2133dfc494d639c38941437e2546a2fe991b19a2
[dpdk.git] / app / test-pmd / csumonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_sctp.h>
39 #include <rte_prefetch.h>
40 #include <rte_string_fns.h>
41 #include <rte_flow.h>
42 #include <rte_gro.h>
43 #include <rte_gso.h>
44
45 #include "testpmd.h"
46
47 #define IP_DEFTTL  64   /* from RFC 1340. */
48 #define IP_VERSION 0x40
49 #define IP_HDRLEN  0x05 /* default IP header length == five 32-bits words. */
50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
51
52 #define GRE_CHECKSUM_PRESENT    0x8000
53 #define GRE_KEY_PRESENT         0x2000
54 #define GRE_SEQUENCE_PRESENT    0x1000
55 #define GRE_EXT_LEN             4
56 #define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
57                                  GRE_SEQUENCE_PRESENT)
58
59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
62 #else
63 #define _htons(x) (x)
64 #endif
65
66 uint16_t vxlan_gpe_udp_port = 4790;
67
68 /* structure that caches offload info for the current packet */
69 struct testpmd_offload_info {
70         uint16_t ethertype;
71         uint8_t gso_enable;
72         uint16_t l2_len;
73         uint16_t l3_len;
74         uint16_t l4_len;
75         uint8_t l4_proto;
76         uint8_t is_tunnel;
77         uint16_t outer_ethertype;
78         uint16_t outer_l2_len;
79         uint16_t outer_l3_len;
80         uint8_t outer_l4_proto;
81         uint16_t tso_segsz;
82         uint16_t tunnel_tso_segsz;
83         uint32_t pkt_len;
84 };
85
86 /* simplified GRE header */
87 struct simple_gre_hdr {
88         uint16_t flags;
89         uint16_t proto;
90 } __attribute__((__packed__));
91
92 static uint16_t
93 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
94 {
95         if (ethertype == _htons(RTE_ETHER_TYPE_IPv4))
96                 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
97         else /* assume ethertype == RTE_ETHER_TYPE_IPv6 */
98                 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
99 }
100
101 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
102 static void
103 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
104 {
105         struct rte_tcp_hdr *tcp_hdr;
106
107         info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
108         info->l4_proto = ipv4_hdr->next_proto_id;
109
110         /* only fill l4_len for TCP, it's useful for TSO */
111         if (info->l4_proto == IPPROTO_TCP) {
112                 tcp_hdr = (struct rte_tcp_hdr *)
113                         ((char *)ipv4_hdr + info->l3_len);
114                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
115         } else if (info->l4_proto == IPPROTO_UDP)
116                 info->l4_len = sizeof(struct udp_hdr);
117         else
118                 info->l4_len = 0;
119 }
120
121 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
122 static void
123 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
124 {
125         struct rte_tcp_hdr *tcp_hdr;
126
127         info->l3_len = sizeof(struct rte_ipv6_hdr);
128         info->l4_proto = ipv6_hdr->proto;
129
130         /* only fill l4_len for TCP, it's useful for TSO */
131         if (info->l4_proto == IPPROTO_TCP) {
132                 tcp_hdr = (struct rte_tcp_hdr *)
133                         ((char *)ipv6_hdr + info->l3_len);
134                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
135         } else if (info->l4_proto == IPPROTO_UDP)
136                 info->l4_len = sizeof(struct udp_hdr);
137         else
138                 info->l4_len = 0;
139 }
140
141 /*
142  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
143  * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
144  * header. The l4_len argument is only set in case of TCP (useful for TSO).
