test/crypto-perf: support SDAP for PDCP operations
[dpdk.git] / app / test-crypto-perf / cperf_test_verify.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9
10 #include "cperf_test_verify.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13
14 struct cperf_verify_ctx {
15         uint8_t dev_id;
16         uint16_t qp_id;
17         uint8_t lcore_id;
18
19         struct rte_mempool *pool;
20
21         struct rte_cryptodev_sym_session *sess;
22
23         cperf_populate_ops_t populate_ops;
24
25         uint32_t src_buf_offset;
26         uint32_t dst_buf_offset;
27
28         const struct cperf_options *options;
29         const struct cperf_test_vector *test_vector;
30 };
31
32 struct cperf_op_result {
33         enum rte_crypto_op_status status;
34 };
35
36 static void
37 cperf_verify_test_free(struct cperf_verify_ctx *ctx)
38 {
39         if (ctx) {
40                 if (ctx->sess) {
41                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
42                         rte_cryptodev_sym_session_free(ctx->sess);
43                 }
44
45                 rte_mempool_free(ctx->pool);
46
47                 rte_free(ctx);
48         }
49 }
50
51 void *
52 cperf_verify_test_constructor(struct rte_mempool *sess_mp,
53                 struct rte_mempool *sess_priv_mp,
54                 uint8_t dev_id, uint16_t qp_id,
55                 const struct cperf_options *options,
56                 const struct cperf_test_vector *test_vector,
57                 const struct cperf_op_fns *op_fns)
58 {
59         struct cperf_verify_ctx *ctx = NULL;
60
61         ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
62         if (ctx == NULL)
63                 goto err;
64
65         ctx->dev_id = dev_id;
66         ctx->qp_id = qp_id;
67
68         ctx->populate_ops = op_fns->populate_ops;
69         ctx->options = options;
70         ctx->test_vector = test_vector;
71
72         /* IV goes at the end of the crypto operation */
73         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
74                 sizeof(struct rte_crypto_sym_op);
75
76         ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
77                         test_vector, iv_offset);
78         if (ctx->sess == NULL)
79                 goto err;
80
81         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
82                         &ctx->src_buf_offset, &ctx->dst_buf_offset,
83                         &ctx->pool) < 0)
84                 goto err;
85
86         return ctx;
87 err:
88         cperf_verify_test_free(ctx);
89
90         return NULL;
91 }
92
93 static int
94 cperf_verify_op(struct rte_crypto_op *op,
95                 const struct cperf_options *options,
96                 const struct cperf_test_vector *vector)
97 {
98         const struct rte_mbuf *m;
99         uint32_t len;
100         uint16_t nb_segs;
101         uint8_t *data;
102         uint32_t cipher_offset, auth_offset;
103         uint8_t cipher, auth;
104         int res = 0;
105
106         if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
107                 return 1;
108
109         if (op->sym->m_dst)
110                 m = op->sym->m_dst;
111         else
112                 m = op->sym->m_src;
113         nb_segs = m->nb_segs;
114         len = 0;
115         while (m && nb_segs != 0) {
116                 len += m->data_len;
117                 m = m->next;
118                 nb_segs--;
119         }
120
121         data = rte_malloc(NULL, len, 0);
122         if (data == NULL)
123                 return 1;
124
125         if (op->sym->m_dst)
126                 m = op->sym->m_dst;
127         else
128                 m = op->sym->m_src;
129         nb_segs = m->nb_segs;
130         len = 0;
131         while (m && nb_segs != 0) {
132                 memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
133                                 m->data_len);
134                 len += m->data_len;
135                 m = m->next;
136                 nb_segs--;
137         }
138
139         switch (options->op_type) {
140         case CPERF_CIPHER_ONLY:
141                 cipher = 1;
142                 cipher_offset = 0;
143                 auth = 0;
144                 auth_offset = 0;
145                 break;
146         case CPERF_CIPHER_THEN_AUTH:
147                 cipher = 1;
148                 cipher_offset = 0;
149                 auth = 1;
150                 auth_offset = options->test_buffer_size;
151                 break;
152         case CPERF_AUTH_ONLY:
153                 cipher = 0;
154                 cipher_offset = 0;
155                 auth = 1;
156                 auth_offset = options->test_buffer_size;
157                 break;
158         case CPERF_AUTH_THEN_CIPHER:
159                 cipher = 1;
160                 cipher_offset = 0;
161                 auth = 1;
162                 auth_offset = options->test_buffer_size;
