test/cpuflags: add flags for RISC-V
[dpdk.git] / app / test-eventdev / test_perf_queue.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4
5 #include "test_perf_common.h"
6
7 /* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */
8
9 static inline int
10 perf_queue_nb_event_queues(struct evt_options *opt)
11 {
12         /* nb_queues = number of producers * number of stages */
13         uint8_t nb_prod = opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ?
14                 rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores);
15         return nb_prod * opt->nb_stages;
16 }
17
18 static __rte_always_inline void
19 mark_fwd_latency(struct rte_event *const ev,
20                 const uint8_t nb_stages)
21 {
22         if (unlikely((ev->queue_id % nb_stages) == 0)) {
23                 struct perf_elt *const m = ev->event_ptr;
24
25                 m->timestamp = rte_get_timer_cycles();
26         }
27 }
28
29 static __rte_always_inline void
30 fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list,
31                 const uint8_t nb_stages)
32 {
33         ev->queue_id++;
34         ev->sched_type = sched_type_list[ev->queue_id % nb_stages];
35         ev->op = RTE_EVENT_OP_FORWARD;
36         ev->event_type = RTE_EVENT_TYPE_CPU;
37 }
38
39 static int
40 perf_queue_worker(void *arg, const int enable_fwd_latency)
41 {
42         uint16_t enq = 0, deq = 0;
43         struct rte_event ev;
44         PERF_WORKER_INIT;
45
46         while (t->done == false) {
47                 deq = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
48
49                 if (!deq) {
50                         rte_pause();
51                         continue;
52                 }
53
54                 if (prod_crypto_type &&
55                     (ev.event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
56                         struct rte_crypto_op *op = ev.event_ptr;
57
58                         if (op->status == RTE_CRYPTO_OP_STATUS_SUCCESS) {
59                                 if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
60                                         if (op->sym->m_dst == NULL)
61                                                 ev.event_ptr = op->sym->m_src;
62                                         else
63                                                 ev.event_ptr = op->sym->m_dst;
64                                         rte_crypto_op_free(op);
65                                 }
66                         } else {
67                                 rte_crypto_op_free(op);
68                                 continue;
69                         }
70                 }
71
72                 if (enable_fwd_latency && !prod_timer_type)
73                 /* first q in pipeline, mark timestamp to compute fwd latency */
74                         mark_fwd_latency(&ev, nb_stages);
75
76                 /* last stage in pipeline */
77                 if (unlikely((ev.queue_id % nb_stages) == laststage)) {
78                         if (enable_fwd_latency)
79                                 cnt = perf_process_last_stage_latency(pool,
80                                         &ev, w, bufs, sz, cnt);
81                         else
82                                 cnt = perf_process_last_stage(pool,
83                                         &ev, w, bufs, sz, cnt);
84                 } else {
85                         fwd_event(&ev, sched_type_list, nb_stages);
86                         do {
87                                 enq = rte_event_enqueue_burst(dev, port, &ev,
88                                                               1);
89                         } while (!enq && !t->done);
90                 }
91         }
92
93         perf_worker_cleanup(pool, dev, port, &ev, enq, deq);
94
95         return 0;
96 }
97
98 static int
99 perf_queue_worker_burst(void *arg, const int enable_fwd_latency)
100 {
101         /* +1 to avoid prefetch out of array check */
102         struct rte_event ev[BURST_SIZE + 1];
103         uint16_t enq = 0, nb_rx = 0;
104         PERF_WORKER_INIT;
105         uint16_t i;
106
107         while (t->done == false) {
108                 nb_rx = rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0);
109
110                 if (!nb_rx) {
111                         rte_pause();
112                         continue;
113                 }
114
115                 for (i = 0; i < nb_rx; i++) {
116                         if (prod_crypto_type &&
117                             (ev[i].event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
118                                 struct rte_crypto_op *op = ev[i].event_ptr;
119
120                                 if (op->status ==
121                                     RTE_CRYPTO_OP_STATUS_SUCCESS) {
122                                         if (op->sym->m_dst == NULL)
123                                                 ev[i].event_ptr =
124                                                         op->sym->m_src;
125                                         else
126                                                 ev[i].event_ptr =
127                                                         op->sym->m_dst;
128                                         rte_crypto_op_free(op);
129                                 } else {
130                                         rte_crypto_op_free(op);
131                                         continue;
132                                 }
133                         }
134
135                         if (enable_fwd_latency && !prod_timer_type) {
136                                 rte_prefetch0(ev[i+1].event_ptr);
137                                 /* first queue in pipeline.
