build: make ring mempool driver mandatory
[dpdk.git] / app / test-pmd / csumonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_branch_prediction.h>
28 #include <rte_mempool.h>
29 #include <rte_mbuf.h>
30 #include <rte_interrupts.h>
31 #include <rte_pci.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_ip.h>
35 #include <rte_tcp.h>
36 #include <rte_udp.h>
37 #include <rte_vxlan.h>
38 #include <rte_sctp.h>
39 #include <rte_gtp.h>
40 #include <rte_prefetch.h>
41 #include <rte_string_fns.h>
42 #include <rte_flow.h>
43 #ifdef RTE_LIB_GRO
44 #include <rte_gro.h>
45 #endif
46 #ifdef RTE_LIB_GSO
47 #include <rte_gso.h>
48 #endif
49 #include <rte_geneve.h>
50
51 #include "testpmd.h"
52
53 #define IP_DEFTTL  64   /* from RFC 1340. */
54
55 #define GRE_CHECKSUM_PRESENT    0x8000
56 #define GRE_KEY_PRESENT         0x2000
57 #define GRE_SEQUENCE_PRESENT    0x1000
58 #define GRE_EXT_LEN             4
59 #define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
60                                  GRE_SEQUENCE_PRESENT)
61
62 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
63 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
64 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
65 #else
66 #define _htons(x) (x)
67 #endif
68
69 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT;
70 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT;
71
72 /* structure that caches offload info for the current packet */
73 struct testpmd_offload_info {
74         uint16_t ethertype;
75 #ifdef RTE_LIB_GSO
76         uint8_t gso_enable;
77 #endif
78         uint16_t l2_len;
79         uint16_t l3_len;
80         uint16_t l4_len;
81         uint8_t l4_proto;
82         uint8_t is_tunnel;
83         uint16_t outer_ethertype;
84         uint16_t outer_l2_len;
85         uint16_t outer_l3_len;
86         uint8_t outer_l4_proto;
87         uint16_t tso_segsz;
88         uint16_t tunnel_tso_segsz;
89         uint32_t pkt_len;
90 };
91
92 /* simplified GRE header */
93 struct simple_gre_hdr {
94         uint16_t flags;
95         uint16_t proto;
96 } __rte_packed;
97
98 static uint16_t
99 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off,
100                     uint16_t ethertype)
101 {
102         if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
103                 return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off);
104         else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
105                 return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off);
106 }
107
108 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
109 static void
110 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
111 {
112         struct rte_tcp_hdr *tcp_hdr;
113
114         info->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
115         info->l4_proto = ipv4_hdr->next_proto_id;
116
117         /* only fill l4_len for TCP, it's useful for TSO */
118         if (info->l4_proto == IPPROTO_TCP) {
119                 tcp_hdr = (struct rte_tcp_hdr *)
120                         ((char *)ipv4_hdr + info->l3_len);
121                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
122         } else if (info->l4_proto == IPPROTO_UDP)
123                 info->l4_len = sizeof(struct rte_udp_hdr);
124         else
125                 info->l4_len = 0;
126 }
127
128 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
129 static void
130 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
131 {
132         struct rte_tcp_hdr *tcp_hdr;
133
134         info->l3_len = sizeof(struct rte_ipv6_hdr);
135         info->l4_proto = ipv6_hdr->proto;
136
137         /* only fill l4_len for TCP, it's useful for TSO */
138         if (info->l4_proto == IPPROTO_TCP) {
139                 tcp_hdr = (struct rte_tcp_hdr *)
140                         ((char *)ipv6_hdr + info->l3_len);
141                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
142         } else if (info->l4_proto == IPPROTO_UDP)
143                 info->l4_len = sizeof(struct rte_udp_hdr);
144         else
145                 info->l4_len = 0;
146 }
147
148 /*
149  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
150  * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN
151  * headers. The l4_len argument is only set in case of TCP (useful for TSO).
