1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
13 #include <sys/queue.h>
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
31 #include <rte_interrupts.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
39 #include <rte_prefetch.h>
40 #include <rte_string_fns.h>
47 #define IP_DEFTTL 64 /* from RFC 1340. */
48 #define IP_VERSION 0x40
49 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
52 #define GRE_CHECKSUM_PRESENT 0x8000
53 #define GRE_KEY_PRESENT 0x2000
54 #define GRE_SEQUENCE_PRESENT 0x1000
56 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
66 uint16_t vxlan_gpe_udp_port = 4790;
68 /* structure that caches offload info for the current packet */
69 struct testpmd_offload_info {
77 uint16_t outer_ethertype;
78 uint16_t outer_l2_len;
79 uint16_t outer_l3_len;
80 uint8_t outer_l4_proto;
82 uint16_t tunnel_tso_segsz;
86 /* simplified GRE header */
87 struct simple_gre_hdr {
90 } __attribute__((__packed__));
93 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
95 if (ethertype == _htons(ETHER_TYPE_IPv4))
96 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
97 else /* assume ethertype == ETHER_TYPE_IPv6 */
98 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
101 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
103 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
105 struct tcp_hdr *tcp_hdr;
107 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
108 info->l4_proto = ipv4_hdr->next_proto_id;
110 /* only fill l4_len for TCP, it's useful for TSO */
111 if (info->l4_proto == IPPROTO_TCP) {
112 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
113 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
118 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
120 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
122 struct tcp_hdr *tcp_hdr;
124 info->l3_len = sizeof(struct ipv6_hdr);
125 info->l4_proto = ipv6_hdr->proto;
127 /* only fill l4_len for TCP, it's useful for TSO */
128 if (info->l4_proto == IPPROTO_TCP) {
129 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
130 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
136 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
137 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
138 * header. The l4_len argument is only set in case of TCP (useful for TSO).
141 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
143 struct ipv4_hdr *ipv4_hdr;
144 struct ipv6_hdr *ipv6_hdr;
146 info->l2_len = sizeof(struct ether_hdr);
147 info->ethertype = eth_hdr->ether_type;
149 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
150 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
152 info->l2_len += sizeof(struct vlan_hdr);
153 info->ethertype = vlan_hdr->eth_proto;
156 switch (info->ethertype) {
157 case _htons(ETHER_TYPE_IPv4):
158 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
159 parse_ipv4(ipv4_hdr, info);
161 case _htons(ETHER_TYPE_IPv6):
162 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
163 parse_ipv6(ipv6_hdr, info);
173 /* Parse a vxlan header */
175 parse_vxlan(struct udp_hdr *udp_hdr,
176 struct testpmd_offload_info *info,
179 struct ether_hdr *eth_hdr;
181 /* check udp destination port, 4789 is the default vxlan port
182 * (rfc7348) or that the rx offload flag is set (i40e only
184 if (udp_hdr->dst_port != _htons(4789) &&
185 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
189 info->outer_ethertype = info->ethertype;
190 info->outer_l2_len = info->l2_len;
191 info->outer_l3_len = info->l3_len;
192 info->outer_l4_proto = info->l4_proto;
194 eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
195 sizeof(struct udp_hdr) +
196 sizeof(struct vxlan_hdr));
198 parse_ethernet(eth_hdr, info);
199 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
202 /* Parse a vxlan-gpe header */
204 parse_vxlan_gpe(struct udp_hdr *udp_hdr,
205 struct testpmd_offload_info *info)