138                                  * mark time stamp to compute fwd latency
139                                  */
140                                 mark_fwd_latency(&ev[i], nb_stages);
141                         }
142                         /* last stage in pipeline */
143                         if (unlikely((ev[i].queue_id % nb_stages) ==
144                                                  laststage)) {
145                                 if (enable_fwd_latency)
146                                         cnt = perf_process_last_stage_latency(
147                                                 pool, &ev[i], w, bufs, sz, cnt);
148                                 else
149                                         cnt = perf_process_last_stage(pool,
150                                                 &ev[i], w, bufs, sz, cnt);
151
152                                 ev[i].op = RTE_EVENT_OP_RELEASE;
153                         } else {
154                                 fwd_event(&ev[i], sched_type_list, nb_stages);
155                         }
156                 }
157
158
159                 enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
160                 while (enq < nb_rx && !t->done) {
161                         enq += rte_event_enqueue_burst(dev, port,
162                                                         ev + enq, nb_rx - enq);
163                 }
164         }
165
166         perf_worker_cleanup(pool, dev, port, ev, enq, nb_rx);
167
168         return 0;
169 }
170
171 static int
172 worker_wrapper(void *arg)
173 {
174         struct worker_data *w  = arg;
175         struct evt_options *opt = w->t->opt;
176
177         const bool burst = evt_has_burst_mode(w->dev_id);
178         const int fwd_latency = opt->fwd_latency;
179
180         /* allow compiler to optimize */
181         if (!burst && !fwd_latency)
182                 return perf_queue_worker(arg, 0);
183         else if (!burst && fwd_latency)
184                 return perf_queue_worker(arg, 1);
185         else if (burst && !fwd_latency)
186                 return perf_queue_worker_burst(arg, 0);
187         else if (burst && fwd_latency)
188                 return perf_queue_worker_burst(arg, 1);
189
190         rte_panic("invalid worker\n");
191 }
192
193 static int
194 perf_queue_launch_lcores(struct evt_test *test, struct evt_options *opt)
195 {
196         return perf_launch_lcores(test, opt, worker_wrapper);
197 }
198
199 static int
200 perf_queue_eventdev_setup(struct evt_test *test, struct evt_options *opt)
201 {
202         uint8_t queue;
203         int nb_stages = opt->nb_stages;
204         int ret;
205         int nb_ports;
206         int nb_queues;
207         uint16_t prod;
208         struct rte_event_dev_info dev_info;
209         struct test_perf *t = evt_test_priv(test);
210
211         nb_ports = evt_nr_active_lcores(opt->wlcores);
212         nb_ports += opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ||
213                 opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ? 0 :
214                 evt_nr_active_lcores(opt->plcores);
215
216         nb_queues = perf_queue_nb_event_queues(opt);
217
218         memset(&dev_info, 0, sizeof(struct rte_event_dev_info));
219         ret = rte_event_dev_info_get(opt->dev_id, &dev_info);
220         if (ret) {
221                 evt_err("failed to get eventdev info %d", opt->dev_id);
222                 return ret;
223         }
224
225         ret = evt_configure_eventdev(opt, nb_queues, nb_ports);
226         if (ret) {
227                 evt_err("failed to configure eventdev %d", opt->dev_id);
228                 return ret;
229         }
230
231         struct rte_event_queue_conf q_conf = {
232                         .priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
233                         .nb_atomic_flows = opt->nb_flows,
234                         .nb_atomic_order_sequences = opt->nb_flows,
235         };
236         /* queue configurations */
237         for (queue = 0; queue < nb_queues; queue++) {
238                 q_conf.schedule_type =
239                         (opt->sched_type_list[queue % nb_stages]);
240
241                 if (opt->q_priority) {
242                         uint8_t stage_pos = queue % nb_stages;
243                         /* Configure event queues(stage 0 to stage n) with
244                          * RTE_EVENT_DEV_PRIORITY_LOWEST to
245                          * RTE_EVENT_DEV_PRIORITY_HIGHEST.