145  */
146 static void
147 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
148 {
149         struct rte_ipv4_hdr *ipv4_hdr;
150         struct rte_ipv6_hdr *ipv6_hdr;
151
152         info->l2_len = sizeof(struct rte_ether_hdr);
153         info->ethertype = eth_hdr->ether_type;
154
155         if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) {
156                 struct rte_vlan_hdr *vlan_hdr = (
157                         struct rte_vlan_hdr *)(eth_hdr + 1);
158
159                 info->l2_len  += sizeof(struct rte_vlan_hdr);
160                 info->ethertype = vlan_hdr->eth_proto;
161         }
162
163         switch (info->ethertype) {
164         case _htons(RTE_ETHER_TYPE_IPv4):
165                 ipv4_hdr = (struct rte_ipv4_hdr *)
166                         ((char *)eth_hdr + info->l2_len);
167                 parse_ipv4(ipv4_hdr, info);
168                 break;
169         case _htons(RTE_ETHER_TYPE_IPv6):
170                 ipv6_hdr = (struct rte_ipv6_hdr *)
171                         ((char *)eth_hdr + info->l2_len);
172                 parse_ipv6(ipv6_hdr, info);
173                 break;
174         default:
175                 info->l4_len = 0;
176                 info->l3_len = 0;
177                 info->l4_proto = 0;
178                 break;
179         }
180 }
181
182 /* Parse a vxlan header */
183 static void
184 parse_vxlan(struct udp_hdr *udp_hdr,
185             struct testpmd_offload_info *info,
186             uint32_t pkt_type)
187 {
188         struct rte_ether_hdr *eth_hdr;
189
190         /* check udp destination port, 4789 is the default vxlan port
191          * (rfc7348) or that the rx offload flag is set (i40e only
192          * currently) */
193         if (udp_hdr->dst_port != _htons(4789) &&
194                 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
195                 return;
196
197         info->is_tunnel = 1;
198         info->outer_ethertype = info->ethertype;
199         info->outer_l2_len = info->l2_len;
200         info->outer_l3_len = info->l3_len;
201         info->outer_l4_proto = info->l4_proto;
202
203         eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
204                 sizeof(struct udp_hdr) +
205                 sizeof(struct rte_vxlan_hdr));
206
207         parse_ethernet(eth_hdr, info);
208         info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
209 }
210
211 /* Parse a vxlan-gpe header */
212 static void
213 parse_vxlan_gpe(struct udp_hdr *udp_hdr,
214             struct testpmd_offload_info *info)
215 {
216         struct rte_ether_hdr *eth_hdr;
217         struct rte_ipv4_hdr *ipv4_hdr;
218         struct rte_ipv6_hdr *ipv6_hdr;
219         struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
220         uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
221
222         /* Check udp destination port. */
223         if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
224                 return;
225
226         vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
227                                 sizeof(struct udp_hdr));
228
229         if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
230             RTE_VXLAN_GPE_TYPE_IPV4) {
231                 info->is_tunnel = 1;
232                 info->outer_ethertype = info->ethertype;
233                 info->outer_l2_len = info->l2_len;
234                 info->outer_l3_len = info->l3_len;
235                 info->outer_l4_proto = info->l4_proto;
236
237                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
238                            vxlan_gpe_len);
239
240                 parse_ipv4(ipv4_hdr, info);
241                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
242                 info->l2_len = 0;
243
244         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
245                 info->is_tunnel = 1;
246                 info->outer_ethertype = info->ethertype;
247                 info->outer_l2_len = info->l2_len;
248                 info->outer_l3_len = info->l3_len;
249                 info->outer_l4_proto = info->l4_proto;
250
251                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
252                            vxlan_gpe_len);
253
254                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
255                 parse_ipv6(ipv6_hdr, info);
256                 info->l2_len = 0;
257
258         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
259                 info->is_tunnel = 1;
260                 info->outer_ethertype = info->ethertype;
261                 info->outer_l2_len = info->l2_len;
262                 info->outer_l3_len = info->l3_len;
263                 info->outer_l4_proto = info->l4_proto;
264
265                 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
266                           vxlan_gpe_len);
267
268                 parse_ethernet(eth_hdr, info);
269         } else
270                 return;
271
272         info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
273 }
274
275 /* Parse a gre header */
276 static void
277 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
278 {