152  */
153 static void
154 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
155 {
156         struct rte_ipv4_hdr *ipv4_hdr;
157         struct rte_ipv6_hdr *ipv6_hdr;
158         struct rte_vlan_hdr *vlan_hdr;
159
160         info->l2_len = sizeof(struct rte_ether_hdr);
161         info->ethertype = eth_hdr->ether_type;
162
163         while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) ||
164                info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) {
165                 vlan_hdr = (struct rte_vlan_hdr *)
166                         ((char *)eth_hdr + info->l2_len);
167                 info->l2_len  += sizeof(struct rte_vlan_hdr);
168                 info->ethertype = vlan_hdr->eth_proto;
169         }
170
171         switch (info->ethertype) {
172         case _htons(RTE_ETHER_TYPE_IPV4):
173                 ipv4_hdr = (struct rte_ipv4_hdr *)
174                         ((char *)eth_hdr + info->l2_len);
175                 parse_ipv4(ipv4_hdr, info);
176                 break;
177         case _htons(RTE_ETHER_TYPE_IPV6):
178                 ipv6_hdr = (struct rte_ipv6_hdr *)
179                         ((char *)eth_hdr + info->l2_len);
180                 parse_ipv6(ipv6_hdr, info);
181                 break;
182         default:
183                 info->l4_len = 0;
184                 info->l3_len = 0;
185                 info->l4_proto = 0;
186                 break;
187         }
188 }
189
190 /* Fill in outer layers length */
191 static void
192 update_tunnel_outer(struct testpmd_offload_info *info)
193 {
194         info->is_tunnel = 1;
195         info->outer_ethertype = info->ethertype;
196         info->outer_l2_len = info->l2_len;
197         info->outer_l3_len = info->l3_len;
198         info->outer_l4_proto = info->l4_proto;
199 }
200
201 /*
202  * Parse a GTP protocol header.
203  * No optional fields and next extension header type.
204  */
205 static void
206 parse_gtp(struct rte_udp_hdr *udp_hdr,
207           struct testpmd_offload_info *info)
208 {
209         struct rte_ipv4_hdr *ipv4_hdr;
210         struct rte_ipv6_hdr *ipv6_hdr;
211         struct rte_gtp_hdr *gtp_hdr;
212         uint8_t gtp_len = sizeof(*gtp_hdr);
213         uint8_t ip_ver;
214
215         /* Check udp destination port. */
216         if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
217             udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
218             udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
219                 return;
220
221         update_tunnel_outer(info);
222         info->l2_len = 0;
223
224         gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
225                   sizeof(struct rte_udp_hdr));
226
227         /*
228          * Check message type. If message type is 0xff, it is
229          * a GTP data packet. If not, it is a GTP control packet
230          */
231         if (gtp_hdr->msg_type == 0xff) {
232                 ip_ver = *(uint8_t *)((char *)udp_hdr +
233                          sizeof(struct rte_udp_hdr) +
234                          sizeof(struct rte_gtp_hdr));
235                 ip_ver = (ip_ver) & 0xf0;
236
237                 if (ip_ver == RTE_GTP_TYPE_IPV4) {
238                         ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
239                                    gtp_len);
240                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
241                         parse_ipv4(ipv4_hdr, info);
242                 } else if (ip_ver == RTE_GTP_TYPE_IPV6) {
243                         ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
244                                    gtp_len);
245                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
246                         parse_ipv6(ipv6_hdr, info);
247                 }
248         } else {
249                 info->ethertype = 0;
250                 info->l4_len = 0;
251                 info->l3_len = 0;
252                 info->l4_proto = 0;
253         }
254
255         info->l2_len += RTE_ETHER_GTP_HLEN;
256 }
257
258 /* Parse a vxlan header */
259 static void
260 parse_vxlan(struct rte_udp_hdr *udp_hdr,
261             struct testpmd_offload_info *info,
262             uint32_t pkt_type)
263 {
264         struct rte_ether_hdr *eth_hdr;
265
266         /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the
267          * default vxlan port (rfc7348) or that the rx offload flag is set
268          * (i40e only currently)
269          */
270         if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT) &&
271                 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
272                 return;
273
274         update_tunnel_outer(info);
275
276         eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
277                 sizeof(struct rte_udp_hdr) +
278                 sizeof(struct rte_vxlan_hdr));
279
280         parse_ethernet(eth_hdr, info);
281         info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
282 }
283
284 /* Parse a vxlan-gpe header */
285 static void
286 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
287             struct testpmd_offload_info *info)
288 {
289         struct rte_ether_hdr *eth_hdr;
290         struct rte_ipv4_hdr *ipv4_hdr;
291         struct rte_ipv6_hdr *ipv6_hdr;
292         struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
293         uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
294
295         /* Check udp destination port. */
296         if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
297                 return;
298
299         vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
300                                 sizeof(struct rte_udp_hdr));
301
302         if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
303             RTE_VXLAN_GPE_TYPE_IPV4) {
304                 update_tunnel_outer(info);
305
306                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
307                            vxlan_gpe_len);
308
309                 parse_ipv4(ipv4_hdr, info);
310                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
311                 info->l2_len = 0;
312
313         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
314                 update_tunnel_outer(info);
315
316                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
317                            vxlan_gpe_len);
318
319                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
320                 parse_ipv6(ipv6_hdr, info);
321                 info->l2_len = 0;
322
323         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
324                 update_tunnel_outer(info);
325
326                 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
327                           vxlan_gpe_len);
