event/dlb2: fix check of QID in-flight
[dpdk.git] / app / test-crypto-perf / cperf_test_pmd_cyclecount.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdbool.h>
6
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 #include <rte_cycles.h>
10 #include <rte_malloc.h>
11
12 #include "cperf_ops.h"
13 #include "cperf_test_pmd_cyclecount.h"
14 #include "cperf_test_common.h"
15
16 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
17 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
18 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
19 #define CSV_LINE_FMT "%10u,%10u,%u,%u,%u,%u,%u,%.3f,%.3f,%.3f\n"
20
21 struct cperf_pmd_cyclecount_ctx {
22         uint8_t dev_id;
23         uint16_t qp_id;
24         uint8_t lcore_id;
25
26         struct rte_mempool *pool;
27         struct rte_crypto_op **ops;
28         struct rte_crypto_op **ops_processed;
29
30         struct rte_cryptodev_sym_session *sess;
31
32         cperf_populate_ops_t populate_ops;
33
34         uint32_t src_buf_offset;
35         uint32_t dst_buf_offset;
36
37         const struct cperf_options *options;
38         const struct cperf_test_vector *test_vector;
39 };
40
41 struct pmd_cyclecount_state {
42         struct cperf_pmd_cyclecount_ctx *ctx;
43         const struct cperf_options *opts;
44         uint32_t lcore;
45         uint64_t delay;
46         int linearize;
47         uint32_t ops_enqd;
48         uint32_t ops_deqd;
49         uint32_t ops_enq_retries;
50         uint32_t ops_deq_retries;
51         double cycles_per_build;
52         double cycles_per_enq;
53         double cycles_per_deq;
54 };
55
56 static const uint16_t iv_offset =
57                 sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
58
59 static void
60 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
61 {
62         if (!ctx)
63                 return;
64
65         if (ctx->sess) {
66 #ifdef RTE_LIB_SECURITY
67                 if (ctx->options->op_type == CPERF_PDCP ||
68                                 ctx->options->op_type == CPERF_DOCSIS) {
69                         struct rte_security_ctx *sec_ctx =
70                                 (struct rte_security_ctx *)
71                                 rte_cryptodev_get_sec_ctx(ctx->dev_id);
72                         rte_security_session_destroy(sec_ctx,
73                                 (struct rte_security_session *)ctx->sess);
74                 } else
75 #endif
76                 {
77                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
78                         rte_cryptodev_sym_session_free(ctx->sess);
79                 }
80         }
81
82         rte_mempool_free(ctx->pool);
83
84         rte_free(ctx->ops);
85
86         rte_free(ctx->ops_processed);
87
88         rte_free(ctx);
89 }
90
91 void *
92 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
93                 struct rte_mempool *sess_priv_mp,
94                 uint8_t dev_id, uint16_t qp_id,
95                 const struct cperf_options *options,
96                 const struct cperf_test_vector *test_vector,
97                 const struct cperf_op_fns *op_fns)
98 {
99         struct cperf_pmd_cyclecount_ctx *ctx = NULL;
100
101         /* preallocate buffers for crypto ops as they can get quite big */
102         size_t alloc_sz = sizeof(struct rte_crypto_op *) *
103                         options->nb_descriptors;
104
105         ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
106         if (ctx == NULL)
107                 goto err;
108
109         ctx->dev_id = dev_id;
110         ctx->qp_id = qp_id;
111
112         ctx->populate_ops = op_fns->populate_ops;
113         ctx->options = options;
114         ctx->test_vector = test_vector;
115
116         /* IV goes at the end of the crypto operation */
117         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
118                         sizeof(struct rte_crypto_sym_op);
119
120         ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
121                         test_vector, iv_offset);
122         if (ctx->sess == NULL)
123                 goto err;
124
125         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
126                         &ctx->src_buf_offset, &ctx->dst_buf_offset,
127                         &ctx->pool) < 0)
128                 goto err;
129
130         ctx->ops = rte_malloc("ops", alloc_sz, 0);
131         if (!ctx->ops)
132                 goto err;
133
134         ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
135         if (!ctx->ops_processed)
136                 goto err;
137
138         return ctx;
139
140 err:
141         cperf_pmd_cyclecount_test_free(ctx);
142
143         return NULL;
144 }
145
146 /* benchmark alloc-build-free of ops */
147 static inline int
148 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
149                 uint16_t test_burst_size)
150 {
151         uint32_t iter_ops_left = state->opts->total_ops - cur_op;
