4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5 * Copyright 2014 6WIND S.A.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 #include <sys/queue.h>
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
48 #include <rte_debug.h>
49 #include <rte_cycles.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_launch.h>
55 #include <rte_per_lcore.h>
56 #include <rte_lcore.h>
57 #include <rte_atomic.h>
58 #include <rte_branch_prediction.h>
59 #include <rte_memory.h>
60 #include <rte_mempool.h>
62 #include <rte_memcpy.h>
63 #include <rte_interrupts.h>
65 #include <rte_ether.h>
66 #include <rte_ethdev.h>
71 #include <rte_prefetch.h>
72 #include <rte_string_fns.h>
76 #define IP_DEFTTL 64 /* from RFC 1340. */
77 #define IP_VERSION 0x40
78 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
79 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
81 #define GRE_KEY_PRESENT 0x2000
83 #define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT
85 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
86 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
87 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
92 /* structure that caches offload info for the current packet */
93 struct testpmd_offload_info {
100 uint16_t outer_ethertype;
101 uint16_t outer_l2_len;
102 uint16_t outer_l3_len;
103 uint8_t outer_l4_proto;
105 uint16_t tunnel_tso_segsz;
109 /* simplified GRE header */
110 struct simple_gre_hdr {
113 } __attribute__((__packed__));
116 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
118 if (ethertype == _htons(ETHER_TYPE_IPv4))
119 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
120 else /* assume ethertype == ETHER_TYPE_IPv6 */
121 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
124 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
126 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
128 struct tcp_hdr *tcp_hdr;
130 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
131 info->l4_proto = ipv4_hdr->next_proto_id;
133 /* only fill l4_len for TCP, it's useful for TSO */
134 if (info->l4_proto == IPPROTO_TCP) {
135 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
136 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
141 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
143 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
145 struct tcp_hdr *tcp_hdr;
147 info->l3_len = sizeof(struct ipv6_hdr);
148 info->l4_proto = ipv6_hdr->proto;
150 /* only fill l4_len for TCP, it's useful for TSO */
151 if (info->l4_proto == IPPROTO_TCP) {
152 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
153 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
159 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
160 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
161 * header. The l4_len argument is only set in case of TCP (useful for TSO).
164 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
166 struct ipv4_hdr *ipv4_hdr;
167 struct ipv6_hdr *ipv6_hdr;
169 info->l2_len = sizeof(struct ether_hdr);
170 info->ethertype = eth_hdr->ether_type;
172 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
173 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
175 info->l2_len += sizeof(struct vlan_hdr);
176 info->ethertype = vlan_hdr->eth_proto;
179 switch (info->ethertype) {
180 case _htons(ETHER_TYPE_IPv4):
181 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
182 parse_ipv4(ipv4_hdr, info);
184 case _htons(ETHER_TYPE_IPv6):
185 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
186 parse_ipv6(ipv6_hdr, info);
196 /* Parse a vxlan header */
198 parse_vxlan(struct udp_hdr *udp_hdr,
199 struct testpmd_offload_info *info,
202 struct ether_hdr *eth_hdr;
204 /* check udp destination port, 4789 is the default vxlan port
205 * (rfc7348) or that the rx offload flag is set (i40e only
207 if (udp_hdr->dst_port != _htons(4789) &&
208 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
212 info->outer_ethertype = info->ethertype;
213 info->outer_l2_len = info->l2_len;
214 info->outer_l3_len = info->l3_len;
215 info->outer_l4_proto = info->l4_proto;
217 eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
218 sizeof(struct udp_hdr) +
219 sizeof(struct vxlan_hdr));
221 parse_ethernet(eth_hdr, info);
222 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
225 /* Parse a gre header */
227 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
229 struct ether_hdr *eth_hdr;
230 struct ipv4_hdr *ipv4_hdr;
231 struct ipv6_hdr *ipv6_hdr;
234 /* check which fields are supported */
235 if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0)
238 gre_len += sizeof(struct simple_gre_hdr);
240 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
241 gre_len += GRE_KEY_LEN;
243 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
245 info->outer_ethertype = info->ethertype;
246 info->outer_l2_len = info->l2_len;
247 info->outer_l3_len = info->l3_len;
248 info->outer_l4_proto = info->l4_proto;
250 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