328
329                 parse_ethernet(eth_hdr, info);
330         } else
331                 return;
332
333         info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
334 }
335
336 /* Parse a geneve header */
337 static void
338 parse_geneve(struct rte_udp_hdr *udp_hdr,
339             struct testpmd_offload_info *info)
340 {
341         struct rte_ether_hdr *eth_hdr;
342         struct rte_ipv4_hdr *ipv4_hdr;
343         struct rte_ipv6_hdr *ipv6_hdr;
344         struct rte_geneve_hdr *geneve_hdr;
345         uint16_t geneve_len;
346
347         /* Check udp destination port. */
348         if (udp_hdr->dst_port != _htons(geneve_udp_port))
349                 return;
350
351         geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr +
352                                 sizeof(struct rte_udp_hdr));
353         geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4;
354         if (!geneve_hdr->proto || geneve_hdr->proto ==
355             _htons(RTE_ETHER_TYPE_IPV4)) {
356                 update_tunnel_outer(info);
357                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr +
358                            geneve_len);
359                 parse_ipv4(ipv4_hdr, info);
360                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
361                 info->l2_len = 0;
362         } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
363                 update_tunnel_outer(info);
364                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr +
365                            geneve_len);
366                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
367                 parse_ipv6(ipv6_hdr, info);
368                 info->l2_len = 0;
369
370         } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) {
371                 update_tunnel_outer(info);
372                 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr +
373                           geneve_len);
374                 parse_ethernet(eth_hdr, info);
375         } else
376                 return;
377
378         info->l2_len +=
379                 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) +
380                 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4);
381 }
382
383 /* Parse a gre header */
384 static void
385 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
386 {
387         struct rte_ether_hdr *eth_hdr;
388         struct rte_ipv4_hdr *ipv4_hdr;
389         struct rte_ipv6_hdr *ipv6_hdr;
390         uint8_t gre_len = 0;
391
392         gre_len += sizeof(struct simple_gre_hdr);
393
394         if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
395                 gre_len += GRE_EXT_LEN;
396         if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
397                 gre_len += GRE_EXT_LEN;
398         if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
399                 gre_len += GRE_EXT_LEN;
400
401         if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
402                 update_tunnel_outer(info);
403
404                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
405
406                 parse_ipv4(ipv4_hdr, info);
407                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
408                 info->l2_len = 0;
409
410         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
411                 update_tunnel_outer(info);
412
413                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
414
415                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
416                 parse_ipv6(ipv6_hdr, info);
417                 info->l2_len = 0;
418
419         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
420                 update_tunnel_outer(info);
421
422                 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
423
424                 parse_ethernet(eth_hdr, info);
425         } else
426                 return;
427
428         info->l2_len += gre_len;
429 }
430
431
432 /* Parse an encapsulated ip or ipv6 header */
433 static void
434 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
435 {
436         struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
437         struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
438         uint8_t ip_version;
439
440         ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
441
442         if (ip_version != 4 && ip_version != 6)
443                 return;
444
445         info->is_tunnel = 1;
446         info->outer_ethertype = info->ethertype;
447         info->outer_l2_len = info->l2_len;
448         info->outer_l3_len = info->l3_len;
449
450         if (ip_version == 4) {
451                 parse_ipv4(ipv4_hdr, info);
452                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
453         } else {
454                 parse_ipv6(ipv6_hdr, info);
455                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
456         }
457         info->l2_len = 0;
458 }
459
460 /* if possible, calculate the checksum of a packet in hw or sw,
461  * depending on the testpmd command line configuration */
462 static uint64_t
463 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
464         uint64_t tx_offloads, struct rte_mbuf *m)
465 {
466         struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
467         struct rte_udp_hdr *udp_hdr;
468         struct rte_tcp_hdr *tcp_hdr;
469         struct rte_sctp_hdr *sctp_hdr;
470         uint64_t ol_flags = 0;
471         uint32_t max_pkt_len, tso_segsz = 0;
472         uint16_t l4_off;
473
474         /* ensure packet is large enough to require tso */
475         if (!info->is_tunnel) {
476                 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
477                         info->tso_segsz;
478                 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
479                         tso_segsz = info->tso_segsz;
480         } else {
481                 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
482                         info->l2_len + info->l3_len + info->l4_len +
483                         info->tunnel_tso_segsz;
484                 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
485                         tso_segsz = info->tunnel_tso_segsz;
486         }
487
488         if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
489                 ipv4_hdr = l3_hdr;
490
491                 ol_flags |= RTE_MBUF_F_TX_IPV4;
492                 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
493                         ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
494                 } else {
495                         if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) {
496                                 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