207 struct ether_hdr *eth_hdr;
208 struct ipv4_hdr *ipv4_hdr;
209 struct ipv6_hdr *ipv6_hdr;
210 struct vxlan_gpe_hdr *vxlan_gpe_hdr;
211 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
213 /* Check udp destination port. */
214 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
217 vxlan_gpe_hdr = (struct vxlan_gpe_hdr *)((char *)udp_hdr +
218 sizeof(struct udp_hdr));
220 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
221 VXLAN_GPE_TYPE_IPV4) {
223 info->outer_ethertype = info->ethertype;
224 info->outer_l2_len = info->l2_len;
225 info->outer_l3_len = info->l3_len;
226 info->outer_l4_proto = info->l4_proto;
228 ipv4_hdr = (struct ipv4_hdr *)((char *)vxlan_gpe_hdr +
231 parse_ipv4(ipv4_hdr, info);
232 info->ethertype = _htons(ETHER_TYPE_IPv4);
235 } else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_IPV6) {
237 info->outer_ethertype = info->ethertype;
238 info->outer_l2_len = info->l2_len;
239 info->outer_l3_len = info->l3_len;
240 info->outer_l4_proto = info->l4_proto;
242 ipv6_hdr = (struct ipv6_hdr *)((char *)vxlan_gpe_hdr +
245 info->ethertype = _htons(ETHER_TYPE_IPv6);
246 parse_ipv6(ipv6_hdr, info);
249 } else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_ETH) {
251 info->outer_ethertype = info->ethertype;
252 info->outer_l2_len = info->l2_len;
253 info->outer_l3_len = info->l3_len;
254 info->outer_l4_proto = info->l4_proto;
256 eth_hdr = (struct ether_hdr *)((char *)vxlan_gpe_hdr +
259 parse_ethernet(eth_hdr, info);
263 info->l2_len += ETHER_VXLAN_GPE_HLEN;
266 /* Parse a gre header */
268 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
270 struct ether_hdr *eth_hdr;
271 struct ipv4_hdr *ipv4_hdr;
272 struct ipv6_hdr *ipv6_hdr;
275 gre_len += sizeof(struct simple_gre_hdr);
277 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
278 gre_len += GRE_EXT_LEN;
279 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
280 gre_len += GRE_EXT_LEN;
281 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
282 gre_len += GRE_EXT_LEN;
284 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
286 info->outer_ethertype = info->ethertype;
287 info->outer_l2_len = info->l2_len;
288 info->outer_l3_len = info->l3_len;
289 info->outer_l4_proto = info->l4_proto;
291 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
293 parse_ipv4(ipv4_hdr, info);
294 info->ethertype = _htons(ETHER_TYPE_IPv4);
297 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
299 info->outer_ethertype = info->ethertype;
300 info->outer_l2_len = info->l2_len;
301 info->outer_l3_len = info->l3_len;
302 info->outer_l4_proto = info->l4_proto;
304 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
306 info->ethertype = _htons(ETHER_TYPE_IPv6);
307 parse_ipv6(ipv6_hdr, info);
310 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
312 info->outer_ethertype = info->ethertype;
313 info->outer_l2_len = info->l2_len;
314 info->outer_l3_len = info->l3_len;
315 info->outer_l4_proto = info->l4_proto;
317 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);
319 parse_ethernet(eth_hdr, info);
323 info->l2_len += gre_len;
327 /* Parse an encapsulated ip or ipv6 header */
329 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
331 struct ipv4_hdr *ipv4_hdr = encap_ip;
332 struct ipv6_hdr *ipv6_hdr = encap_ip;
335 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
337 if (ip_version != 4 && ip_version != 6)
341 info->outer_ethertype = info->ethertype;
342 info->outer_l2_len = info->l2_len;
343 info->outer_l3_len = info->l3_len;
345 if (ip_version == 4) {
346 parse_ipv4(ipv4_hdr, info);
347 info->ethertype = _htons(ETHER_TYPE_IPv4);
349 parse_ipv6(ipv6_hdr, info);
350 info->ethertype = _htons(ETHER_TYPE_IPv6);
355 /* if possible, calculate the checksum of a packet in hw or sw,
356 * depending on the testpmd command line configuration */
358 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
359 uint64_t tx_offloads)
