stopped at t=25s by timer2.
122 #include <inttypes.h>
123 #include <sys/queue.h>
126 #include <rte_common.h>
128 #include <rte_memory.h>
129 #include <rte_memzone.h>
130 #include <rte_launch.h>
131 #include <rte_cycles.h>
133 #include <rte_per_lcore.h>
134 #include <rte_lcore.h>
135 #include <rte_atomic.h>
136 #include <rte_timer.h>
137 #include <rte_random.h>
138 #include <rte_malloc.h>
141 #define TEST_DURATION_S 20 /* in seconds */
144 #define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
146 static volatile uint64_t end_time;
149 struct rte_timer tim;
154 static struct mytimerinfo mytiminfo[NB_TIMER];
156 static void timer_basic_cb(struct rte_timer *tim, void *arg);
159 mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
160 enum rte_timer_type type, unsigned tim_lcore,
163 rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
167 /* timer callback for stress tests */
169 timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
170 __attribute__((unused)) void *arg)
173 unsigned lcore_id = rte_lcore_id();
174 uint64_t hz = rte_get_timer_hz();
176 if (rte_timer_pending(tim))
180 if ((r & 0xff) == 0) {
181 mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
184 else if ((r & 0xff) == 1) {
185 mytimer_reset(&mytiminfo[0], hz, SINGLE,
186 rte_get_next_lcore(lcore_id, 0, 1),
189 else if ((r & 0xff) == 2) {
190 rte_timer_stop(&mytiminfo[0].tim);
195 timer_stress_main_loop(__attribute__((unused)) void *arg)
197 uint64_t hz = rte_get_timer_hz();
198 unsigned lcore_id = rte_lcore_id();
205 /* call the timer handler on each core */
208 /* simulate the processing of a packet
209 * (1 us = 2000 cycles at 2 Ghz) */
212 /* randomly stop or reset timer */
214 lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
215 if ((r & 0xff) == 0) {
217 mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
220 else if ((r & 0xff) == 1) {
221 rte_timer_stop_sync(&mytiminfo[0].tim);
223 cur_time = rte_get_timer_cycles();
224 diff = end_time - cur_time;
227 lcore_id = rte_lcore_id();
228 RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
233 static volatile int cb_count = 0;
235 /* callback for second stress test. will only be called
238 timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
243 #define NB_STRESS2_TIMERS 8192
246 timer_stress2_main_loop(__attribute__((unused)) void *arg)
248 static struct rte_timer *timers;
250 static volatile int ready = 0;
251 uint64_t delay = rte_get_timer_hz() / 4;
252 unsigned lcore_id = rte_lcore_id();
253 int32_t my_collisions = 0;
254 static rte_atomic32_t collisions = RTE_ATOMIC32_INIT(0);
256 if (lcore_id == rte_get_master_lcore()) {
258 timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
259 if (timers == NULL) {
260 printf("Test Failed\n");
261 printf("- Cannot allocate memory for timers\n" );
264 for (i = 0; i < NB_STRESS2_TIMERS; i++)
265 rte_timer_init(&timers[i]);
272 /* have all cores schedule all timers on master lcore */
273 for (i = 0; i < NB_STRESS2_TIMERS; i++) {
274 ret = rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
275 timer_stress2_cb, NULL);
276 /* there will be collisions when multiple cores simultaneously
277 * configure the same timers */
281 if (my_collisions != 0)
282 rte_atomic32_add(&collisions, my_collisions);
287 /* now check that we get the right number of callbacks */
288 if (lcore_id == rte_get_master_lcore()) {
289 my_collisions = rte_atomic32_read(&collisions);
290 if (my_collisions != 0)
291 printf("- %d timer reset collisions (OK)\n", my_collisions);
293 if (cb_count != NB_STRESS2_TIMERS) {
294 printf("Test Failed\n");
295 printf("- Stress test 2, part 1 failed\n");
296 printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
306 /* now test again, just stop and restart timers at random after init*/
307 for (i = 0; i < NB_STRESS2_TIMERS; i++)
308 rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
309 timer_stress2_cb, NULL);
312 /* pick random timer to reset, stopping them first half the time */
313 for (i = 0; i < 100000; i++) {
314 int r = rand() % NB_STRESS2_TIMERS;
316 rte_timer_stop(&timers[r]);
317 rte_timer_reset(&timers[r], delay, SINGLE, rte_get_master_lcore(),
318 timer_stress2_cb, NULL);
323 /* now check that we get the right number of callbacks */
324 if (lcore_id == rte_get_master_lcore()) {
327 /* clean up statics, in case we run again */
331 rte_atomic32_set(&collisions, 0);
333 if (cb_count != NB_STRESS2_TIMERS) {
334 printf("Test Failed\n");
335 printf("- Stress test 2, part 2 failed\n");
336 printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
346 /* timer callback for basic tests */
348 timer_basic_cb(struct rte_timer *tim, void *arg)
350 struct mytimerinfo *timinfo = arg;
351 uint64_t hz = rte_get_timer_hz();
352 unsigned lcore_id = rte_lcore_id();
353 uint64_t cur_time = rte_get_timer_cycles();