497                         } else {
498                                 ipv4_hdr->hdr_checksum = 0;
499                                 ipv4_hdr->hdr_checksum =
500                                         rte_ipv4_cksum(ipv4_hdr);
501                         }
502                 }
503         } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
504                 ol_flags |= RTE_MBUF_F_TX_IPV6;
505         else
506                 return 0; /* packet type not supported, nothing to do */
507
508         if (info->l4_proto == IPPROTO_UDP) {
509                 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
510                 /* do not recalculate udp cksum if it was 0 */
511                 if (udp_hdr->dgram_cksum != 0) {
512                         if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) {
513                                 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM;
514                         } else {
515                                 if (info->is_tunnel)
516                                         l4_off = info->l2_len +
517                                                  info->outer_l3_len +
518                                                  info->l2_len + info->l3_len;
519                                 else
520                                         l4_off = info->l2_len + info->l3_len;
521                                 udp_hdr->dgram_cksum = 0;
522                                 udp_hdr->dgram_cksum =
523                                         get_udptcp_checksum(m, l3_hdr, l4_off,
524                                                 info->ethertype);
525                         }
526                 }
527 #ifdef RTE_LIB_GSO
528                 if (info->gso_enable)
529                         ol_flags |= RTE_MBUF_F_TX_UDP_SEG;
530 #endif
531         } else if (info->l4_proto == IPPROTO_TCP) {
532                 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
533                 if (tso_segsz)
534                         ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
535                 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) {
536                         ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
537                 } else {
538                         if (info->is_tunnel)
539                                 l4_off = info->l2_len + info->outer_l3_len +
540                                          info->l2_len + info->l3_len;
541                         else
542                                 l4_off = info->l2_len + info->l3_len;
543                         tcp_hdr->cksum = 0;
544                         tcp_hdr->cksum =
545                                 get_udptcp_checksum(m, l3_hdr, l4_off,
546                                         info->ethertype);
547                 }
548 #ifdef RTE_LIB_GSO
549                 if (info->gso_enable)
550                         ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
551 #endif
552         } else if (info->l4_proto == IPPROTO_SCTP) {
553                 sctp_hdr = (struct rte_sctp_hdr *)
554                         ((char *)l3_hdr + info->l3_len);
555                 /* sctp payload must be a multiple of 4 to be
556                  * offloaded */
557                 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) &&
558                         ((ipv4_hdr->total_length & 0x3) == 0)) {
559                         ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM;
560                 } else {
561                         sctp_hdr->cksum = 0;
562                         /* XXX implement CRC32c, example available in
563                          * RFC3309 */
564                 }
565         }
566
567         return ol_flags;
568 }
569
570 /* Calculate the checksum of outer header */
571 static uint64_t
572 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
573         uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m)
574 {
575         struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
576         struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
577         struct rte_udp_hdr *udp_hdr;
578         uint64_t ol_flags = 0;
579
580         if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
581                 ipv4_hdr->hdr_checksum = 0;
582                 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4;
583
584                 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM)
585                         ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM;
586                 else
587                         ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
588         } else
589                 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6;
590
591         if (info->outer_l4_proto != IPPROTO_UDP)
592                 return ol_flags;
593
594         udp_hdr = (struct rte_udp_hdr *)
595                 ((char *)outer_l3_hdr + info->outer_l3_len);
596
597         if (tso_enabled)
598                 ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
599
600         /* Skip SW outer UDP checksum generation if HW supports it */
601         if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) {
602                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
603                         udp_hdr->dgram_cksum
604                                 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
605                 else
606                         udp_hdr->dgram_cksum
607                                 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
608
609                 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM;
610                 return ol_flags;
611         }
612
613         /* outer UDP checksum is done in software. In the other side, for
614          * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
615          * set to zero.
616          *
617          * If a packet will be TSOed into small packets by NIC, we cannot
618          * set/calculate a non-zero checksum, because it will be a wrong
619          * value after the packet be split into several small packets.
620          */
621         if (tso_enabled)
622                 udp_hdr->dgram_cksum = 0;
623
624         /* do not recalculate udp cksum if it was 0 */
625         if (udp_hdr->dgram_cksum != 0) {
626                 udp_hdr->dgram_cksum = 0;
627                 udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr,
628                                         info->l2_len + info->outer_l3_len,
629                                         info->outer_ethertype);
630         }
631
632         return ol_flags;
633 }
634
635 /*
636  * Helper function.
637  * Performs actual copying.
638  * Returns number of segments in the destination mbuf on success,
639  * or negative error code on failure.