279         struct rte_ether_hdr *eth_hdr;
280         struct rte_ipv4_hdr *ipv4_hdr;
281         struct rte_ipv6_hdr *ipv6_hdr;
282         uint8_t gre_len = 0;
283
284         gre_len += sizeof(struct simple_gre_hdr);
285
286         if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
287                 gre_len += GRE_EXT_LEN;
288         if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
289                 gre_len += GRE_EXT_LEN;
290         if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
291                 gre_len += GRE_EXT_LEN;
292
293         if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv4)) {
294                 info->is_tunnel = 1;
295                 info->outer_ethertype = info->ethertype;
296                 info->outer_l2_len = info->l2_len;
297                 info->outer_l3_len = info->l3_len;
298                 info->outer_l4_proto = info->l4_proto;
299
300                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
301
302                 parse_ipv4(ipv4_hdr, info);
303                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
304                 info->l2_len = 0;
305
306         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv6)) {
307                 info->is_tunnel = 1;
308                 info->outer_ethertype = info->ethertype;
309                 info->outer_l2_len = info->l2_len;
310                 info->outer_l3_len = info->l3_len;
311                 info->outer_l4_proto = info->l4_proto;
312
313                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
314
315                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
316                 parse_ipv6(ipv6_hdr, info);
317                 info->l2_len = 0;
318
319         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
320                 info->is_tunnel = 1;
321                 info->outer_ethertype = info->ethertype;
322                 info->outer_l2_len = info->l2_len;
323                 info->outer_l3_len = info->l3_len;
324                 info->outer_l4_proto = info->l4_proto;
325
326                 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
327
328                 parse_ethernet(eth_hdr, info);
329         } else
330                 return;
331
332         info->l2_len += gre_len;
333 }
334
335
336 /* Parse an encapsulated ip or ipv6 header */
337 static void
338 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
339 {
340         struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
341         struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
342         uint8_t ip_version;
343
344         ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
345
346         if (ip_version != 4 && ip_version != 6)
347                 return;
348
349         info->is_tunnel = 1;
350         info->outer_ethertype = info->ethertype;
351         info->outer_l2_len = info->l2_len;
352         info->outer_l3_len = info->l3_len;
353
354         if (ip_version == 4) {
355                 parse_ipv4(ipv4_hdr, info);
356                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
357         } else {
358                 parse_ipv6(ipv6_hdr, info);
359                 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
360         }
361         info->l2_len = 0;
362 }
363
364 /* if possible, calculate the checksum of a packet in hw or sw,
365  * depending on the testpmd command line configuration */
366 static uint64_t
367 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
368         uint64_t tx_offloads)
369 {
370         struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
371         struct udp_hdr *udp_hdr;
372         struct rte_tcp_hdr *tcp_hdr;
373         struct rte_sctp_hdr *sctp_hdr;
374         uint64_t ol_flags = 0;
375         uint32_t max_pkt_len, tso_segsz = 0;
376
377         /* ensure packet is large enough to require tso */
378         if (!info->is_tunnel) {
379                 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
380                         info->tso_segsz;
381                 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
382                         tso_segsz = info->tso_segsz;
383         } else {
384                 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
385                         info->l2_len + info->l3_len + info->l4_len +
386                         info->tunnel_tso_segsz;
387                 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
388                         tso_segsz = info->tunnel_tso_segsz;
389         }
390
391         if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv4)) {
392                 ipv4_hdr = l3_hdr;
393                 ipv4_hdr->hdr_checksum = 0;
394
395                 ol_flags |= PKT_TX_IPV4;
396                 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
397                         ol_flags |= PKT_TX_IP_CKSUM;
398                 } else {
399                         if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
400                                 ol_flags |= PKT_TX_IP_CKSUM;
401                         else
402                                 ipv4_hdr->hdr_checksum =