246                          */
247                         uint8_t step = RTE_EVENT_DEV_PRIORITY_LOWEST /
248                                         (nb_stages - 1);
249                         /* Higher prio for the queues closer to last stage */
250                         q_conf.priority = RTE_EVENT_DEV_PRIORITY_LOWEST -
251                                         (step * stage_pos);
252                 }
253                 ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf);
254                 if (ret) {
255                         evt_err("failed to setup queue=%d", queue);
256                         return ret;
257                 }
258         }
259
260         if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth)
261                 opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth;
262
263         /* port configuration */
264         const struct rte_event_port_conf p_conf = {
265                         .dequeue_depth = opt->wkr_deq_dep,
266                         .enqueue_depth = dev_info.max_event_port_dequeue_depth,
267                         .new_event_threshold = dev_info.max_num_events,
268         };
269
270         ret = perf_event_dev_port_setup(test, opt, nb_stages /* stride */,
271                                         nb_queues, &p_conf);
272         if (ret)
273                 return ret;
274
275         if (!evt_has_distributed_sched(opt->dev_id)) {
276                 uint32_t service_id;
277                 rte_event_dev_service_id_get(opt->dev_id, &service_id);
278                 ret = evt_service_setup(service_id);
279                 if (ret) {
280                         evt_err("No service lcore found to run event dev.");
281                         return ret;
282                 }
283         }
284
285         ret = rte_event_dev_start(opt->dev_id);
286         if (ret) {
287                 evt_err("failed to start eventdev %d", opt->dev_id);
288                 return ret;
289         }
290
291         if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
292                 RTE_ETH_FOREACH_DEV(prod) {
293                         ret = rte_eth_dev_start(prod);
294                         if (ret) {
295                                 evt_err("Ethernet dev [%d] failed to start. Using synthetic producer",
296                                                 prod);
297                                 return ret;
298                         }
299
300                         ret = rte_event_eth_rx_adapter_start(prod);
301                         if (ret) {
302                                 evt_err("Rx adapter[%d] start failed", prod);
303                                 return ret;
304                         }
305                         printf("%s: Port[%d] using Rx adapter[%d] started\n",
306                                         __func__, prod, prod);
307                 }
308         } else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
309                 for (prod = 0; prod < opt->nb_timer_adptrs; prod++) {
310                         ret = rte_event_timer_adapter_start(
311                                         t->timer_adptr[prod]);
312                         if (ret) {
313                                 evt_err("failed to Start event timer adapter %d"
314                                                 , prod);
315                                 return ret;
316                         }
317                 }
318         } else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
319                 uint8_t cdev_id, cdev_count;
320
321                 cdev_count = rte_cryptodev_count();
322                 for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
323                         ret = rte_cryptodev_start(cdev_id);
324                         if (ret) {
325                                 evt_err("Failed to start cryptodev %u",
326                                         cdev_id);
327                                 return ret;
328                         }
329                 }
330         }
331
332         return 0;
333 }
334
335 static void
336 perf_queue_opt_dump(struct evt_options *opt)
337 {
338         evt_dump_fwd_latency(opt);
339         perf_opt_dump(opt, perf_queue_nb_event_queues(opt));
340 }
341
342 static int
343 perf_queue_opt_check(struct evt_options *opt)
344 {
345         return perf_opt_check(opt, perf_queue_nb_event_queues(opt));
346 }
347
348 static bool
349 perf_queue_capability_check(struct evt_options *opt)
350 {
351         struct rte_event_dev_info dev_info;
352
353         rte_event_dev_info_get(opt->dev_id, &dev_info);
354         if (dev_info.max_event_queues < perf_queue_nb_event_queues(opt) ||
355                         dev_info.max_event_ports < perf_nb_event_ports(opt)) {
356                 evt_err("not enough eventdev queues=%d/%d or ports=%d/%d",
357                         perf_queue_nb_event_queues(opt),
358                         dev_info.max_event_queues,
359                         perf_nb_event_ports(opt), dev_info.max_event_ports);
360         }
361
362         return true;
363 }
364
365 static const struct evt_test_ops perf_queue =  {
366         .cap_check          = perf_queue_capability_check,
367         .opt_check          = perf_queue_opt_check,
368         .opt_dump           = perf_queue_opt_dump,
369         .test_setup         = perf_test_setup,
370         .mempool_setup      = perf_mempool_setup,
371         .ethdev_setup       = perf_ethdev_setup,
372         .cryptodev_setup    = perf_cryptodev_setup,
373         .ethdev_rx_stop     = perf_ethdev_rx_stop,
374         .eventdev_setup     = perf_queue_eventdev_setup,
375         .launch_lcores      = perf_queue_launch_lcores,
376         .eventdev_destroy   = perf_eventdev_destroy,
377         .mempool_destroy    = perf_mempool_destroy,
378         .ethdev_destroy     = perf_ethdev_destroy,
379         .cryptodev_destroy  = perf_cryptodev_destroy,
380         .test_result        = perf_test_result,
381         .test_destroy       = perf_test_destroy,
382 };
383
384 EVT_TEST_REGISTER(perf_queue);