640  */
641 static int
642 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
643         uint16_t seglen[], uint8_t nb_seg)
644 {
645         uint32_t dlen, slen, tlen;
646         uint32_t i, len;
647         const struct rte_mbuf *m;
648         const uint8_t *src;
649         uint8_t *dst;
650
651         dlen = 0;
652         slen = 0;
653         tlen = 0;
654
655         dst = NULL;
656         src = NULL;
657
658         m = ms;
659         i = 0;
660         while (ms != NULL && i != nb_seg) {
661
662                 if (slen == 0) {
663                         slen = rte_pktmbuf_data_len(ms);
664                         src = rte_pktmbuf_mtod(ms, const uint8_t *);
665                 }
666
667                 if (dlen == 0) {
668                         dlen = RTE_MIN(seglen[i], slen);
669                         md[i]->data_len = dlen;
670                         md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
671                         dst = rte_pktmbuf_mtod(md[i], uint8_t *);
672                 }
673
674                 len = RTE_MIN(slen, dlen);
675                 memcpy(dst, src, len);
676                 tlen += len;
677                 slen -= len;
678                 dlen -= len;
679                 src += len;
680                 dst += len;
681
682                 if (slen == 0)
683                         ms = ms->next;
684                 if (dlen == 0)
685                         i++;
686         }
687
688         if (ms != NULL)
689                 return -ENOBUFS;
690         else if (tlen != m->pkt_len)
691                 return -EINVAL;
692
693         md[0]->nb_segs = nb_seg;
694         md[0]->pkt_len = tlen;
695         md[0]->vlan_tci = m->vlan_tci;
696         md[0]->vlan_tci_outer = m->vlan_tci_outer;
697         md[0]->ol_flags = m->ol_flags;
698         md[0]->tx_offload = m->tx_offload;
699
700         return nb_seg;
701 }
702
703 /*
704  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
705  * Copy packet contents and offload information into the new segmented mbuf.
706  */
707 static struct rte_mbuf *
708 pkt_copy_split(const struct rte_mbuf *pkt)
709 {
710         int32_t n, rc;
711         uint32_t i, len, nb_seg;
712         struct rte_mempool *mp;
713         uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
714         struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
715
716         mp = current_fwd_lcore()->mbp;
717
718         if (tx_pkt_split == TX_PKT_SPLIT_RND)
719                 nb_seg = rte_rand() % tx_pkt_nb_segs + 1;
720         else
721                 nb_seg = tx_pkt_nb_segs;
722
723         memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
724
725         /* calculate number of segments to use and their length. */
726         len = 0;
727         for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
728                 len += seglen[i];
729                 md[i] = NULL;
730         }
731
732         n = pkt->pkt_len - len;
733
734         /* update size of the last segment to fit rest of the packet */
735         if (n >= 0) {
736                 seglen[i - 1] += n;
737                 len += n;
738         }
739
740         nb_seg = i;
741         while (i != 0) {
742                 p = rte_pktmbuf_alloc(mp);
743                 if (p == NULL) {
744                         TESTPMD_LOG(ERR,
745                                 "failed to allocate %u-th of %u mbuf "
746                                 "from mempool: %s\n",
747                                 nb_seg - i, nb_seg, mp->name);
748                         break;
749                 }
750
751                 md[--i] = p;
752                 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
753                         TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
754                                 "expected seglen: %u, "
755                                 "actual mbuf tailroom: %u\n",
756                                 mp->name, i, seglen[i],
757                                 rte_pktmbuf_tailroom(md[i]));
758                         break;
759                 }
760         }
761
762         /* all mbufs successfully allocated, do copy */
763         if (i == 0) {
764                 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
765                 if (rc < 0)
766                         TESTPMD_LOG(ERR,
767                                 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
768                                 "into %u segments failed with error code: %d\n",
769                                 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
770
771                 /* figure out how many mbufs to free. */
772                 i = RTE_MAX(rc, 0);
773         }
774
775         /* free unused mbufs */
776         for (; i != nb_seg; i++) {
777                 rte_pktmbuf_free_seg(md[i]);
778                 md[i] = NULL;
779         }
780
781         return md[0];
782 }
783
784 /*
785  * Receive a burst of packets, and for each packet:
786  *  - parse packet, and try to recognize a supported packet type (1)
787  *  - if it's not a supported packet type, don't touch the packet, else:
788  *  - reprocess the checksum of all supported layers. This is done in SW
789  *    or HW, depending on testpmd command line configuration
790  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
791  *    segmentation offload (this implies HW TCP checksum)
792  * Then transmit packets on the output port.