152         uint32_t iter_ops_needed =
153                         RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
154         uint32_t cur_iter_op;
155         uint32_t imix_idx = 0;
156
157         for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
158                         cur_iter_op += test_burst_size) {
159                 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
160                                 test_burst_size);
161                 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
162
163                 /* Allocate objects containing crypto operations and mbufs */
164                 if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
165                                         burst_size) != 0) {
166                         RTE_LOG(ERR, USER1,
167                                         "Failed to allocate more crypto operations "
168                                         "from the crypto operation pool.\n"
169                                         "Consider increasing the pool size "
170                                         "with --pool-sz\n");
171                                 return -1;
172                 }
173
174                 /* Setup crypto op, attach mbuf etc */
175                 (state->ctx->populate_ops)(ops,
176                                 state->ctx->src_buf_offset,
177                                 state->ctx->dst_buf_offset,
178                                 burst_size,
179                                 state->ctx->sess, state->opts,
180                                 state->ctx->test_vector, iv_offset,
181                                 &imix_idx, NULL);
182
183 #ifdef CPERF_LINEARIZATION_ENABLE
184                 /* Check if source mbufs require coalescing */
185                 if (state->linearize) {
186                         uint8_t i;
187                         for (i = 0; i < burst_size; i++) {
188                                 struct rte_mbuf *src = ops[i]->sym->m_src;
189                                 rte_pktmbuf_linearize(src);
190                         }
191                 }
192 #endif /* CPERF_LINEARIZATION_ENABLE */
193                 rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
194                                 burst_size);
195         }
196
197         return 0;
198 }
199
200 /* allocate and build ops (no free) */
201 static int
202 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
203                 uint32_t iter_ops_needed, uint16_t test_burst_size)
204 {
205         uint32_t cur_iter_op;
206         uint32_t imix_idx = 0;
207
208         for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
209                         cur_iter_op += test_burst_size) {
210                 uint32_t burst_size = RTE_MIN(
211                                 iter_ops_needed - cur_iter_op, test_burst_size);
212                 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
213
214                 /* Allocate objects containing crypto operations and mbufs */
215                 if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
216                                         burst_size) != 0) {
217                         RTE_LOG(ERR, USER1,
218                                         "Failed to allocate more crypto operations "
219                                         "from the crypto operation pool.\n"
220                                         "Consider increasing the pool size "
221                                         "with --pool-sz\n");
222                                 return -1;
223                 }
224
225                 /* Setup crypto op, attach mbuf etc */
226                 (state->ctx->populate_ops)(ops,
227                                 state->ctx->src_buf_offset,
228                                 state->ctx->dst_buf_offset,
229                                 burst_size,
230                                 state->ctx->sess, state->opts,
231                                 state->ctx->test_vector, iv_offset,
232                                 &imix_idx, NULL);
233         }
234         return 0;
235 }
236
237 /* benchmark enqueue, returns number of ops enqueued */
238 static uint32_t
239 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
240                 uint32_t iter_ops_needed, uint16_t test_burst_size)
241 {
242         /* Enqueue full descriptor ring of ops on crypto device */
243         uint32_t cur_iter_op = 0;
244         while (cur_iter_op < iter_ops_needed) {
245                 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
246                                 test_burst_size);
247                 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
248                 uint32_t burst_enqd;
249
250                 burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
251                                 state->ctx->qp_id, ops, burst_size);
252
