4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 * The objective of the timer stress tests is to check that there are no
43 * race conditions in list and status management. This test launches,
44 * resets and stops the timer very often on many cores at the same
47 * - Only one timer is used for this test.
48 * - On each core, the rte_timer_manage() function is called from the main
49 * loop every 3 microseconds.
50 * - In the main loop, the timer may be reset (randomly, with a
51 * probability of 0.5 %) 100 microseconds later on a random core, or
52 * stopped (with a probability of 0.5 % also).
53 * - In callback, the timer is can be reset (randomly, with a
54 * probability of 0.5 %) 100 microseconds later on the same core or
55 * on another core (same probability), or stopped (same
60 * The objective of this test is similar to the first in that it attempts
61 * to find if there are any race conditions in the timer library. However,
62 * it is less complex in terms of operations performed and duration, as it
63 * is designed to have a predictable outcome that can be tested.
65 * - A set of timers is initialized for use by the test
66 * - All cores then simultaneously are set to schedule all the timers at
67 * the same time, so conflicts should occur.
68 * - Then there is a delay while we wait for the timers to expire
69 * - Then the master lcore calls timer_manage() and we check that all
70 * timers have had their callbacks called exactly once - no more no less.
71 * - Then we repeat the process, except after setting up the timers, we have
72 * all cores randomly reschedule them.
73 * - Again we check that the expected number of callbacks has occurred when
74 * we call timer-manage.
78 * This test performs basic functional checks of the timers. The test
79 * uses four different timers that are loaded and stopped under
80 * specific conditions in specific contexts.
82 * - Four timers are used for this test.
83 * - On each core, the rte_timer_manage() function is called from main loop
84 * every 3 microseconds.
86 * The autotest python script checks that the behavior is correct:
90 * - At initialization, timer0 is loaded by the master core, on master core
91 * in "single" mode (time = 1 second).
92 * - In the first 19 callbacks, timer0 is reloaded on the same core,
93 * then, it is explicitly stopped at the 20th call.
94 * - At t=25s, timer0 is reloaded once by timer2.
98 * - At initialization, timer1 is loaded by the master core, on the
99 * master core in "single" mode (time = 2 seconds).
100 * - In the first 9 callbacks, timer1 is reloaded on another
101 * core. After the 10th callback, timer1 is not reloaded anymore.
105 * - At initialization, timer2 is loaded by the master core, on the
106 * master core in "periodical" mode (time = 1 second).
107 * - In the callback, when t=25s, it stops timer3 and reloads timer0
108 * on the current core.
112 * - At initialization, timer3 is loaded by the master core, on
113 * another core in "periodical" mode (time = 1 second).
114 * - It is stopped at t=25s by timer2.
122 #include <inttypes.h>
123 #include <sys/queue.h>
126 #include <rte_common.h>
128 #include <rte_memory.h>
129 #include <rte_memzone.h>
130 #include <rte_launch.h>
131 #include <rte_cycles.h>
133 #include <rte_per_lcore.h>
134 #include <rte_lcore.h>
135 #include <rte_atomic.h>
136 #include <rte_timer.h>
137 #include <rte_random.h>
138 #include <rte_malloc.h>
140 #define TEST_DURATION_S 20 /* in seconds */
143 #define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
145 static volatile uint64_t end_time;
146 static volatile int test_failed;
149 struct rte_timer tim;
154 static struct mytimerinfo mytiminfo[NB_TIMER];
156 static void timer_basic_cb(struct rte_timer *tim, void *arg);
159 mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
160 enum rte_timer_type type, unsigned tim_lcore,
163 rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
167 /* timer callback for stress tests */
169 timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
170 __attribute__((unused)) void *arg)
173 unsigned lcore_id = rte_lcore_id();
174 uint64_t hz = rte_get_timer_hz();
176 if (rte_timer_pending(tim))
180 if ((r & 0xff) == 0) {
181 mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
184 else if ((r & 0xff) == 1) {
185 mytimer_reset(&mytiminfo[0], hz, SINGLE,
186 rte_get_next_lcore(lcore_id, 0, 1),
189 else if ((r & 0xff) == 2) {
190 rte_timer_stop(&mytiminfo[0].tim);
195 timer_stress_main_loop(__attribute__((unused)) void *arg)
197 uint64_t hz = rte_get_timer_hz();
198 unsigned lcore_id = rte_lcore_id();
205 /* call the timer handler on each core */
