app/crypto-perf: move IV to crypto op private data
[dpdk.git] / app / test-crypto-perf / cperf_test_verify.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <rte_malloc.h>
34 #include <rte_cycles.h>
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37
38 #include "cperf_test_verify.h"
39 #include "cperf_ops.h"
40
41 struct cperf_verify_ctx {
42         uint8_t dev_id;
43         uint16_t qp_id;
44         uint8_t lcore_id;
45
46         struct rte_mempool *pkt_mbuf_pool_in;
47         struct rte_mempool *pkt_mbuf_pool_out;
48         struct rte_mbuf **mbufs_in;
49         struct rte_mbuf **mbufs_out;
50
51         struct rte_mempool *crypto_op_pool;
52
53         struct rte_cryptodev_sym_session *sess;
54
55         cperf_populate_ops_t populate_ops;
56
57         const struct cperf_options *options;
58         const struct cperf_test_vector *test_vector;
59 };
60
61 struct cperf_op_result {
62         enum rte_crypto_op_status status;
63 };
64
65 static void
66 cperf_verify_test_free(struct cperf_verify_ctx *ctx, uint32_t mbuf_nb)
67 {
68         uint32_t i;
69
70         if (ctx) {
71                 if (ctx->sess)
72                         rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
73
74                 if (ctx->mbufs_in) {
75                         for (i = 0; i < mbuf_nb; i++)
76                                 rte_pktmbuf_free(ctx->mbufs_in[i]);
77
78                         rte_free(ctx->mbufs_in);
79                 }
80
81                 if (ctx->mbufs_out) {
82                         for (i = 0; i < mbuf_nb; i++) {
83                                 if (ctx->mbufs_out[i] != NULL)
84                                         rte_pktmbuf_free(ctx->mbufs_out[i]);
85                         }
86
87                         rte_free(ctx->mbufs_out);
88                 }
89
90                 if (ctx->pkt_mbuf_pool_in)
91                         rte_mempool_free(ctx->pkt_mbuf_pool_in);
92
93                 if (ctx->pkt_mbuf_pool_out)
94                         rte_mempool_free(ctx->pkt_mbuf_pool_out);
95
96                 if (ctx->crypto_op_pool)
97                         rte_mempool_free(ctx->crypto_op_pool);
98
99                 rte_free(ctx);
100         }
101 }
102
103 static struct rte_mbuf *
104 cperf_mbuf_create(struct rte_mempool *mempool,
105                 uint32_t segments_nb,
106                 const struct cperf_options *options,
107                 const struct cperf_test_vector *test_vector)
108 {
109         struct rte_mbuf *mbuf;
110         uint32_t segment_sz = options->max_buffer_size / segments_nb;
111         uint32_t last_sz = options->max_buffer_size % segments_nb;
112         uint8_t *mbuf_data;
113         uint8_t *test_data =
114                         (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
115                                         test_vector->plaintext.data :
116                                         test_vector->ciphertext.data;
117
118         mbuf = rte_pktmbuf_alloc(mempool);
119         if (mbuf == NULL)
120                 goto error;
121
122         mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
123         if (mbuf_data == NULL)
124                 goto error;
125
126         memcpy(mbuf_data, test_data, segment_sz);
127         test_data += segment_sz;
128         segments_nb--;
129
130         while (segments_nb) {
131                 struct rte_mbuf *m;
132
133                 m = rte_pktmbuf_alloc(mempool);
134                 if (m == NULL)
135                         goto error;
136
137                 rte_pktmbuf_chain(mbuf, m);
138
139                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
140                 if (mbuf_data == NULL)
141                         goto error;
142
143                 memcpy(mbuf_data, test_data, segment_sz);
144                 test_data += segment_sz;
145                 segments_nb--;
146         }
147
148         if (last_sz) {
149                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
150                 if (mbuf_data == NULL)
151                         goto error;
152
153                 memcpy(mbuf_data, test_data, last_sz);
154         }
155
156         if (options->op_type != CPERF_CIPHER_ONLY) {
157                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
158                                 options->auth_digest_sz);
159                 if (mbuf_data == NULL)
160                         goto error;
161         }
162
163         if (options->op_type == CPERF_AEAD) {
164                 uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
165                         RTE_ALIGN_CEIL(options->auth_aad_sz, 16));
166
167                 if (aead == NULL)
168                         goto error;
169
170                 memcpy(aead, test_vector->aad.data, test_vector->aad.length);
171         }
172
173         return mbuf;
174 error:
175         if (mbuf != NULL)
176                 rte_pktmbuf_free(mbuf);
177
178         return NULL;
179 }
180
181 void *
182 cperf_verify_test_constructor(uint8_t dev_id, uint16_t qp_id,
183                 const struct cperf_options *options,
184                 const struct cperf_test_vector *test_vector,
185                 const struct cperf_op_fns *op_fns)