793  *
794  * (1) Supported packets are:
795  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
796  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
797  *           UDP|TCP|SCTP
798  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
799  *           UDP|TCP|SCTP
800  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
801  *           UDP|TCP|SCTP
802  *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
803  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
804  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
805  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
806  *
807  * The testpmd command line for this forward engine sets the flags
808  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
809  * whether a checksum must be calculated in software or in hardware. The
810  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
811  * OUTER_IP is only useful for tunnel packets.
812  */
813 static void
814 pkt_burst_checksum_forward(struct fwd_stream *fs)
815 {
816         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
817 #ifdef RTE_LIB_GSO
818         struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
819         struct rte_gso_ctx *gso_ctx;
820 #endif
821         struct rte_mbuf **tx_pkts_burst;
822         struct rte_port *txp;
823         struct rte_mbuf *m, *p;
824         struct rte_ether_hdr *eth_hdr;
825         void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
826 #ifdef RTE_LIB_GRO
827         void **gro_ctx;
828         uint16_t gro_pkts_num;
829         uint8_t gro_enable;
830 #endif
831         uint16_t nb_rx;
832         uint16_t nb_tx;
833         uint16_t nb_prep;
834         uint16_t i;
835         uint64_t rx_ol_flags, tx_ol_flags;
836         uint64_t tx_offloads;
837         uint32_t retry;
838         uint32_t rx_bad_ip_csum;
839         uint32_t rx_bad_l4_csum;
840         uint32_t rx_bad_outer_l4_csum;
841         uint32_t rx_bad_outer_ip_csum;
842         struct testpmd_offload_info info;
843
844         uint64_t start_tsc = 0;
845
846         get_start_cycles(&start_tsc);
847
848         /* receive a burst of packet */
849         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
850                                  nb_pkt_per_burst);
851         inc_rx_burst_stats(fs, nb_rx);
852         if (unlikely(nb_rx == 0))
853                 return;
854
855         fs->rx_packets += nb_rx;
856         rx_bad_ip_csum = 0;
857         rx_bad_l4_csum = 0;
858         rx_bad_outer_l4_csum = 0;
859         rx_bad_outer_ip_csum = 0;
860 #ifdef RTE_LIB_GRO
861         gro_enable = gro_ports[fs->rx_port].enable;
862 #endif
863
864         txp = &ports[fs->tx_port];
865         tx_offloads = txp->dev_conf.txmode.offloads;
866         memset(&info, 0, sizeof(info));
867         info.tso_segsz = txp->tso_segsz;
868         info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
869 #ifdef RTE_LIB_GSO
870         if (gso_ports[fs->tx_port].enable)
871                 info.gso_enable = 1;
872 #endif
873
874         for (i = 0; i < nb_rx; i++) {
875                 if (likely(i < nb_rx - 1))
876                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
877                                                        void *));
878
879                 m = pkts_burst[i];
880                 info.is_tunnel = 0;
881                 info.pkt_len = rte_pktmbuf_pkt_len(m);
882                 tx_ol_flags = m->ol_flags &
883                               (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL);
884                 rx_ol_flags = m->ol_flags;
885
886                 /* Update the L3/L4 checksum error packet statistics */
887                 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD)
888                         rx_bad_ip_csum += 1;
889                 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD)
890                         rx_bad_l4_csum += 1;
891                 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD)
892                         rx_bad_outer_l4_csum += 1;
893                 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD)
894                         rx_bad_outer_ip_csum += 1;
895
896                 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
897                  * and inner headers */
898
899                 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
900                 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
901                                 &eth_hdr->dst_addr);
902                 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
903                                 &eth_hdr->src_addr);
904                 parse_ethernet(eth_hdr, &info);
905                 l3_hdr = (char *)eth_hdr + info.l2_len;
906
907                 /* check if it's a supported tunnel */
908                 if (txp->parse_tunnel) {
909                         if (info.l4_proto == IPPROTO_UDP) {
910                                 struct rte_udp_hdr *udp_hdr;
911
912                                 udp_hdr = (struct rte_udp_hdr *)
913                                         ((char *)l3_hdr + info.l3_len);
914                                 parse_gtp(udp_hdr, &info);
915                                 if (info.is_tunnel) {
916                                         tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP;
917                                         goto tunnel_update;
918                                 }
919                                 parse_vxlan_gpe(udp_hdr, &info);
920                                 if (info.is_tunnel) {
921                                         tx_ol_flags |=
922                                                 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE;
923                                         goto tunnel_update;
924                                 }
925                                 parse_vxlan(udp_hdr, &info,
926                                             m->packet_type);
927                                 if (info.is_tunnel) {
928                                         tx_ol_flags |=
929                                                 RTE_MBUF_F_TX_TUNNEL_VXLAN;
930                                         goto tunnel_update;
931                                 }
932                                 parse_geneve(udp_hdr, &info);
933                                 if (info.is_tunnel) {
934                                         tx_ol_flags |=
935                                                 RTE_MBUF_F_TX_TUNNEL_GENEVE;
936                                         goto tunnel_update;
937                                 }
