test/crypto-perf: test asymmetric crypto throughput
[dpdk.git] / app / test-crypto-perf / cperf_test_throughput.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9
10 #include "cperf_test_throughput.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13
14 struct cperf_throughput_ctx {
15         uint8_t dev_id;
16         uint16_t qp_id;
17         uint8_t lcore_id;
18
19         struct rte_mempool *pool;
20
21         struct rte_cryptodev_sym_session *sess;
22
23         cperf_populate_ops_t populate_ops;
24
25         uint32_t src_buf_offset;
26         uint32_t dst_buf_offset;
27
28         const struct cperf_options *options;
29         const struct cperf_test_vector *test_vector;
30 };
31
32 static void
33 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
34 {
35         if (!ctx)
36                 return;
37         if (ctx->sess) {
38                 if (ctx->options->op_type == CPERF_ASYM_MODEX) {
39                         rte_cryptodev_asym_session_clear(ctx->dev_id,
40                                                          (void *)ctx->sess);
41                         rte_cryptodev_asym_session_free((void *)ctx->sess);
42                 }
43 #ifdef RTE_LIB_SECURITY
44                 else if (ctx->options->op_type == CPERF_PDCP ||
45                          ctx->options->op_type == CPERF_DOCSIS) {
46                         struct rte_security_ctx *sec_ctx =
47                                 (struct rte_security_ctx *)
48                                         rte_cryptodev_get_sec_ctx(ctx->dev_id);
49                         rte_security_session_destroy(
50                                 sec_ctx,
51                                 (struct rte_security_session *)ctx->sess);
52                 }
53 #endif
54                 else {
55                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
56                         rte_cryptodev_sym_session_free(ctx->sess);
57                 }
58         }
59         if (ctx->pool)
60                 rte_mempool_free(ctx->pool);
61
62         rte_free(ctx);
63 }
64
65 void *
66 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
67                 struct rte_mempool *sess_priv_mp,
68                 uint8_t dev_id, uint16_t qp_id,
69                 const struct cperf_options *options,
70                 const struct cperf_test_vector *test_vector,
71                 const struct cperf_op_fns *op_fns)
72 {
73         struct cperf_throughput_ctx *ctx = NULL;
74
75         ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
76         if (ctx == NULL)
77                 goto err;
78
79         ctx->dev_id = dev_id;
80         ctx->qp_id = qp_id;
81
82         ctx->populate_ops = op_fns->populate_ops;
83         ctx->options = options;
84         ctx->test_vector = test_vector;
85
86         /* IV goes at the end of the crypto operation */
87         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
88                 sizeof(struct rte_crypto_sym_op);
89
90         ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
91                         test_vector, iv_offset);
92         if (ctx->sess == NULL)
93                 goto err;
94
95         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
96                         &ctx->src_buf_offset, &ctx->dst_buf_offset,
97                         &ctx->pool) < 0)
98                 goto err;
99
100         return ctx;
101 err:
102         cperf_throughput_test_free(ctx);
103
104         return NULL;
105 }
106
107 int
108 cperf_throughput_test_runner(void *test_ctx)
109 {
110         struct cperf_throughput_ctx *ctx = test_ctx;
111         uint16_t test_burst_size;
112         uint8_t burst_size_idx = 0;
113         uint32_t imix_idx = 0;
114
115         static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
116
117         struct rte_crypto_op *ops[ctx->options->max_burst_size];
118         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
119         uint64_t i;
120
121         uint32_t lcore = rte_lcore_id();
122
123 #ifdef CPERF_LINEARIZATION_ENABLE
124         struct rte_cryptodev_info dev_info;
125         int linearize = 0;
126
127         /* Check if source mbufs require coalescing */
128         if ((ctx->options->op_type != CPERF_ASYM_MODEX) &&
129             (ctx->options->segment_sz < ctx->options->max_buffer_size)) {
130                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
131                 if ((dev_info.feature_flags &
132                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
133                         linearize = 1;
134         }
135 #endif /* CPERF_LINEARIZATION_ENABLE */
136
137         ctx->lcore_id = lcore;
138
139         /* Warm up the host CPU before starting the test */
140         for (i = 0; i < ctx->options->total_ops; i++)
141                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
142
143         /* Get first size from range or list */
144         if (ctx->options->inc_burst_size != 0)
145                 test_burst_size = ctx->options->min_burst_size;
146         else
147                 test_burst_size = ctx->options->burst_size_list[0];
148
149         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
150                 sizeof(struct rte_crypto_sym_op);
151
152         while (test_burst_size <= ctx->options->max_burst_size) {
153                 uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
154                 uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
155
156                 uint64_t tsc_start, tsc_end, tsc_duration;
157
158                 uint16_t ops_unused = 0;
159
160                 tsc_start = rte_rdtsc_precise();
161
162                 while (ops_enqd_total < ctx->options->total_ops) {
163
164                         uint16_t burst_size = ((ops_enqd_total + test_burst_size)
165                                         <= ctx->options->total_ops) ?