186 {
187         struct cperf_verify_ctx *ctx = NULL;
188         unsigned int mbuf_idx = 0;
189         char pool_name[32] = "";
190
191         ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
192         if (ctx == NULL)
193                 goto err;
194
195         ctx->dev_id = dev_id;
196         ctx->qp_id = qp_id;
197
198         ctx->populate_ops = op_fns->populate_ops;
199         ctx->options = options;
200         ctx->test_vector = test_vector;
201
202         ctx->sess = op_fns->sess_create(dev_id, options, test_vector);
203         if (ctx->sess == NULL)
204                 goto err;
205
206         snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
207                         dev_id);
208
209         ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
210                         options->pool_sz * options->segments_nb, 0, 0,
211                         RTE_PKTMBUF_HEADROOM +
212                         RTE_CACHE_LINE_ROUNDUP(
213                                 (options->max_buffer_size / options->segments_nb) +
214                                 (options->max_buffer_size % options->segments_nb) +
215                                         options->auth_digest_sz),
216                         rte_socket_id());
217
218         if (ctx->pkt_mbuf_pool_in == NULL)
219                 goto err;
220
221         /* Generate mbufs_in with plaintext populated for test */
222         ctx->mbufs_in = rte_malloc(NULL,
223                         (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
224
225         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
226                 ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
227                                 ctx->pkt_mbuf_pool_in, options->segments_nb,
228                                 options, test_vector);
229                 if (ctx->mbufs_in[mbuf_idx] == NULL)
230                         goto err;
231         }
232
233         if (options->out_of_place == 1) {
234
235                 snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
236                                 dev_id);
237
238                 ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
239                                 pool_name, options->pool_sz, 0, 0,
240                                 RTE_PKTMBUF_HEADROOM +
241                                 RTE_CACHE_LINE_ROUNDUP(
242                                         options->max_buffer_size +
243                                         options->auth_digest_sz),
244                                 rte_socket_id());
245
246                 if (ctx->pkt_mbuf_pool_out == NULL)
247                         goto err;
248         }
249
250         ctx->mbufs_out = rte_malloc(NULL,
251                         (sizeof(struct rte_mbuf *) *
252                         ctx->options->pool_sz), 0);
253
254         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
255                 if (options->out_of_place == 1) {
256                         ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
257                                         ctx->pkt_mbuf_pool_out, 1,
258                                         options, test_vector);
259                         if (ctx->mbufs_out[mbuf_idx] == NULL)
260                                 goto err;
261                 } else {
262                         ctx->mbufs_out[mbuf_idx] = NULL;
263                 }
264         }
265
266         snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
267                         dev_id);
268
269         uint16_t priv_size = test_vector->iv.length;
270         ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
271                         RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz,
272                         512, priv_size, rte_socket_id());
273         if (ctx->crypto_op_pool == NULL)
274                 goto err;
275
276         return ctx;
277 err:
278         cperf_verify_test_free(ctx, mbuf_idx);
279
280         return NULL;
281 }
282
283 static int
284 cperf_verify_op(struct rte_crypto_op *op,
285                 const struct cperf_options *options,
286                 const struct cperf_test_vector *vector)
287 {
288         const struct rte_mbuf *m;
289         uint32_t len;
290         uint16_t nb_segs;
291         uint8_t *data;
292         uint32_t cipher_offset, auth_offset;
293         uint8_t cipher, auth;
294         int res = 0;
295
296         if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
297                 return 1;
298
299         if (op->sym->m_dst)
300                 m = op->sym->m_dst;
301         else
302                 m = op->sym->m_src;
303         nb_segs = m->nb_segs;
304         len = 0;
305         while (m && nb_segs != 0) {
306                 len += m->data_len;
307                 m = m->next;
308                 nb_segs--;
309         }
310
311         data = rte_malloc(NULL, len, 0);
312         if (data == NULL)
313                 return 1;
314
315         if (op->sym->m_dst)
316                 m = op->sym->m_dst;
317         else
318                 m = op->sym->m_src;
319         nb_segs = m->nb_segs;
320         len = 0;
321         while (m && nb_segs != 0) {
322                 memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