208 /* simulate the processing of a packet
209 * (1 us = 2000 cycles at 2 Ghz) */
212 /* randomly stop or reset timer */
214 lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
215 if ((r & 0xff) == 0) {
217 mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
220 else if ((r & 0xff) == 1) {
221 rte_timer_stop_sync(&mytiminfo[0].tim);
223 cur_time = rte_get_timer_cycles();
224 diff = end_time - cur_time;
227 lcore_id = rte_lcore_id();
228 RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
233 /* Need to synchronize slave lcores through multiple steps. */
234 enum { SLAVE_WAITING = 1, SLAVE_RUN_SIGNAL, SLAVE_RUNNING, SLAVE_FINISHED };
235 static rte_atomic16_t slave_state[RTE_MAX_LCORE];
238 master_init_slaves(void)
242 RTE_LCORE_FOREACH_SLAVE(i) {
243 rte_atomic16_set(&slave_state[i], SLAVE_WAITING);
248 master_start_slaves(void)
252 RTE_LCORE_FOREACH_SLAVE(i) {
253 rte_atomic16_set(&slave_state[i], SLAVE_RUN_SIGNAL);
255 RTE_LCORE_FOREACH_SLAVE(i) {
256 while (rte_atomic16_read(&slave_state[i]) != SLAVE_RUNNING)
262 master_wait_for_slaves(void)
266 RTE_LCORE_FOREACH_SLAVE(i) {
267 while (rte_atomic16_read(&slave_state[i]) != SLAVE_FINISHED)
273 slave_wait_to_start(void)
275 unsigned lcore_id = rte_lcore_id();
277 while (rte_atomic16_read(&slave_state[lcore_id]) != SLAVE_RUN_SIGNAL)
279 rte_atomic16_set(&slave_state[lcore_id], SLAVE_RUNNING);
285 unsigned lcore_id = rte_lcore_id();
287 rte_atomic16_set(&slave_state[lcore_id], SLAVE_FINISHED);
291 static volatile int cb_count = 0;
293 /* callback for second stress test. will only be called
296 timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
301 #define NB_STRESS2_TIMERS 8192
304 timer_stress2_main_loop(__attribute__((unused)) void *arg)
306 static struct rte_timer *timers;
308 uint64_t delay = rte_get_timer_hz() / 4;
309 unsigned lcore_id = rte_lcore_id();
310 unsigned master = rte_get_master_lcore();
311 int32_t my_collisions = 0;
312 static rte_atomic32_t collisions;
314 if (lcore_id == master) {
317 rte_atomic32_set(&collisions, 0);
318 master_init_slaves();
319 timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
320 if (timers == NULL) {
321 printf("Test Failed\n");
322 printf("- Cannot allocate memory for timers\n" );
324 master_start_slaves();
327 for (i = 0; i < NB_STRESS2_TIMERS; i++)
328 rte_timer_init(&timers[i]);
329 master_start_slaves();
331 slave_wait_to_start();
336 /* have all cores schedule all timers on master lcore */
337 for (i = 0; i < NB_STRESS2_TIMERS; i++) {
338 ret = rte_timer_reset(&timers[i], delay, SINGLE, master,
339 timer_stress2_cb, NULL);
340 /* there will be collisions when multiple cores simultaneously
341 * configure the same timers */
345 if (my_collisions != 0)
346 rte_atomic32_add(&collisions, my_collisions);
348 /* wait long enough for timers to expire */
351 /* all cores rendezvous */
352 if (lcore_id == master) {
353 master_wait_for_slaves();
358 /* now check that we get the right number of callbacks */
359 if (lcore_id == master) {
360 my_collisions = rte_atomic32_read(&collisions);
361 if (my_collisions != 0)
362 printf("- %d timer reset collisions (OK)\n", my_collisions);
364 if (cb_count != NB_STRESS2_TIMERS) {
365 printf("Test Failed\n");
366 printf("- Stress test 2, part 1 failed\n");
367 printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
370 master_start_slaves();
376 master_start_slaves();
379 slave_wait_to_start();
384 /* now test again, just stop and restart timers at random after init*/
385 for (i = 0; i < NB_STRESS2_TIMERS; i++)
386 rte_timer_reset(&timers[i], delay, SINGLE, master,
387 timer_stress2_cb, NULL);
389 /* pick random timer to reset, stopping them first half the time */
390 for (i = 0; i < 100000; i++) {
391 int r = rand() % NB_STRESS2_TIMERS;
393 rte_timer_stop(&timers[r]);
394 rte_timer_reset(&timers[r], delay, SINGLE, master,
395 timer_stress2_cb, NULL);
398 /* wait long enough for timers to expire */
401 /* now check that we get the right number of callbacks */
402 if (lcore_id == master) {
403 master_wait_for_slaves();
406 if (cb_count != NB_STRESS2_TIMERS) {
407 printf("Test Failed\n");
408 printf("- Stress test 2, part 2 failed\n");
409 printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
418 if (lcore_id == master) {
419 master_wait_for_slaves();
420 if (timers != NULL) {
431 /* timer callback for basic tests */
433 timer_basic_cb(struct rte_timer *tim, void *arg)
435 struct mytimerinfo *timinfo = arg;
436 uint64_t hz = rte_get_timer_hz();
437 unsigned lcore_id = rte_lcore_id();
438 uint64_t cur_time = rte_get_timer_cycles();
440 if (rte_timer_pending(tim))
445 RTE_LOG(INFO, TESTTIMER,
446 "%"PRIu64": callback id=%u count=%u on core %u\n",