166                                                         test_burst_size :
167                                                         ctx->options->total_ops -
168                                                         ops_enqd_total;
169
170                         uint16_t ops_needed = burst_size - ops_unused;
171
172                         /* Allocate objects containing crypto operations and mbufs */
173                         if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
174                                                 ops_needed) != 0) {
175                                 RTE_LOG(ERR, USER1,
176                                         "Failed to allocate more crypto operations "
177                                         "from the crypto operation pool.\n"
178                                         "Consider increasing the pool size "
179                                         "with --pool-sz\n");
180                                 return -1;
181                         }
182
183                         /* Setup crypto op, attach mbuf etc */
184                         (ctx->populate_ops)(ops, ctx->src_buf_offset,
185                                         ctx->dst_buf_offset,
186                                         ops_needed, ctx->sess,
187                                         ctx->options, ctx->test_vector,
188                                         iv_offset, &imix_idx);
189
190                         /**
191                          * When ops_needed is smaller than ops_enqd, the
192                          * unused ops need to be moved to the front for
193                          * next round use.
194                          */
195                         if (unlikely(ops_enqd > ops_needed)) {
196                                 size_t nb_b_to_mov = ops_unused * sizeof(
197                                                 struct rte_crypto_op *);
198
199                                 memmove(&ops[ops_needed], &ops[ops_enqd],
200                                         nb_b_to_mov);
201                         }
202
203 #ifdef CPERF_LINEARIZATION_ENABLE
204                         if (linearize) {
205                                 /* PMD doesn't support scatter-gather and source buffer
206                                  * is segmented.
207                                  * We need to linearize it before enqueuing.
208                                  */
209                                 for (i = 0; i < burst_size; i++)
210                                         rte_pktmbuf_linearize(
211                                                 ops[i]->sym->m_src);
212                         }
213 #endif /* CPERF_LINEARIZATION_ENABLE */
214
215                         /* Enqueue burst of ops on crypto device */
216                         ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
217                                         ops, burst_size);
218                         if (ops_enqd < burst_size)
219                                 ops_enqd_failed++;
220
221                         /**
222                          * Calculate number of ops not enqueued (mainly for hw
223                          * accelerators whose ingress queue can fill up).
224                          */
225                         ops_unused = burst_size - ops_enqd;
226                         ops_enqd_total += ops_enqd;
227
228
229                         /* Dequeue processed burst of ops from crypto device */
230                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
231                                         ops_processed, test_burst_size);
232
233                         if (likely(ops_deqd))  {
234                                 /* Free crypto ops so they can be reused. */
235                                 rte_mempool_put_bulk(ctx->pool,
236                                                 (void **)ops_processed, ops_deqd);
237
238                                 ops_deqd_total += ops_deqd;
239                         } else {
240                                 /**
241                                  * Count dequeue polls which didn't return any
242                                  * processed operations. This statistic is mainly
243                                  * relevant to hw accelerators.