323                                 m->data_len);
324                 len += m->data_len;
325                 m = m->next;
326                 nb_segs--;
327         }
328
329         switch (options->op_type) {
330         case CPERF_CIPHER_ONLY:
331                 cipher = 1;
332                 cipher_offset = 0;
333                 auth = 0;
334                 auth_offset = 0;
335                 break;
336         case CPERF_CIPHER_THEN_AUTH:
337                 cipher = 1;
338                 cipher_offset = 0;
339                 auth = 1;
340                 auth_offset = options->test_buffer_size;
341                 break;
342         case CPERF_AUTH_ONLY:
343                 cipher = 0;
344                 cipher_offset = 0;
345                 auth = 1;
346                 auth_offset = options->test_buffer_size;
347                 break;
348         case CPERF_AUTH_THEN_CIPHER:
349                 cipher = 1;
350                 cipher_offset = 0;
351                 auth = 1;
352                 auth_offset = options->test_buffer_size;
353                 break;
354         case CPERF_AEAD:
355                 cipher = 1;
356                 cipher_offset = vector->aad.length;
357                 auth = 1;
358                 auth_offset = vector->aad.length + options->test_buffer_size;
359                 break;
360         }
361
362         if (cipher == 1) {
363                 if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
364                         res += memcmp(data + cipher_offset,
365                                         vector->ciphertext.data,
366                                         options->test_buffer_size);
367                 else
368                         res += memcmp(data + cipher_offset,
369                                         vector->plaintext.data,
370                                         options->test_buffer_size);
371         }
372
373         if (auth == 1) {
374                 if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
375                         res += memcmp(data + auth_offset,
376                                         vector->digest.data,
377                                         options->auth_digest_sz);
378         }
379
380         return !!res;
381 }
382
383 int
384 cperf_verify_test_runner(void *test_ctx)
385 {
386         struct cperf_verify_ctx *ctx = test_ctx;
387
388         uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
389         uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
390         uint64_t ops_failed = 0;
391
392         static int only_once;
393
394         uint64_t i, m_idx = 0;
395         uint16_t ops_unused = 0;
396
397         struct rte_crypto_op *ops[ctx->options->max_burst_size];
398         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
399
400         uint32_t lcore = rte_lcore_id();
401
402 #ifdef CPERF_LINEARIZATION_ENABLE
403         struct rte_cryptodev_info dev_info;
404         int linearize = 0;
405
406         /* Check if source mbufs require coalescing */
407         if (ctx->options->segments_nb > 1) {
408                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
409                 if ((dev_info.feature_flags &
410                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
411                         linearize = 1;
412         }
413 #endif /* CPERF_LINEARIZATION_ENABLE */
414
415         ctx->lcore_id = lcore;
416
417         if (!ctx->options->csv)
418                 printf("\n# Running verify test on device: %u, lcore: %u\n",
419                         ctx->dev_id, lcore);
420
421         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
422                 sizeof(struct rte_crypto_sym_op);
423
424         while (ops_enqd_total < ctx->options->total_ops) {
425
426                 uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
427                                 <= ctx->options->total_ops) ?
428                                                 ctx->options->max_burst_size :
429                                                 ctx->options->total_ops -
430                                                 ops_enqd_total;
431
432                 uint16_t ops_needed = burst_size - ops_unused;
433
434                 /* Allocate crypto ops from pool */
435                 if (ops_needed != rte_crypto_op_bulk_alloc(
436                                 ctx->crypto_op_pool,
437                                 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
438                                 ops, ops_needed))
439                         return -1;
440
441                 /* Setup crypto op, attach mbuf etc */
442                 (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
443                                 &ctx->mbufs_out[m_idx],
444                                 ops_needed, ctx->sess, ctx->options,
445                                 ctx->test_vector, iv_offset);
446
447 #ifdef CPERF_LINEARIZATION_ENABLE
448                 if (linearize) {
449                         /* PMD doesn't support scatter-gather and source buffer
450                          * is segmented.
451                          * We need to linearize it before enqueuing.