403                                         rte_ipv4_cksum(ipv4_hdr);
404                 }
405         } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv6))
406                 ol_flags |= PKT_TX_IPV6;
407         else
408                 return 0; /* packet type not supported, nothing to do */
409
410         if (info->l4_proto == IPPROTO_UDP) {
411                 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
412                 /* do not recalculate udp cksum if it was 0 */
413                 if (udp_hdr->dgram_cksum != 0) {
414                         udp_hdr->dgram_cksum = 0;
415                         if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
416                                 ol_flags |= PKT_TX_UDP_CKSUM;
417                         else {
418                                 udp_hdr->dgram_cksum =
419                                         get_udptcp_checksum(l3_hdr, udp_hdr,
420                                                 info->ethertype);
421                         }
422                 }
423                 if (info->gso_enable)
424                         ol_flags |= PKT_TX_UDP_SEG;
425         } else if (info->l4_proto == IPPROTO_TCP) {
426                 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
427                 tcp_hdr->cksum = 0;
428                 if (tso_segsz)
429                         ol_flags |= PKT_TX_TCP_SEG;
430                 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
431                         ol_flags |= PKT_TX_TCP_CKSUM;
432                 else {
433                         tcp_hdr->cksum =
434                                 get_udptcp_checksum(l3_hdr, tcp_hdr,
435                                         info->ethertype);
436                 }
437                 if (info->gso_enable)
438                         ol_flags |= PKT_TX_TCP_SEG;
439         } else if (info->l4_proto == IPPROTO_SCTP) {
440                 sctp_hdr = (struct rte_sctp_hdr *)
441                         ((char *)l3_hdr + info->l3_len);
442                 sctp_hdr->cksum = 0;
443                 /* sctp payload must be a multiple of 4 to be
444                  * offloaded */
445                 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
446                         ((ipv4_hdr->total_length & 0x3) == 0)) {
447                         ol_flags |= PKT_TX_SCTP_CKSUM;
448                 } else {
449                         /* XXX implement CRC32c, example available in
450                          * RFC3309 */
451                 }
452         }
453
454         return ol_flags;
455 }
456
457 /* Calculate the checksum of outer header */
458 static uint64_t
459 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
460         uint64_t tx_offloads, int tso_enabled)
461 {
462         struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
463         struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
464         struct udp_hdr *udp_hdr;
465         uint64_t ol_flags = 0;
466
467         if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4)) {
468                 ipv4_hdr->hdr_checksum = 0;
469                 ol_flags |= PKT_TX_OUTER_IPV4;
470
471                 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
472                         ol_flags |= PKT_TX_OUTER_IP_CKSUM;
473                 else
474                         ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
475         } else
476                 ol_flags |= PKT_TX_OUTER_IPV6;
477
478         if (info->outer_l4_proto != IPPROTO_UDP)
479                 return ol_flags;
480
481         /* Skip SW outer UDP checksum generation if HW supports it */
482         if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
483                 ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
484                 return ol_flags;
485         }
486
487         udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
488
489         /* outer UDP checksum is done in software. In the other side, for
490          * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
491          * set to zero.
492          *
493          * If a packet will be TSOed into small packets by NIC, we cannot
494          * set/calculate a non-zero checksum, because it will be a wrong
495          * value after the packet be split into several small packets.
496          */
497         if (tso_enabled)
498                 udp_hdr->dgram_cksum = 0;
499
500         /* do not recalculate udp cksum if it was 0 */
501         if (udp_hdr->dgram_cksum != 0) {
502                 udp_hdr->dgram_cksum = 0;
503                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4))
504                         udp_hdr->dgram_cksum =
505                                 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
506                 else
507                         udp_hdr->dgram_cksum =
508                                 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
509         }
510
511         return ol_flags;
512 }
513
514 /*
515  * Helper function.
516  * Performs actual copying.
517  * Returns number of segments in the destination mbuf on success,
518  * or negative error code on failure.