244                                  */
245                                 ops_deqd_failed++;
246                         }
247
248                 }
249
250                 /* Dequeue any operations still in the crypto device */
251
252                 while (ops_deqd_total < ctx->options->total_ops) {
253                         /* Sending 0 length burst to flush sw crypto device */
254                         rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
255
256                         /* dequeue burst */
257                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
258                                         ops_processed, test_burst_size);
259                         if (ops_deqd == 0)
260                                 ops_deqd_failed++;
261                         else {
262                                 rte_mempool_put_bulk(ctx->pool,
263                                                 (void **)ops_processed, ops_deqd);
264                                 ops_deqd_total += ops_deqd;
265                         }
266                 }
267
268                 tsc_end = rte_rdtsc_precise();
269                 tsc_duration = (tsc_end - tsc_start);
270
271                 /* Calculate average operations processed per second */
272                 double ops_per_second = ((double)ctx->options->total_ops /
273                                 tsc_duration) * rte_get_tsc_hz();
274
275                 /* Calculate average throughput (Gbps) in bits per second */
276                 double throughput_gbps = ((ops_per_second *
277                                 ctx->options->test_buffer_size * 8) / 1000000000);
278
279                 /* Calculate average cycles per packet */
280                 double cycles_per_packet = ((double)tsc_duration /
281                                 ctx->options->total_ops);
282
283                 if (!ctx->options->csv) {
284                         if (rte_atomic16_test_and_set(&display_once))
285                                 printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
286                                         "lcore id", "Buf Size", "Burst Size",
287                                         "Enqueued", "Dequeued", "Failed Enq",
288                                         "Failed Deq", "MOps", "Gbps",
289                                         "Cycles/Buf");
290
291                         printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
292                                         "%12"PRIu64"%12.4f%12.4f%12.2f\n",
293                                         ctx->lcore_id,
294                                         ctx->options->test_buffer_size,
295                                         test_burst_size,
296                                         ops_enqd_total,
297                                         ops_deqd_total,
298                                         ops_enqd_failed,
299                                         ops_deqd_failed,
300                                         ops_per_second/1000000,
301                                         throughput_gbps,
302                                         cycles_per_packet);
303                 } else {
304                         if (rte_atomic16_test_and_set(&display_once))
305                                 printf("#lcore id,Buffer Size(B),"
306                                         "Burst Size,Enqueued,Dequeued,Failed Enq,"
307                                         "Failed Deq,Ops(Millions),Throughput(Gbps),"
308                                         "Cycles/Buf\n\n");
309
310                         printf("%u,%u,%u,%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64","
311                                         "%.3f,%.3f,%.3f\n",
312                                         ctx->lcore_id,
313                                         ctx->options->test_buffer_size,
314                                         test_burst_size,
315                                         ops_enqd_total,
316                                         ops_deqd_total,
317                                         ops_enqd_failed,
318                                         ops_deqd_failed,
319                                         ops_per_second/1000000,
320                                         throughput_gbps,
321                                         cycles_per_packet);
322                 }
323
324                 /* Get next size from range or list */
325                 if (ctx->options->inc_burst_size != 0)
326                         test_burst_size += ctx->options->inc_burst_size;
327                 else {
328                         if (++burst_size_idx == ctx->options->burst_size_count)
329                                 break;
330                         test_burst_size = ctx->options->burst_size_list[burst_size_idx];
331                 }
332
333         }
334
335         return 0;
336 }
337
338
339 void
340 cperf_throughput_test_destructor(void *arg)
341 {
342         struct cperf_throughput_ctx *ctx = arg;
343
344         if (ctx == NULL)
345                 return;
346
347         cperf_throughput_test_free(ctx);
348 }