361 struct ipv4_hdr *ipv4_hdr = l3_hdr;
362 struct udp_hdr *udp_hdr;
363 struct tcp_hdr *tcp_hdr;
364 struct sctp_hdr *sctp_hdr;
365 uint64_t ol_flags = 0;
366 uint32_t max_pkt_len, tso_segsz = 0;
368 /* ensure packet is large enough to require tso */
369 if (!info->is_tunnel) {
370 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
372 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
373 tso_segsz = info->tso_segsz;
375 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
376 info->l2_len + info->l3_len + info->l4_len +
377 info->tunnel_tso_segsz;
378 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
379 tso_segsz = info->tunnel_tso_segsz;
382 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
384 ipv4_hdr->hdr_checksum = 0;
386 ol_flags |= PKT_TX_IPV4;
387 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
388 ol_flags |= PKT_TX_IP_CKSUM;
390 if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
391 ol_flags |= PKT_TX_IP_CKSUM;
393 ipv4_hdr->hdr_checksum =
394 rte_ipv4_cksum(ipv4_hdr);
396 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
397 ol_flags |= PKT_TX_IPV6;
399 return 0; /* packet type not supported, nothing to do */
401 if (info->l4_proto == IPPROTO_UDP) {
402 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
403 /* do not recalculate udp cksum if it was 0 */
404 if (udp_hdr->dgram_cksum != 0) {
405 udp_hdr->dgram_cksum = 0;
406 if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
407 ol_flags |= PKT_TX_UDP_CKSUM;
409 udp_hdr->dgram_cksum =
410 get_udptcp_checksum(l3_hdr, udp_hdr,
414 } else if (info->l4_proto == IPPROTO_TCP) {
415 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
418 ol_flags |= PKT_TX_TCP_SEG;
419 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
420 ol_flags |= PKT_TX_TCP_CKSUM;
423 get_udptcp_checksum(l3_hdr, tcp_hdr,
426 if (info->gso_enable)
427 ol_flags |= PKT_TX_TCP_SEG;
428 } else if (info->l4_proto == IPPROTO_SCTP) {
429 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
431 /* sctp payload must be a multiple of 4 to be
433 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
434 ((ipv4_hdr->total_length & 0x3) == 0)) {
435 ol_flags |= PKT_TX_SCTP_CKSUM;
437 /* XXX implement CRC32c, example available in
445 /* Calculate the checksum of outer header */
447 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
448 uint64_t tx_offloads, int tso_enabled)
450 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
451 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
452 struct udp_hdr *udp_hdr;
453 uint64_t ol_flags = 0;
455 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
456 ipv4_hdr->hdr_checksum = 0;
457 ol_flags |= PKT_TX_OUTER_IPV4;
459 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
460 ol_flags |= PKT_TX_OUTER_IP_CKSUM;
462 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
464 ol_flags |= PKT_TX_OUTER_IPV6;
466 if (info->outer_l4_proto != IPPROTO_UDP)
469 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
471 /* outer UDP checksum is done in software as we have no hardware
472 * supporting it today, and no API for it. In the other side, for
473 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
476 * If a packet will be TSOed into small packets by NIC, we cannot
477 * set/calculate a non-zero checksum, because it will be a wrong
478 * value after the packet be split into several small packets.
481 udp_hdr->dgram_cksum = 0;
483 /* do not recalculate udp cksum if it was 0 */
484 if (udp_hdr->dgram_cksum != 0) {
485 udp_hdr->dgram_cksum = 0;
486 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
487 udp_hdr->dgram_cksum =
488 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
490 udp_hdr->dgram_cksum =
491 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
499 * Performs actual copying.
500 * Returns number of segments in the destination mbuf on success,
501 * or negative error code on failure.