253                 /* if we couldn't enqueue anything, the queue is full */
254                 if (!burst_enqd) {
255                         /* don't try to dequeue anything we didn't enqueue */
256                         return cur_iter_op;
257                 }
258
259                 if (burst_enqd < burst_size)
260                         state->ops_enq_retries++;
261                 state->ops_enqd += burst_enqd;
262                 cur_iter_op += burst_enqd;
263         }
264         return iter_ops_needed;
265 }
266
267 /* benchmark dequeue */
268 static void
269 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
270                 uint32_t iter_ops_needed, uint16_t test_burst_size)
271 {
272         /* Dequeue full descriptor ring of ops on crypto device */
273         uint32_t cur_iter_op = 0;
274         while (cur_iter_op < iter_ops_needed) {
275                 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
276                                 test_burst_size);
277                 struct rte_crypto_op **ops_processed =
278                                 &state->ctx->ops[cur_iter_op];
279                 uint32_t burst_deqd;
280
281                 burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
282                                 state->ctx->qp_id, ops_processed, burst_size);
283
284                 if (burst_deqd < burst_size)
285                         state->ops_deq_retries++;
286                 state->ops_deqd += burst_deqd;
287                 cur_iter_op += burst_deqd;
288         }
289 }
290
291 /* run benchmark per burst size */
292 static inline int
293 pmd_cyclecount_bench_burst_sz(
294                 struct pmd_cyclecount_state *state, uint16_t test_burst_size)
295 {
296         uint64_t tsc_start;
297         uint64_t tsc_end;
298         uint64_t tsc_op;
299         uint64_t tsc_enq;
300         uint64_t tsc_deq;
301         uint32_t cur_op;
302
303         /* reset all counters */
304         tsc_enq = 0;
305         tsc_deq = 0;
306         state->ops_enqd = 0;
307         state->ops_enq_retries = 0;
308         state->ops_deqd = 0;
309         state->ops_deq_retries = 0;
310
311         /*
312          * Benchmark crypto op alloc-build-free separately.
313          */
314         tsc_start = rte_rdtsc_precise();
315
316         for (cur_op = 0; cur_op < state->opts->total_ops;
317                         cur_op += state->opts->nb_descriptors) {
318                 if (unlikely(pmd_cyclecount_bench_ops(
319                                 state, cur_op, test_burst_size)))
320                         return -1;
321         }
322
323         tsc_end = rte_rdtsc_precise();
324         tsc_op = tsc_end - tsc_start;
325
326
327         /*
328          * Hardware acceleration cyclecount benchmarking loop.
329          *
330          * We're benchmarking raw enq/deq performance by filling up the device
331          * queue, so we never get any failed enqs unless the driver won't accept
332          * the exact number of descriptors we requested, or the driver won't
333          * wrap around the end of the TX ring. However, since we're only
334          * dequeuing once we've filled up the queue, we have to benchmark it
335          * piecemeal and then average out the results.
336          */
337         cur_op = 0;
338         while (cur_op < state->opts->total_ops) {
339                 uint32_t iter_ops_left = state->opts->total_ops - cur_op;
340                 uint32_t iter_ops_needed = RTE_MIN(
341                                 state->opts->nb_descriptors, iter_ops_left);
342                 uint32_t iter_ops_allocd = iter_ops_needed;
343
344                 /* allocate and build ops */
345                 if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
346                                 test_burst_size)))
347                         return -1;
348
349                 tsc_start = rte_rdtsc_precise();
350
351                 /* fill up TX ring */
352                 iter_ops_needed = pmd_cyclecount_bench_enq(state,
353                                 iter_ops_needed, test_burst_size);
354
355                 tsc_end = rte_rdtsc_precise();
356
357                 tsc_enq += tsc_end - tsc_start;
358
359                 /* allow for HW to catch up */
360                 if (state->delay)
361                         rte_delay_us_block(state->delay);
362
363                 tsc_start = rte_rdtsc_precise();
364
365                 /* drain RX ring */
366                 pmd_cyclecount_bench_deq(state, iter_ops_needed,
367                                 test_burst_size);
368
369                 tsc_end = rte_rdtsc_precise();
370
371                 tsc_deq += tsc_end - tsc_start;
372
373                 cur_op += iter_ops_needed;
374
375                 /*
376                  * we may not have processed all ops that we allocated, so
377                  * free everything we've allocated.