519  */
520 static int
521 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
522         uint16_t seglen[], uint8_t nb_seg)
523 {
524         uint32_t dlen, slen, tlen;
525         uint32_t i, len;
526         const struct rte_mbuf *m;
527         const uint8_t *src;
528         uint8_t *dst;
529
530         dlen = 0;
531         slen = 0;
532         tlen = 0;
533
534         dst = NULL;
535         src = NULL;
536
537         m = ms;
538         i = 0;
539         while (ms != NULL && i != nb_seg) {
540
541                 if (slen == 0) {
542                         slen = rte_pktmbuf_data_len(ms);
543                         src = rte_pktmbuf_mtod(ms, const uint8_t *);
544                 }
545
546                 if (dlen == 0) {
547                         dlen = RTE_MIN(seglen[i], slen);
548                         md[i]->data_len = dlen;
549                         md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
550                         dst = rte_pktmbuf_mtod(md[i], uint8_t *);
551                 }
552
553                 len = RTE_MIN(slen, dlen);
554                 memcpy(dst, src, len);
555                 tlen += len;
556                 slen -= len;
557                 dlen -= len;
558                 src += len;
559                 dst += len;
560
561                 if (slen == 0)
562                         ms = ms->next;
563                 if (dlen == 0)
564                         i++;
565         }
566
567         if (ms != NULL)
568                 return -ENOBUFS;
569         else if (tlen != m->pkt_len)
570                 return -EINVAL;
571
572         md[0]->nb_segs = nb_seg;
573         md[0]->pkt_len = tlen;
574         md[0]->vlan_tci = m->vlan_tci;
575         md[0]->vlan_tci_outer = m->vlan_tci_outer;
576         md[0]->ol_flags = m->ol_flags;
577         md[0]->tx_offload = m->tx_offload;
578
579         return nb_seg;
580 }
581
582 /*
583  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
584  * Copy packet contents and offload information into the new segmented mbuf.
585  */
586 static struct rte_mbuf *
587 pkt_copy_split(const struct rte_mbuf *pkt)
588 {
589         int32_t n, rc;
590         uint32_t i, len, nb_seg;
591         struct rte_mempool *mp;
592         uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
593         struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
594
595         mp = current_fwd_lcore()->mbp;
596
597         if (tx_pkt_split == TX_PKT_SPLIT_RND)
598                 nb_seg = random() % tx_pkt_nb_segs + 1;
599         else
600                 nb_seg = tx_pkt_nb_segs;
601
602         memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
603
604         /* calculate number of segments to use and their length. */
605         len = 0;
606         for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
607                 len += seglen[i];
608                 md[i] = NULL;
609         }
610
611         n = pkt->pkt_len - len;
612
613         /* update size of the last segment to fit rest of the packet */
614         if (n >= 0) {
615                 seglen[i - 1] += n;
616                 len += n;
617         }
618
619         nb_seg = i;
620         while (i != 0) {
621                 p = rte_pktmbuf_alloc(mp);
622                 if (p == NULL) {
623                         TESTPMD_LOG(ERR,
624                                 "failed to allocate %u-th of %u mbuf "
625                                 "from mempool: %s\n",
626                                 nb_seg - i, nb_seg, mp->name);
627                         break;
628                 }
629
630                 md[--i] = p;
631                 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
632                         TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
633                                 "expected seglen: %u, "
634                                 "actual mbuf tailroom: %u\n",
635                                 mp->name, i, seglen[i],
636                                 rte_pktmbuf_tailroom(md[i]));
637                         break;
638                 }
639         }
640
641         /* all mbufs successfully allocated, do copy */
642         if (i == 0) {
643                 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
644                 if (rc < 0)
645                         TESTPMD_LOG(ERR,
646                                 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
647                                 "into %u segments failed with error code: %d\n",
648                                 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
649
650                 /* figure out how many mbufs to free. */
651                 i = RTE_MAX(rc, 0);
652         }
653
654         /* free unused mbufs */
655         for (; i != nb_seg; i++) {
656                 rte_pktmbuf_free_seg(md[i]);
657                 md[i] = NULL;
658         }
659
660         return md[0];
661 }
662
663 /*
664  * Receive a burst of packets, and for each packet:
665  *  - parse packet, and try to recognize a supported packet type (1)
666  *  - if it's not a supported packet type, don't touch the packet, else:
667  *  - reprocess the checksum of all supported layers. This is done in SW
668  *    or HW, depending on testpmd command line configuration
669  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
670  *    segmentation offload (this implies HW TCP checksum)
671  * Then transmit packets on the output port.
672  *
673  * (1) Supported packets are:
674  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
675  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
676  *           UDP|TCP|SCTP
677  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
678  *           UDP|TCP|SCTP
679  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
680  *           UDP|TCP|SCTP
681  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
682  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
683  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
684  *
685  * The testpmd command line for this forward engine sets the flags
686  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
687  * wether a checksum must be calculated in software or in hardware. The
688  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
689  * OUTER_IP is only useful for tunnel packets.