452                          */
453                         for (i = 0; i < burst_size; i++)
454                                 rte_pktmbuf_linearize(ops[i]->sym->m_src);
455                 }
456 #endif /* CPERF_LINEARIZATION_ENABLE */
457
458                 /* Enqueue burst of ops on crypto device */
459                 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
460                                 ops, burst_size);
461                 if (ops_enqd < burst_size)
462                         ops_enqd_failed++;
463
464                 /**
465                  * Calculate number of ops not enqueued (mainly for hw
466                  * accelerators whose ingress queue can fill up).
467                  */
468                 ops_unused = burst_size - ops_enqd;
469                 ops_enqd_total += ops_enqd;
470
471
472                 /* Dequeue processed burst of ops from crypto device */
473                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
474                                 ops_processed, ctx->options->max_burst_size);
475
476                 m_idx += ops_needed;
477                 if (m_idx + ctx->options->max_burst_size > ctx->options->pool_sz)
478                         m_idx = 0;
479
480                 if (ops_deqd == 0) {
481                         /**
482                          * Count dequeue polls which didn't return any
483                          * processed operations. This statistic is mainly
484                          * relevant to hw accelerators.
485                          */
486                         ops_deqd_failed++;
487                         continue;
488                 }
489
490                 for (i = 0; i < ops_deqd; i++) {
491                         if (cperf_verify_op(ops_processed[i], ctx->options,
492                                                 ctx->test_vector))
493                                 ops_failed++;
494                         /* free crypto ops so they can be reused. We don't free
495                          * the mbufs here as we don't want to reuse them as
496                          * the crypto operation will change the data and cause
497                          * failures.
498                          */
499                         rte_crypto_op_free(ops_processed[i]);
500                 }
501                 ops_deqd_total += ops_deqd;
502         }
503
504         /* Dequeue any operations still in the crypto device */
505
506         while (ops_deqd_total < ctx->options->total_ops) {
507                 /* Sending 0 length burst to flush sw crypto device */
508                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
509
510                 /* dequeue burst */
511                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
512                                 ops_processed, ctx->options->max_burst_size);
513                 if (ops_deqd == 0) {
514                         ops_deqd_failed++;
515                         continue;
516                 }
517
518                 for (i = 0; i < ops_deqd; i++) {
519                         if (cperf_verify_op(ops_processed[i], ctx->options,
520                                                 ctx->test_vector))
521                                 ops_failed++;
522                         /* free crypto ops so they can be reused. We don't free
523                          * the mbufs here as we don't want to reuse them as
524                          * the crypto operation will change the data and cause
525                          * failures.
526                          */
527                         rte_crypto_op_free(ops_processed[i]);
528                 }
529                 ops_deqd_total += ops_deqd;
530         }
531
532         if (!ctx->options->csv) {
533                 if (!only_once)
534                         printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
535                                 "lcore id", "Buf Size", "Burst size",
536                                 "Enqueued", "Dequeued", "Failed Enq",
537                                 "Failed Deq", "Failed Ops");
538                 only_once = 1;
539
540                 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
541                                 "%12"PRIu64"%12"PRIu64"\n",
542                                 ctx->lcore_id,
543                                 ctx->options->max_buffer_size,
544                                 ctx->options->max_burst_size,
545                                 ops_enqd_total,
546                                 ops_deqd_total,
547                                 ops_enqd_failed,
548                                 ops_deqd_failed,
549                                 ops_failed);
550         } else {
551                 if (!only_once)
552                         printf("\n# lcore id, Buffer Size(B), "
553                                 "Burst Size,Enqueued,Dequeued,Failed Enq,"
554                                 "Failed Deq,Failed Ops\n");
555                 only_once = 1;
556
557                 printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
558                                 "%"PRIu64"\n",
559                                 ctx->lcore_id,
560                                 ctx->options->max_buffer_size,
561                                 ctx->options->max_burst_size,
562                                 ops_enqd_total,
563                                 ops_deqd_total,
564                                 ops_enqd_failed,
565                                 ops_deqd_failed,
566                                 ops_failed);
567         }
568
569         return 0;
570 }
571
572
573
574 void
575 cperf_verify_test_destructor(void *arg)
576 {
577         struct cperf_verify_ctx *ctx = arg;
578
579         if (ctx == NULL)
580                 return;
581
582         cperf_verify_test_free(ctx, ctx->options->pool_sz);
583 }