938                         } else if (info.l4_proto == IPPROTO_GRE) {
939                                 struct simple_gre_hdr *gre_hdr;
940
941                                 gre_hdr = (struct simple_gre_hdr *)
942                                         ((char *)l3_hdr + info.l3_len);
943                                 parse_gre(gre_hdr, &info);
944                                 if (info.is_tunnel)
945                                         tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE;
946                         } else if (info.l4_proto == IPPROTO_IPIP) {
947                                 void *encap_ip_hdr;
948
949                                 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
950                                 parse_encap_ip(encap_ip_hdr, &info);
951                                 if (info.is_tunnel)
952                                         tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP;
953                         }
954                 }
955
956 tunnel_update:
957                 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
958                 if (info.is_tunnel) {
959                         outer_l3_hdr = l3_hdr;
960                         l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
961                 }
962
963                 /* step 2: depending on user command line configuration,
964                  * recompute checksum either in software or flag the
965                  * mbuf to offload the calculation to the NIC. If TSO
966                  * is configured, prepare the mbuf for TCP segmentation. */
967
968                 /* process checksums of inner headers first */
969                 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
970                         tx_offloads, m);
971
972                 /* Then process outer headers if any. Note that the software
973                  * checksum will be wrong if one of the inner checksums is
974                  * processed in hardware. */
975                 if (info.is_tunnel == 1) {
976                         tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
977                                         tx_offloads,
978                                         !!(tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG),
979                                         m);
980                 }
981
982                 /* step 3: fill the mbuf meta data (flags and header lengths) */
983
984                 m->tx_offload = 0;
985                 if (info.is_tunnel == 1) {
986                         if (info.tunnel_tso_segsz ||
987                             (tx_offloads &
988                              RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
989                             (tx_offloads &
990                              RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) {
991                                 m->outer_l2_len = info.outer_l2_len;
992                                 m->outer_l3_len = info.outer_l3_len;
993                                 m->l2_len = info.l2_len;
994                                 m->l3_len = info.l3_len;
995                                 m->l4_len = info.l4_len;
996                                 m->tso_segsz = info.tunnel_tso_segsz;
997                         }
998                         else {
999                                 /* if there is a outer UDP cksum
1000                                    processed in sw and the inner in hw,
1001                                    the outer checksum will be wrong as
1002                                    the payload will be modified by the
1003                                    hardware */
1004                                 m->l2_len = info.outer_l2_len +
1005                                         info.outer_l3_len + info.l2_len;
1006                                 m->l3_len = info.l3_len;
1007                                 m->l4_len = info.l4_len;
1008                         }
1009                 } else {
1010                         /* this is only useful if an offload flag is
1011                          * set, but it does not hurt to fill it in any
1012                          * case */
1013                         m->l2_len = info.l2_len;
1014                         m->l3_len = info.l3_len;
1015                         m->l4_len = info.l4_len;
1016                         m->tso_segsz = info.tso_segsz;
1017                 }
1018                 m->ol_flags = tx_ol_flags;
1019
1020                 /* Do split & copy for the packet. */
1021                 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
1022                         p = pkt_copy_split(m);
1023                         if (p != NULL) {
1024                                 rte_pktmbuf_free(m);
1025                                 m = p;
1026                                 pkts_burst[i] = m;
1027                         }
1028                 }
1029
1030                 /* if verbose mode is enabled, dump debug info */
1031                 if (verbose_level > 0) {
1032                         char buf[256];
1033
1034                         printf("-----------------\n");
1035                         printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
1036                                 fs->rx_port, m, m->pkt_len, m->nb_segs);
1037                         /* dump rx parsed packet info */
1038                         rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
1039                         printf("rx: l2_len=%d ethertype=%x l3_len=%d "
1040                                 "l4_proto=%d l4_len=%d flags=%s\n",
1041                                 info.l2_len, rte_be_to_cpu_16(info.ethertype),
1042                                 info.l3_len, info.l4_proto, info.l4_len, buf);
1043                         if (rx_ol_flags & RTE_MBUF_F_RX_LRO)
1044                                 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
1045                         if (info.is_tunnel == 1)
1046                                 printf("rx: outer_l2_len=%d outer_ethertype=%x "
1047                                         "outer_l3_len=%d\n", info.outer_l2_len,
1048                                         rte_be_to_cpu_16(info.outer_ethertype),
1049                                         info.outer_l3_len);
1050                         /* dump tx packet info */
1051                         if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1052                                             RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1053                                             RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1054                                             RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) ||