690  */
691 static void
692 pkt_burst_checksum_forward(struct fwd_stream *fs)
693 {
694         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
695         struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
696         struct rte_gso_ctx *gso_ctx;
697         struct rte_mbuf **tx_pkts_burst;
698         struct rte_port *txp;
699         struct rte_mbuf *m, *p;
700         struct rte_ether_hdr *eth_hdr;
701         void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
702         void **gro_ctx;
703         uint16_t gro_pkts_num;
704         uint8_t gro_enable;
705         uint16_t nb_rx;
706         uint16_t nb_tx;
707         uint16_t nb_prep;
708         uint16_t i;
709         uint64_t rx_ol_flags, tx_ol_flags;
710         uint64_t tx_offloads;
711         uint32_t retry;
712         uint32_t rx_bad_ip_csum;
713         uint32_t rx_bad_l4_csum;
714         uint32_t rx_bad_outer_l4_csum;
715         struct testpmd_offload_info info;
716         uint16_t nb_segments = 0;
717         int ret;
718
719 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
720         uint64_t start_tsc;
721         uint64_t end_tsc;
722         uint64_t core_cycles;
723 #endif
724
725 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
726         start_tsc = rte_rdtsc();
727 #endif
728
729         /* receive a burst of packet */
730         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
731                                  nb_pkt_per_burst);
732         if (unlikely(nb_rx == 0))
733                 return;
734 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
735         fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
736 #endif
737         fs->rx_packets += nb_rx;
738         rx_bad_ip_csum = 0;
739         rx_bad_l4_csum = 0;
740         rx_bad_outer_l4_csum = 0;
741         gro_enable = gro_ports[fs->rx_port].enable;
742
743         txp = &ports[fs->tx_port];
744         tx_offloads = txp->dev_conf.txmode.offloads;
745         memset(&info, 0, sizeof(info));
746         info.tso_segsz = txp->tso_segsz;
747         info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
748         if (gso_ports[fs->tx_port].enable)
749                 info.gso_enable = 1;
750
751         for (i = 0; i < nb_rx; i++) {
752                 if (likely(i < nb_rx - 1))
753                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
754                                                        void *));
755
756                 m = pkts_burst[i];
757                 info.is_tunnel = 0;
758                 info.pkt_len = rte_pktmbuf_pkt_len(m);
759                 tx_ol_flags = m->ol_flags &
760                               (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
761                 rx_ol_flags = m->ol_flags;
762
763                 /* Update the L3/L4 checksum error packet statistics */
764                 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
765                         rx_bad_ip_csum += 1;
766                 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
767                         rx_bad_l4_csum += 1;
768                 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
769                         rx_bad_outer_l4_csum += 1;
770
771                 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
772                  * and inner headers */
773
774                 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
775                 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
776                                 &eth_hdr->d_addr);
777                 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
778                                 &eth_hdr->s_addr);
779                 parse_ethernet(eth_hdr, &info);
780                 l3_hdr = (char *)eth_hdr + info.l2_len;
781
782                 /* check if it's a supported tunnel */
783                 if (txp->parse_tunnel) {
784                         if (info.l4_proto == IPPROTO_UDP) {
785                                 struct udp_hdr *udp_hdr;
786
787                                 udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
788                                         info.l3_len);
789                                 parse_vxlan_gpe(udp_hdr, &info);
790                                 if (info.is_tunnel) {
791                                         tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE;
792                                 } else {
793                                         parse_vxlan(udp_hdr, &info,
794                                                     m->packet_type);
795                                         if (info.is_tunnel)
796                                                 tx_ol_flags |=
797                                                         PKT_TX_TUNNEL_VXLAN;
798                                 }
799                         } else if (info.l4_proto == IPPROTO_GRE) {
800                                 struct simple_gre_hdr *gre_hdr;
801
802                                 gre_hdr = (struct simple_gre_hdr *)
803                                         ((char *)l3_hdr + info.l3_len);
804                                 parse_gre(gre_hdr, &info);
805                                 if (info.is_tunnel)
806                                         tx_ol_flags |= PKT_TX_TUNNEL_GRE;
807                         } else if (info.l4_proto == IPPROTO_IPIP) {
808                                 void *encap_ip_hdr;
809
810                                 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
811                                 parse_encap_ip(encap_ip_hdr, &info);
812                                 if (info.is_tunnel)
813                                         tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
814                         }