378                  */
379                 rte_mempool_put_bulk(state->ctx->pool,
380                                 (void **)state->ctx->ops, iter_ops_allocd);
381         }
382
383         state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
384         state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
385         state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
386
387         return 0;
388 }
389
390 int
391 cperf_pmd_cyclecount_test_runner(void *test_ctx)
392 {
393         struct pmd_cyclecount_state state = {0};
394         const struct cperf_options *opts;
395         uint16_t test_burst_size;
396         uint8_t burst_size_idx = 0;
397
398         state.ctx = test_ctx;
399         opts = state.ctx->options;
400         state.opts = opts;
401         state.lcore = rte_lcore_id();
402         state.linearize = 0;
403
404         static uint16_t display_once;
405         static bool warmup = true;
406
407         /*
408          * We need a small delay to allow for hardware to process all the crypto
409          * operations. We can't automatically figure out what the delay should
410          * be, so we leave it up to the user (by default it's 0).
411          */
412         state.delay = 1000 * opts->pmdcc_delay;
413
414 #ifdef CPERF_LINEARIZATION_ENABLE
415         struct rte_cryptodev_info dev_info;
416
417         /* Check if source mbufs require coalescing */
418         if (opts->segments_sz < ctx->options->max_buffer_size) {
419                 rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
420                 if ((dev_info.feature_flags &
421                                     RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
422                                 0) {
423                         state.linearize = 1;
424                 }
425         }
426 #endif /* CPERF_LINEARIZATION_ENABLE */
427
428         state.ctx->lcore_id = state.lcore;
429
430         /* Get first size from range or list */
431         if (opts->inc_burst_size != 0)
432                 test_burst_size = opts->min_burst_size;
433         else
434                 test_burst_size = opts->burst_size_list[0];
435
436         while (test_burst_size <= opts->max_burst_size) {
437                 /* do a benchmark run */
438                 if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
439                         return -1;
440
441                 /*
442                  * First run is always a warm up run.
443                  */
444                 if (warmup) {
445                         warmup = false;
446                         continue;
447                 }
448
449                 uint16_t exp = 0;
450                 if (!opts->csv) {
451                         if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
452                                         __ATOMIC_RELAXED, __ATOMIC_RELAXED))
453                                 printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
454                                                 "Burst Size", "Enqueued",
455                                                 "Dequeued", "Enq Retries",
456                                                 "Deq Retries", "Cycles/Op",
457                                                 "Cycles/Enq", "Cycles/Deq");
458
459                         printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
460                                         opts->test_buffer_size, test_burst_size,
461                                         state.ops_enqd, state.ops_deqd,
462                                         state.ops_enq_retries,
463                                         state.ops_deq_retries,
464                                         state.cycles_per_build,
465                                         state.cycles_per_enq,
466                                         state.cycles_per_deq);
467                 } else {
468                         if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
469                                         __ATOMIC_RELAXED, __ATOMIC_RELAXED))
470                                 printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
471                                                 "Burst Size", "Enqueued",
472                                                 "Dequeued", "Enq Retries",
473                                                 "Deq Retries", "Cycles/Op",
474                                                 "Cycles/Enq", "Cycles/Deq");
475
476                         printf(CSV_LINE_FMT, state.ctx->lcore_id,
477                                         opts->test_buffer_size, test_burst_size,
478                                         state.ops_enqd, state.ops_deqd,
479                                         state.ops_enq_retries,
480                                         state.ops_deq_retries,
481                                         state.cycles_per_build,
482                                         state.cycles_per_enq,
483                                         state.cycles_per_deq);
484                 }
485
486                 /* Get next size from range or list */
487                 if (opts->inc_burst_size != 0)
488                         test_burst_size += opts->inc_burst_size;
489                 else {
490                         if (++burst_size_idx == opts->burst_size_count)
491                                 break;
492                         test_burst_size = opts->burst_size_list[burst_size_idx];
493                 }
494         }
495
496         return 0;
497 }
498
499 void
500 cperf_pmd_cyclecount_test_destructor(void *arg)
501 {
502         struct cperf_pmd_cyclecount_ctx *ctx = arg;
503
504         if (ctx == NULL)
505                 return;
506
507         cperf_pmd_cyclecount_test_free(ctx);
508 }