504 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
505 uint16_t seglen[], uint8_t nb_seg)
507 uint32_t dlen, slen, tlen;
509 const struct rte_mbuf *m;
522 while (ms != NULL && i != nb_seg) {
525 slen = rte_pktmbuf_data_len(ms);
526 src = rte_pktmbuf_mtod(ms, const uint8_t *);
530 dlen = RTE_MIN(seglen[i], slen);
531 md[i]->data_len = dlen;
532 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
533 dst = rte_pktmbuf_mtod(md[i], uint8_t *);
536 len = RTE_MIN(slen, dlen);
537 memcpy(dst, src, len);
552 else if (tlen != m->pkt_len)
555 md[0]->nb_segs = nb_seg;
556 md[0]->pkt_len = tlen;
557 md[0]->vlan_tci = m->vlan_tci;
558 md[0]->vlan_tci_outer = m->vlan_tci_outer;
559 md[0]->ol_flags = m->ol_flags;
560 md[0]->tx_offload = m->tx_offload;
566 * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
567 * Copy packet contents and offload information into then new segmented mbuf.
569 static struct rte_mbuf *
570 pkt_copy_split(const struct rte_mbuf *pkt)
573 uint32_t i, len, nb_seg;
574 struct rte_mempool *mp;
575 uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
576 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
578 mp = current_fwd_lcore()->mbp;
580 if (tx_pkt_split == TX_PKT_SPLIT_RND)
581 nb_seg = random() % tx_pkt_nb_segs + 1;
583 nb_seg = tx_pkt_nb_segs;
585 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
587 /* calculate number of segments to use and their length. */
589 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
594 n = pkt->pkt_len - len;
596 /* update size of the last segment to fit rest of the packet */
604 p = rte_pktmbuf_alloc(mp);
607 "failed to allocate %u-th of %u mbuf "
608 "from mempool: %s\n",
609 nb_seg - i, nb_seg, mp->name);
614 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
615 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
616 "expected seglen: %u, "
617 "actual mbuf tailroom: %u\n",
618 mp->name, i, seglen[i],
619 rte_pktmbuf_tailroom(md[i]));
624 /* all mbufs successfully allocated, do copy */
626 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
629 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
630 "into %u segments failed with error code: %d\n",
631 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
633 /* figure out how many mbufs to free. */
637 /* free unused mbufs */
638 for (; i != nb_seg; i++) {
639 rte_pktmbuf_free_seg(md[i]);
647 * Receive a burst of packets, and for each packet:
648 * - parse packet, and try to recognize a supported packet type (1)
649 * - if it's not a supported packet type, don't touch the packet, else:
650 * - reprocess the checksum of all supported layers. This is done in SW
651 * or HW, depending on testpmd command line configuration
652 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
653 * segmentation offload (this implies HW TCP checksum)
654 * Then transmit packets on the output port.
656 * (1) Supported packets are:
657 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
658 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
660 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
662 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
664 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
665 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
666 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
668 * The testpmd command line for this forward engine sets the flags
669 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
670 * wether a checksum must be calculated in software or in hardware. The
671 * IP, UDP, TCP and SCTP flags always concern the inner layer. The
672 * OUTER_IP is only useful for tunnel packets.