815                 }
816
817                 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
818                 if (info.is_tunnel) {
819                         outer_l3_hdr = l3_hdr;
820                         l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
821                 }
822
823                 /* step 2: depending on user command line configuration,
824                  * recompute checksum either in software or flag the
825                  * mbuf to offload the calculation to the NIC. If TSO
826                  * is configured, prepare the mbuf for TCP segmentation. */
827
828                 /* process checksums of inner headers first */
829                 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
830                         tx_offloads);
831
832                 /* Then process outer headers if any. Note that the software
833                  * checksum will be wrong if one of the inner checksums is
834                  * processed in hardware. */
835                 if (info.is_tunnel == 1) {
836                         tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
837                                         tx_offloads,
838                                         !!(tx_ol_flags & PKT_TX_TCP_SEG));
839                 }
840
841                 /* step 3: fill the mbuf meta data (flags and header lengths) */
842
843                 m->tx_offload = 0;
844                 if (info.is_tunnel == 1) {
845                         if (info.tunnel_tso_segsz ||
846                             (tx_offloads &
847                              DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
848                             (tx_offloads &
849                              DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
850                             (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
851                                 m->outer_l2_len = info.outer_l2_len;
852                                 m->outer_l3_len = info.outer_l3_len;
853                                 m->l2_len = info.l2_len;
854                                 m->l3_len = info.l3_len;
855                                 m->l4_len = info.l4_len;
856                                 m->tso_segsz = info.tunnel_tso_segsz;
857                         }
858                         else {
859                                 /* if there is a outer UDP cksum
860                                    processed in sw and the inner in hw,
861                                    the outer checksum will be wrong as
862                                    the payload will be modified by the
863                                    hardware */
864                                 m->l2_len = info.outer_l2_len +
865                                         info.outer_l3_len + info.l2_len;
866                                 m->l3_len = info.l3_len;
867                                 m->l4_len = info.l4_len;
868                         }
869                 } else {
870                         /* this is only useful if an offload flag is
871                          * set, but it does not hurt to fill it in any
872                          * case */
873                         m->l2_len = info.l2_len;
874                         m->l3_len = info.l3_len;
875                         m->l4_len = info.l4_len;
876                         m->tso_segsz = info.tso_segsz;
877                 }
878                 m->ol_flags = tx_ol_flags;
879
880                 /* Do split & copy for the packet. */
881                 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
882                         p = pkt_copy_split(m);
883                         if (p != NULL) {
884                                 rte_pktmbuf_free(m);
885                                 m = p;
886                                 pkts_burst[i] = m;
887                         }
888                 }
889
890                 /* if verbose mode is enabled, dump debug info */
891                 if (verbose_level > 0) {
892                         char buf[256];
893
894                         printf("-----------------\n");
895                         printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
896                                 fs->rx_port, m, m->pkt_len, m->nb_segs);
897                         /* dump rx parsed packet info */
898                         rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
899                         printf("rx: l2_len=%d ethertype=%x l3_len=%d "
900                                 "l4_proto=%d l4_len=%d flags=%s\n",
901                                 info.l2_len, rte_be_to_cpu_16(info.ethertype),
902                                 info.l3_len, info.l4_proto, info.l4_len, buf);
903                         if (rx_ol_flags & PKT_RX_LRO)
904                                 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
905                         if (info.is_tunnel == 1)
906                                 printf("rx: outer_l2_len=%d outer_ethertype=%x "
907                                         "outer_l3_len=%d\n", info.outer_l2_len,
908                                         rte_be_to_cpu_16(info.outer_ethertype),
909                                         info.outer_l3_len);
910                         /* dump tx packet info */
911                         if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
912                                             DEV_TX_OFFLOAD_UDP_CKSUM |
913                                             DEV_TX_OFFLOAD_TCP_CKSUM |
914                                             DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
915                                 info.tso_segsz != 0)
916                                 printf("tx: m->l2_len=%d m->l3_len=%d "