355 if (rte_timer_pending(tim))
360 RTE_LOG(INFO, TESTTIMER,
361 "%"PRIu64": callback id=%u count=%u on core %u\n",
362 cur_time, timinfo->id, timinfo->count, lcore_id);
364 /* reload timer 0 on same core */
365 if (timinfo->id == 0 && timinfo->count < 20) {
366 mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
370 /* reload timer 1 on next core */
371 if (timinfo->id == 1 && timinfo->count < 10) {
372 mytimer_reset(timinfo, hz*2, SINGLE,
373 rte_get_next_lcore(lcore_id, 0, 1),
378 /* Explicitelly stop timer 0. Once stop() called, we can even
379 * erase the content of the structure: it is not referenced
380 * anymore by any code (in case of dynamic structure, it can
382 if (timinfo->id == 0 && timinfo->count == 20) {
384 /* stop_sync() is not needed, because we know that the
385 * status of timer is only modified by this core */
387 memset(tim, 0xAA, sizeof(struct rte_timer));
391 /* stop timer3, and restart a new timer0 (it was removed 5
392 * seconds ago) for a single shot */
393 if (timinfo->id == 2 && timinfo->count == 25) {
394 rte_timer_stop_sync(&mytiminfo[3].tim);
396 /* need to reinit because structure was erased with 0xAA */
397 rte_timer_init(&mytiminfo[0].tim);
398 mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
404 timer_basic_main_loop(__attribute__((unused)) void *arg)
406 uint64_t hz = rte_get_timer_hz();
407 unsigned lcore_id = rte_lcore_id();
411 /* launch all timers on core 0 */
412 if (lcore_id == rte_get_master_lcore()) {
413 mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
415 mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
417 mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
419 mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
420 rte_get_next_lcore(lcore_id, 0, 1),
426 /* call the timer handler on each core */
429 /* simulate the processing of a packet
430 * (3 us = 6000 cycles at 2 Ghz) */
433 cur_time = rte_get_timer_cycles();
434 diff = end_time - cur_time;
436 RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
442 timer_sanity_check(void)
444 #ifdef RTE_LIBEAL_USE_HPET
445 if (eal_timer_source != EAL_TIMER_HPET) {
446 printf("Not using HPET, can't sanity check timer sources\n");
450 const uint64_t t_hz = rte_get_tsc_hz();
451 const uint64_t h_hz = rte_get_hpet_hz();
452 printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
454 const uint64_t tsc_start = rte_get_tsc_cycles();
455 const uint64_t hpet_start = rte_get_hpet_cycles();
456 rte_delay_ms(100); /* delay 1/10 second */
457 const uint64_t tsc_end = rte_get_tsc_cycles();
458 const uint64_t hpet_end = rte_get_hpet_cycles();
459 printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
460 tsc_end-tsc_start, hpet_end-hpet_start);
462 const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
463 const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
464 /* get the percentage that the times differ by */
465 const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
466 printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
468 printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
470 if (time_diff > 0.1) {
471 printf("Error times differ by >0.1%%");
485 /* sanity check our timer sources and timer config values */
486 if (timer_sanity_check() < 0) {
487 printf("Timer sanity checks failed\n");
491 if (rte_lcore_count() < 2) {
492 printf("not enough lcores for this test\n");
497 for (i=0; i<NB_TIMER; i++) {
498 memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
500 rte_timer_init(&mytiminfo[i].tim);
503 /* calculate the "end of test" time */
504 cur_time = rte_get_timer_cycles();
505 hz = rte_get_timer_hz();
506 end_time = cur_time + (hz * TEST_DURATION_S);
508 /* start other cores */
509 printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
510 rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
511 rte_eal_mp_wait_lcore();
513 /* stop timer 0 used for stress test */
514 rte_timer_stop_sync(&mytiminfo[0].tim);
516 /* run a second, slightly different set of stress tests */
517 printf("Start timer stress tests 2\n");
518 rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
519 rte_eal_mp_wait_lcore();
521 /* calculate the "end of test" time */
522 cur_time = rte_get_timer_cycles();
523 hz = rte_get_timer_hz();
524 end_time = cur_time + (hz * TEST_DURATION_S);
526 /* start other cores */
527 printf("Start timer basic tests (%d seconds)\n", TEST_DURATION_S);
528 rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
529 rte_eal_mp_wait_lcore();
531 /* stop all timers */
532 for (i=0; i<NB_TIMER; i++) {
533 rte_timer_stop_sync(&mytiminfo[i].tim);
536 rte_timer_dump_stats(stdout);
541 static struct test_command timer_cmd = {
542 .command = "timer_autotest",
543 .callback = test_timer,
545 REGISTER_TEST_COMMAND(timer_cmd);