163                 break;
164         case CPERF_AEAD:
165                 cipher = 1;
166                 cipher_offset = 0;
167                 auth = 1;
168                 auth_offset = options->test_buffer_size;
169                 break;
170         default:
171                 res = 1;
172                 goto out;
173         }
174
175         if (cipher == 1) {
176                 if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
177                         res += memcmp(data + cipher_offset,
178                                         vector->ciphertext.data,
179                                         options->test_buffer_size);
180                 else
181                         res += memcmp(data + cipher_offset,
182                                         vector->plaintext.data,
183                                         options->test_buffer_size);
184         }
185
186         if (auth == 1) {
187                 if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
188                         res += memcmp(data + auth_offset,
189                                         vector->digest.data,
190                                         options->digest_sz);
191         }
192
193 out:
194         rte_free(data);
195         return !!res;
196 }
197
198 int
199 cperf_verify_test_runner(void *test_ctx)
200 {
201         struct cperf_verify_ctx *ctx = test_ctx;
202
203         uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
204         uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
205         uint64_t ops_failed = 0;
206
207         static uint16_t display_once;
208
209         uint64_t i;
210         uint16_t ops_unused = 0;
211         uint32_t imix_idx = 0;
212
213         struct rte_crypto_op *ops[ctx->options->max_burst_size];
214         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
215
216         uint32_t lcore = rte_lcore_id();
217
218 #ifdef CPERF_LINEARIZATION_ENABLE
219         struct rte_cryptodev_info dev_info;
220         int linearize = 0;
221
222         /* Check if source mbufs require coalescing */
223         if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
224                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
225                 if ((dev_info.feature_flags &
226                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
227                         linearize = 1;
228         }
229 #endif /* CPERF_LINEARIZATION_ENABLE */
230
231         ctx->lcore_id = lcore;
232
233         if (!ctx->options->csv)
234                 printf("\n# Running verify test on device: %u, lcore: %u\n",
235                         ctx->dev_id, lcore);
236
237         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
238                 sizeof(struct rte_crypto_sym_op);
239
240         while (ops_enqd_total < ctx->options->total_ops) {
241
242                 uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
243                                 <= ctx->options->total_ops) ?
244                                                 ctx->options->max_burst_size :
245                                                 ctx->options->total_ops -
246                                                 ops_enqd_total;
247
248                 uint16_t ops_needed = burst_size - ops_unused;
249
250                 /* Allocate objects containing crypto operations and mbufs */
251                 if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
252                                         ops_needed) != 0) {
253                         RTE_LOG(ERR, USER1,
254                                 "Failed to allocate more crypto operations "
255                                 "from the crypto operation pool.\n"
256                                 "Consider increasing the pool size "
257                                 "with --pool-sz\n");
258                         return -1;
259                 }
260
261                 /* Setup crypto op, attach mbuf etc */
262                 (ctx->populate_ops)(ops, ctx->src_buf_offset,
263                                 ctx->dst_buf_offset,
264                                 ops_needed, ctx->sess, ctx->options,
265                                 ctx->test_vector, iv_offset, &imix_idx, NULL);
266
267
268                 /* Populate the mbuf with the test vector, for verification */
269                 for (i = 0; i < ops_needed; i++)
270                         cperf_mbuf_set(ops[i]->sym->m_src,
271                                         ctx->options,
272                                         ctx->test_vector);
273
274 #ifdef CPERF_LINEARIZATION_ENABLE
275                 if (linearize) {
276                         /* PMD doesn't support scatter-gather and source buffer
277                          * is segmented.
278                          * We need to linearize it before enqueuing.