675 pkt_burst_checksum_forward(struct fwd_stream *fs)
677 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
678 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
679 struct rte_gso_ctx *gso_ctx;
680 struct rte_mbuf **tx_pkts_burst;
681 struct rte_port *txp;
682 struct rte_mbuf *m, *p;
683 struct ether_hdr *eth_hdr;
684 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
686 uint16_t gro_pkts_num;
692 uint64_t rx_ol_flags, tx_ol_flags;
693 uint64_t tx_offloads;
695 uint32_t rx_bad_ip_csum;
696 uint32_t rx_bad_l4_csum;
697 struct testpmd_offload_info info;
698 uint16_t nb_segments = 0;
701 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
704 uint64_t core_cycles;
707 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
708 start_tsc = rte_rdtsc();
711 /* receive a burst of packet */
712 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
714 if (unlikely(nb_rx == 0))
716 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
717 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
719 fs->rx_packets += nb_rx;
722 gro_enable = gro_ports[fs->rx_port].enable;
724 txp = &ports[fs->tx_port];
725 tx_offloads = txp->dev_conf.txmode.offloads;
726 memset(&info, 0, sizeof(info));
727 info.tso_segsz = txp->tso_segsz;
728 info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
729 if (gso_ports[fs->tx_port].enable)
732 for (i = 0; i < nb_rx; i++) {
733 if (likely(i < nb_rx - 1))
734 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
739 info.pkt_len = rte_pktmbuf_pkt_len(m);
740 tx_ol_flags = m->ol_flags &
741 (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
742 rx_ol_flags = m->ol_flags;
744 /* Update the L3/L4 checksum error packet statistics */
745 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
747 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
750 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
751 * and inner headers */
753 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
754 ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
756 ether_addr_copy(&ports[fs->tx_port].eth_addr,
758 parse_ethernet(eth_hdr, &info);
759 l3_hdr = (char *)eth_hdr + info.l2_len;
761 /* check if it's a supported tunnel */
762 if (txp->parse_tunnel) {
763 if (info.l4_proto == IPPROTO_UDP) {
764 struct udp_hdr *udp_hdr;
766 udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
768 parse_vxlan_gpe(udp_hdr, &info);
769 if (info.is_tunnel) {
770 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE;
772 parse_vxlan(udp_hdr, &info,
778 } else if (info.l4_proto == IPPROTO_GRE) {
779 struct simple_gre_hdr *gre_hdr;
781 gre_hdr = (struct simple_gre_hdr *)
782 ((char *)l3_hdr + info.l3_len);
783 parse_gre(gre_hdr, &info);
785 tx_ol_flags |= PKT_TX_TUNNEL_GRE;
786 } else if (info.l4_proto == IPPROTO_IPIP) {
789 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
790 parse_encap_ip(encap_ip_hdr, &info);
792 tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
796 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
797 if (info.is_tunnel) {
798 outer_l3_hdr = l3_hdr;
799 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
802 /* step 2: depending on user command line configuration,
803 * recompute checksum either in software or flag the
804 * mbuf to offload the calculation to the NIC. If TSO
805 * is configured, prepare the mbuf for TCP segmentation. */
807 /* process checksums of inner headers first */
808 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
811 /* Then process outer headers if any. Note that the software
812 * checksum will be wrong if one of the inner checksums is
813 * processed in hardware. */
814 if (info.is_tunnel == 1) {
815 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
817 !!(tx_ol_flags & PKT_TX_TCP_SEG));
820 /* step 3: fill the mbuf meta data (flags and header lengths) */
823 if (info.is_tunnel == 1) {
824 if (info.tunnel_tso_segsz ||
826 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
827 (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
828 m->outer_l2_len = info.outer_l2_len;
829 m->outer_l3_len = info.outer_l3_len;
830 m->l2_len = info.l2_len;
831 m->l3_len = info.l3_len;
832 m->l4_len = info.l4_len;
833 m->tso_segsz = info.tunnel_tso_segsz;
836 /* if there is a outer UDP cksum
837 processed in sw and the inner in hw,
838 the outer checksum will be wrong as
839 the payload will be modified by the