917                                         "m->l4_len=%d\n",
918                                         m->l2_len, m->l3_len, m->l4_len);
919                         if (info.is_tunnel == 1) {
920                                 if ((tx_offloads &
921                                     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
922                                     (tx_offloads &
923                                     DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
924                                     (tx_ol_flags & PKT_TX_OUTER_IPV6))
925                                         printf("tx: m->outer_l2_len=%d "
926                                                 "m->outer_l3_len=%d\n",
927                                                 m->outer_l2_len,
928                                                 m->outer_l3_len);
929                                 if (info.tunnel_tso_segsz != 0 &&
930                                                 (m->ol_flags & PKT_TX_TCP_SEG))
931                                         printf("tx: m->tso_segsz=%d\n",
932                                                 m->tso_segsz);
933                         } else if (info.tso_segsz != 0 &&
934                                         (m->ol_flags & PKT_TX_TCP_SEG))
935                                 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
936                         rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
937                         printf("tx: flags=%s", buf);
938                         printf("\n");
939                 }
940         }
941
942         if (unlikely(gro_enable)) {
943                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
944                         nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
945                                         &(gro_ports[fs->rx_port].param));
946                 } else {
947                         gro_ctx = current_fwd_lcore()->gro_ctx;
948                         nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
949
950                         if (++fs->gro_times >= gro_flush_cycles) {
951                                 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
952                                 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
953                                         gro_pkts_num = MAX_PKT_BURST - nb_rx;
954
955                                 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
956                                                 RTE_GRO_TCP_IPV4,
957                                                 &pkts_burst[nb_rx],
958                                                 gro_pkts_num);
959                                 fs->gro_times = 0;
960                         }
961                 }
962         }
963
964         if (gso_ports[fs->tx_port].enable == 0)
965                 tx_pkts_burst = pkts_burst;
966         else {
967                 gso_ctx = &(current_fwd_lcore()->gso_ctx);
968                 gso_ctx->gso_size = gso_max_segment_size;
969                 for (i = 0; i < nb_rx; i++) {
970                         ret = rte_gso_segment(pkts_burst[i], gso_ctx,
971                                         &gso_segments[nb_segments],
972                                         GSO_MAX_PKT_BURST - nb_segments);
973                         if (ret >= 0)
974                                 nb_segments += ret;
975                         else {
976                                 TESTPMD_LOG(DEBUG, "Unable to segment packet");
977                                 rte_pktmbuf_free(pkts_burst[i]);
978                         }
979                 }
980
981                 tx_pkts_burst = gso_segments;
982                 nb_rx = nb_segments;
983         }
984
985         nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
986                         tx_pkts_burst, nb_rx);
987         if (nb_prep != nb_rx)
988                 printf("Preparing packet burst to transmit failed: %s\n",
989                                 rte_strerror(rte_errno));
990
991         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
992                         nb_prep);
993
994         /*
995          * Retry if necessary
996          */
997         if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
998                 retry = 0;
999                 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1000                         rte_delay_us(burst_tx_delay_time);
1001                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1002                                         &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1003                 }
1004         }
1005         fs->tx_packets += nb_tx;
1006         fs->rx_bad_ip_csum += rx_bad_ip_csum;
1007         fs->rx_bad_l4_csum += rx_bad_l4_csum;
1008         fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1009
1010 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1011         fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
1012 #endif
1013         if (unlikely(nb_tx < nb_rx)) {
1014                 fs->fwd_dropped += (nb_rx - nb_tx);
1015                 do {
1016                         rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1017                 } while (++nb_tx < nb_rx);
1018         }
1019
1020 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1021         end_tsc = rte_rdtsc();
1022         core_cycles = (end_tsc - start_tsc);
1023         fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1024 #endif
1025 }
1026
1027 struct fwd_engine csum_fwd_engine = {
1028         .fwd_mode_name  = "csum",
1029         .port_fwd_begin = NULL,
1030         .port_fwd_end   = NULL,
1031         .packet_fwd     = pkt_burst_checksum_forward,
1032 };