279                          */
280                         for (i = 0; i < burst_size; i++)
281                                 rte_pktmbuf_linearize(ops[i]->sym->m_src);
282                 }
283 #endif /* CPERF_LINEARIZATION_ENABLE */
284
285                 /* Enqueue burst of ops on crypto device */
286                 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
287                                 ops, burst_size);
288                 if (ops_enqd < burst_size)
289                         ops_enqd_failed++;
290
291                 /**
292                  * Calculate number of ops not enqueued (mainly for hw
293                  * accelerators whose ingress queue can fill up).
294                  */
295                 ops_unused = burst_size - ops_enqd;
296                 ops_enqd_total += ops_enqd;
297
298
299                 /* Dequeue processed burst of ops from crypto device */
300                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
301                                 ops_processed, ctx->options->max_burst_size);
302
303                 if (ops_deqd == 0) {
304                         /**
305                          * Count dequeue polls which didn't return any
306                          * processed operations. This statistic is mainly
307                          * relevant to hw accelerators.
308                          */
309                         ops_deqd_failed++;
310                         continue;
311                 }
312
313                 for (i = 0; i < ops_deqd; i++) {
314                         if (cperf_verify_op(ops_processed[i], ctx->options,
315                                                 ctx->test_vector))
316                                 ops_failed++;
317                 }
318                 /* Free crypto ops so they can be reused. */
319                 rte_mempool_put_bulk(ctx->pool,
320                                         (void **)ops_processed, ops_deqd);
321                 ops_deqd_total += ops_deqd;
322         }
323
324         /* Dequeue any operations still in the crypto device */
325
326         while (ops_deqd_total < ctx->options->total_ops) {
327                 /* Sending 0 length burst to flush sw crypto device */
328                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
329
330                 /* dequeue burst */
331                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
332                                 ops_processed, ctx->options->max_burst_size);
333                 if (ops_deqd == 0) {
334                         ops_deqd_failed++;
335                         continue;
336                 }
337
338                 for (i = 0; i < ops_deqd; i++) {
339                         if (cperf_verify_op(ops_processed[i], ctx->options,
340                                                 ctx->test_vector))
341                                 ops_failed++;
342                 }
343                 /* Free crypto ops so they can be reused. */
344                 rte_mempool_put_bulk(ctx->pool,
345                                         (void **)ops_processed, ops_deqd);
346                 ops_deqd_total += ops_deqd;
347         }
348
349         uint16_t exp = 0;
350         if (!ctx->options->csv) {
351                 if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
352                                 __ATOMIC_RELAXED, __ATOMIC_RELAXED))
353                         printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
354                                 "lcore id", "Buf Size", "Burst size",
355                                 "Enqueued", "Dequeued", "Failed Enq",
356                                 "Failed Deq", "Failed Ops");
357
358                 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
359                                 "%12"PRIu64"%12"PRIu64"\n",
360                                 ctx->lcore_id,
361                                 ctx->options->max_buffer_size,
362                                 ctx->options->max_burst_size,
363                                 ops_enqd_total,
364                                 ops_deqd_total,
365                                 ops_enqd_failed,
366                                 ops_deqd_failed,
367                                 ops_failed);
368         } else {
369                 if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
370                                 __ATOMIC_RELAXED, __ATOMIC_RELAXED))
371                         printf("\n# lcore id, Buffer Size(B), "
372                                 "Burst Size,Enqueued,Dequeued,Failed Enq,"
373                                 "Failed Deq,Failed Ops\n");
374
375                 printf("%10u,%10u,%u,%"PRIu64",%"PRIu64",%"PRIu64",%"PRIu64","
376                                 "%"PRIu64"\n",
377                                 ctx->lcore_id,
378                                 ctx->options->max_buffer_size,
379                                 ctx->options->max_burst_size,
380                                 ops_enqd_total,
381                                 ops_deqd_total,
382                                 ops_enqd_failed,
383                                 ops_deqd_failed,
384                                 ops_failed);
385         }
386
387         return 0;
388 }
389
390
391
392 void
393 cperf_verify_test_destructor(void *arg)
394 {
395         struct cperf_verify_ctx *ctx = arg;
396
397         if (ctx == NULL)
398                 return;
399
400         cperf_verify_test_free(ctx);
401 }