841 m->l2_len = info.outer_l2_len +
842 info.outer_l3_len + info.l2_len;
843 m->l3_len = info.l3_len;
844 m->l4_len = info.l4_len;
847 /* this is only useful if an offload flag is
848 * set, but it does not hurt to fill it in any
850 m->l2_len = info.l2_len;
851 m->l3_len = info.l3_len;
852 m->l4_len = info.l4_len;
853 m->tso_segsz = info.tso_segsz;
855 m->ol_flags = tx_ol_flags;
857 /* Do split & copy for the packet. */
858 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
859 p = pkt_copy_split(m);
867 /* if verbose mode is enabled, dump debug info */
868 if (verbose_level > 0) {
871 printf("-----------------\n");
872 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
873 fs->rx_port, m, m->pkt_len, m->nb_segs);
874 /* dump rx parsed packet info */
875 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
876 printf("rx: l2_len=%d ethertype=%x l3_len=%d "
877 "l4_proto=%d l4_len=%d flags=%s\n",
878 info.l2_len, rte_be_to_cpu_16(info.ethertype),
879 info.l3_len, info.l4_proto, info.l4_len, buf);
880 if (rx_ol_flags & PKT_RX_LRO)
881 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
882 if (info.is_tunnel == 1)
883 printf("rx: outer_l2_len=%d outer_ethertype=%x "
884 "outer_l3_len=%d\n", info.outer_l2_len,
885 rte_be_to_cpu_16(info.outer_ethertype),
887 /* dump tx packet info */
888 if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
889 DEV_TX_OFFLOAD_UDP_CKSUM |
890 DEV_TX_OFFLOAD_TCP_CKSUM |
891 DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
893 printf("tx: m->l2_len=%d m->l3_len=%d "
895 m->l2_len, m->l3_len, m->l4_len);
896 if (info.is_tunnel == 1) {
898 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
899 (tx_ol_flags & PKT_TX_OUTER_IPV6))
900 printf("tx: m->outer_l2_len=%d "
901 "m->outer_l3_len=%d\n",
904 if (info.tunnel_tso_segsz != 0 &&
905 (m->ol_flags & PKT_TX_TCP_SEG))
906 printf("tx: m->tso_segsz=%d\n",
908 } else if (info.tso_segsz != 0 &&
909 (m->ol_flags & PKT_TX_TCP_SEG))
910 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
911 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
912 printf("tx: flags=%s", buf);
917 if (unlikely(gro_enable)) {
918 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
919 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
920 &(gro_ports[fs->rx_port].param));
922 gro_ctx = current_fwd_lcore()->gro_ctx;
923 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
925 if (++fs->gro_times >= gro_flush_cycles) {
926 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
927 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
928 gro_pkts_num = MAX_PKT_BURST - nb_rx;
930 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
939 if (gso_ports[fs->tx_port].enable == 0)
940 tx_pkts_burst = pkts_burst;
942 gso_ctx = &(current_fwd_lcore()->gso_ctx);
943 gso_ctx->gso_size = gso_max_segment_size;
944 for (i = 0; i < nb_rx; i++) {
945 ret = rte_gso_segment(pkts_burst[i], gso_ctx,
946 &gso_segments[nb_segments],
947 GSO_MAX_PKT_BURST - nb_segments);
951 TESTPMD_LOG(DEBUG, "Unable to segment packet");
952 rte_pktmbuf_free(pkts_burst[i]);
956 tx_pkts_burst = gso_segments;
960 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
961 tx_pkts_burst, nb_rx);
962 if (nb_prep != nb_rx)
963 printf("Preparing packet burst to transmit failed: %s\n",
964 rte_strerror(rte_errno));
966 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
972 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
974 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
975 rte_delay_us(burst_tx_delay_time);
976 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
977 &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
980 fs->tx_packets += nb_tx;
981 fs->rx_bad_ip_csum += rx_bad_ip_csum;
982 fs->rx_bad_l4_csum += rx_bad_l4_csum;
984 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
985 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
987 if (unlikely(nb_tx < nb_rx)) {
988 fs->fwd_dropped += (nb_rx - nb_tx);
990 rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
991 } while (++nb_tx < nb_rx);
994 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
995 end_tsc = rte_rdtsc();
996 core_cycles = (end_tsc - start_tsc);
997 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1001 struct fwd_engine csum_fwd_engine = {
1002 .fwd_mode_name = "csum",
1003 .port_fwd_begin = NULL,
1004 .port_fwd_end = NULL,
1005 .packet_fwd = pkt_burst_checksum_forward,