447 cur_time, timinfo->id, timinfo->count, lcore_id);
449 /* reload timer 0 on same core */
450 if (timinfo->id == 0 && timinfo->count < 20) {
451 mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
455 /* reload timer 1 on next core */
456 if (timinfo->id == 1 && timinfo->count < 10) {
457 mytimer_reset(timinfo, hz*2, SINGLE,
458 rte_get_next_lcore(lcore_id, 0, 1),
463 /* Explicitelly stop timer 0. Once stop() called, we can even
464 * erase the content of the structure: it is not referenced
465 * anymore by any code (in case of dynamic structure, it can
467 if (timinfo->id == 0 && timinfo->count == 20) {
469 /* stop_sync() is not needed, because we know that the
470 * status of timer is only modified by this core */
472 memset(tim, 0xAA, sizeof(struct rte_timer));
476 /* stop timer3, and restart a new timer0 (it was removed 5
477 * seconds ago) for a single shot */
478 if (timinfo->id == 2 && timinfo->count == 25) {
479 rte_timer_stop_sync(&mytiminfo[3].tim);
481 /* need to reinit because structure was erased with 0xAA */
482 rte_timer_init(&mytiminfo[0].tim);
483 mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
489 timer_basic_main_loop(__attribute__((unused)) void *arg)
491 uint64_t hz = rte_get_timer_hz();
492 unsigned lcore_id = rte_lcore_id();
496 /* launch all timers on core 0 */
497 if (lcore_id == rte_get_master_lcore()) {
498 mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
500 mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
502 mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
504 mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
505 rte_get_next_lcore(lcore_id, 0, 1),
511 /* call the timer handler on each core */
514 /* simulate the processing of a packet
515 * (3 us = 6000 cycles at 2 Ghz) */
518 cur_time = rte_get_timer_cycles();
519 diff = end_time - cur_time;
521 RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
527 timer_sanity_check(void)
529 #ifdef RTE_LIBEAL_USE_HPET
530 if (eal_timer_source != EAL_TIMER_HPET) {
531 printf("Not using HPET, can't sanity check timer sources\n");
535 const uint64_t t_hz = rte_get_tsc_hz();
536 const uint64_t h_hz = rte_get_hpet_hz();
537 printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
539 const uint64_t tsc_start = rte_get_tsc_cycles();
540 const uint64_t hpet_start = rte_get_hpet_cycles();
541 rte_delay_ms(100); /* delay 1/10 second */
542 const uint64_t tsc_end = rte_get_tsc_cycles();
543 const uint64_t hpet_end = rte_get_hpet_cycles();
544 printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
545 tsc_end-tsc_start, hpet_end-hpet_start);
547 const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
548 const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
549 /* get the percentage that the times differ by */
550 const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
551 printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
553 printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
555 if (time_diff > 0.1) {
556 printf("Error times differ by >0.1%%");
570 /* sanity check our timer sources and timer config values */
571 if (timer_sanity_check() < 0) {
572 printf("Timer sanity checks failed\n");
576 if (rte_lcore_count() < 2) {
577 printf("not enough lcores for this test\n");
582 for (i=0; i<NB_TIMER; i++) {
583 memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
585 rte_timer_init(&mytiminfo[i].tim);
588 /* calculate the "end of test" time */
589 cur_time = rte_get_timer_cycles();
590 hz = rte_get_timer_hz();
591 end_time = cur_time + (hz * TEST_DURATION_S);
593 /* start other cores */
594 printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
595 rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
596 rte_eal_mp_wait_lcore();
598 /* stop timer 0 used for stress test */
599 rte_timer_stop_sync(&mytiminfo[0].tim);
601 /* run a second, slightly different set of stress tests */
602 printf("\nStart timer stress tests 2\n");
604 rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
605 rte_eal_mp_wait_lcore();
609 /* calculate the "end of test" time */
610 cur_time = rte_get_timer_cycles();
611 hz = rte_get_timer_hz();
612 end_time = cur_time + (hz * TEST_DURATION_S);
614 /* start other cores */
615 printf("\nStart timer basic tests (%d seconds)\n", TEST_DURATION_S);
616 rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
617 rte_eal_mp_wait_lcore();
619 /* stop all timers */
620 for (i=0; i<NB_TIMER; i++) {
621 rte_timer_stop_sync(&mytiminfo[i].tim);
624 rte_timer_dump_stats(stdout);
629 static struct test_command timer_cmd = {
630 .command = "timer_autotest",
631 .callback = test_timer,
633 REGISTER_TEST_COMMAND(timer_cmd);