1055                                 info.tso_segsz != 0)
1056                                 printf("tx: m->l2_len=%d m->l3_len=%d "
1057                                         "m->l4_len=%d\n",
1058                                         m->l2_len, m->l3_len, m->l4_len);
1059                         if (info.is_tunnel == 1) {
1060                                 if ((tx_offloads &
1061                                     RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1062                                     (tx_offloads &
1063                                     RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1064                                     (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6))
1065                                         printf("tx: m->outer_l2_len=%d "
1066                                                 "m->outer_l3_len=%d\n",
1067                                                 m->outer_l2_len,
1068                                                 m->outer_l3_len);
1069                                 if (info.tunnel_tso_segsz != 0 &&
1070                                                 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG))
1071                                         printf("tx: m->tso_segsz=%d\n",
1072                                                 m->tso_segsz);
1073                         } else if (info.tso_segsz != 0 &&
1074                                         (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG))
1075                                 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1076                         rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1077                         printf("tx: flags=%s", buf);
1078                         printf("\n");
1079                 }
1080         }
1081
1082 #ifdef RTE_LIB_GRO
1083         if (unlikely(gro_enable)) {
1084                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1085                         nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1086                                         &(gro_ports[fs->rx_port].param));
1087                 } else {
1088                         gro_ctx = current_fwd_lcore()->gro_ctx;
1089                         nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1090
1091                         if (++fs->gro_times >= gro_flush_cycles) {
1092                                 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1093                                 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1094                                         gro_pkts_num = MAX_PKT_BURST - nb_rx;
1095
1096                                 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1097                                                 RTE_GRO_TCP_IPV4,
1098                                                 &pkts_burst[nb_rx],
1099                                                 gro_pkts_num);
1100                                 fs->gro_times = 0;
1101                         }
1102                 }
1103         }
1104 #endif
1105
1106 #ifdef RTE_LIB_GSO
1107         if (gso_ports[fs->tx_port].enable != 0) {
1108                 uint16_t nb_segments = 0;
1109
1110                 gso_ctx = &(current_fwd_lcore()->gso_ctx);
1111                 gso_ctx->gso_size = gso_max_segment_size;
1112                 for (i = 0; i < nb_rx; i++) {
1113                         int ret;
1114
1115                         ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1116                                         &gso_segments[nb_segments],
1117                                         GSO_MAX_PKT_BURST - nb_segments);
1118                         if (ret >= 1) {
1119                                 /* pkts_burst[i] can be freed safely here. */
1120                                 rte_pktmbuf_free(pkts_burst[i]);
1121                                 nb_segments += ret;
1122                         } else if (ret == 0) {
1123                                 /* 0 means it can be transmitted directly
1124                                  * without gso.
1125                                  */
1126                                 gso_segments[nb_segments] = pkts_burst[i];
1127                                 nb_segments += 1;
1128                         } else {
1129                                 TESTPMD_LOG(DEBUG, "Unable to segment packet");
1130                                 rte_pktmbuf_free(pkts_burst[i]);
1131                         }
1132                 }
1133
1134                 tx_pkts_burst = gso_segments;
1135                 nb_rx = nb_segments;
1136         } else
1137 #endif
1138                 tx_pkts_burst = pkts_burst;
1139
1140         nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1141                         tx_pkts_burst, nb_rx);
1142         if (nb_prep != nb_rx)
1143                 fprintf(stderr,
1144                         "Preparing packet burst to transmit failed: %s\n",
1145                         rte_strerror(rte_errno));
1146
1147         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1148                         nb_prep);
1149
1150         /*
1151          * Retry if necessary
1152          */
1153         if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1154                 retry = 0;
1155                 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1156                         rte_delay_us(burst_tx_delay_time);
1157                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1158                                         &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1159                 }
1160         }
1161         fs->tx_packets += nb_tx;
1162         fs->rx_bad_ip_csum += rx_bad_ip_csum;
1163         fs->rx_bad_l4_csum += rx_bad_l4_csum;
1164         fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1165         fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum;
1166
1167         inc_tx_burst_stats(fs, nb_tx);
1168         if (unlikely(nb_tx < nb_rx)) {
1169                 fs->fwd_dropped += (nb_rx - nb_tx);
1170                 do {
1171                         rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1172                 } while (++nb_tx < nb_rx);
1173         }
1174
1175         get_end_cycles(fs, start_tsc);
1176 }
1177
1178 struct fwd_engine csum_fwd_engine = {
1179         .fwd_mode_name  = "csum",
1180         .port_fwd_begin = NULL,
1181         .port_fwd_end   = NULL,
1182         .packet_fwd     = pkt_burst_checksum_forward,
1183 };