252 parse_ipv4(ipv4_hdr, info);
253 info->ethertype = _htons(ETHER_TYPE_IPv4);
256 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
258 info->outer_ethertype = info->ethertype;
259 info->outer_l2_len = info->l2_len;
260 info->outer_l3_len = info->l3_len;
261 info->outer_l4_proto = info->l4_proto;
263 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
265 info->ethertype = _htons(ETHER_TYPE_IPv6);
266 parse_ipv6(ipv6_hdr, info);
269 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
271 info->outer_ethertype = info->ethertype;
272 info->outer_l2_len = info->l2_len;
273 info->outer_l3_len = info->l3_len;
274 info->outer_l4_proto = info->l4_proto;
276 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);
278 parse_ethernet(eth_hdr, info);
282 info->l2_len += gre_len;
286 /* Parse an encapsulated ip or ipv6 header */
288 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
290 struct ipv4_hdr *ipv4_hdr = encap_ip;
291 struct ipv6_hdr *ipv6_hdr = encap_ip;
294 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
296 if (ip_version != 4 && ip_version != 6)
300 info->outer_ethertype = info->ethertype;
301 info->outer_l2_len = info->l2_len;
302 info->outer_l3_len = info->l3_len;
304 if (ip_version == 4) {
305 parse_ipv4(ipv4_hdr, info);
306 info->ethertype = _htons(ETHER_TYPE_IPv4);
308 parse_ipv6(ipv6_hdr, info);
309 info->ethertype = _htons(ETHER_TYPE_IPv6);
314 /* if possible, calculate the checksum of a packet in hw or sw,
315 * depending on the testpmd command line configuration */
317 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
318 uint16_t testpmd_ol_flags)
320 struct ipv4_hdr *ipv4_hdr = l3_hdr;
321 struct udp_hdr *udp_hdr;
322 struct tcp_hdr *tcp_hdr;
323 struct sctp_hdr *sctp_hdr;
324 uint64_t ol_flags = 0;
325 uint32_t max_pkt_len, tso_segsz = 0;
327 /* ensure packet is large enough to require tso */
328 if (!info->is_tunnel) {
329 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
331 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
332 tso_segsz = info->tso_segsz;
334 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
335 info->l2_len + info->l3_len + info->l4_len +
336 info->tunnel_tso_segsz;
337 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
338 tso_segsz = info->tunnel_tso_segsz;
341 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
343 ipv4_hdr->hdr_checksum = 0;
345 ol_flags |= PKT_TX_IPV4;
346 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
347 ol_flags |= PKT_TX_IP_CKSUM;
349 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
350 ol_flags |= PKT_TX_IP_CKSUM;
352 ipv4_hdr->hdr_checksum =
353 rte_ipv4_cksum(ipv4_hdr);
355 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
356 ol_flags |= PKT_TX_IPV6;
358 return 0; /* packet type not supported, nothing to do */
360 if (info->l4_proto == IPPROTO_UDP) {
361 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
362 /* do not recalculate udp cksum if it was 0 */
363 if (udp_hdr->dgram_cksum != 0) {
364 udp_hdr->dgram_cksum = 0;
365 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
366 ol_flags |= PKT_TX_UDP_CKSUM;
368 udp_hdr->dgram_cksum =
369 get_udptcp_checksum(l3_hdr, udp_hdr,
373 } else if (info->l4_proto == IPPROTO_TCP) {
374 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
377 ol_flags |= PKT_TX_TCP_SEG;
378 else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
379 ol_flags |= PKT_TX_TCP_CKSUM;
382 get_udptcp_checksum(l3_hdr, tcp_hdr,
385 } else if (info->l4_proto == IPPROTO_SCTP) {
386 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
388 /* sctp payload must be a multiple of 4 to be
390 if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) &&
391 ((ipv4_hdr->total_length & 0x3) == 0)) {
392 ol_flags |= PKT_TX_SCTP_CKSUM;
394 /* XXX implement CRC32c, example available in
402 /* Calculate the checksum of outer header */
404 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
405 uint16_t testpmd_ol_flags, int tso_enabled)
407 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
408 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
409 struct udp_hdr *udp_hdr;
410 uint64_t ol_flags = 0;
412 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
413 ipv4_hdr->hdr_checksum = 0;
414 ol_flags |= PKT_TX_OUTER_IPV4;
416 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
417 ol_flags |= PKT_TX_OUTER_IP_CKSUM;
419 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
421 ol_flags |= PKT_TX_OUTER_IPV6;
423 if (info->outer_l4_proto != IPPROTO_UDP)
426 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
428 /* outer UDP checksum is done in software as we have no hardware
429 * supporting it today, and no API for it. In the other side, for
430 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
433 * If a packet will be TSOed into small packets by NIC, we cannot
434 * set/calculate a non-zero checksum, because it will be a wrong
435 * value after the packet be split into several small packets.
438 udp_hdr->dgram_cksum = 0;
440 /* do not recalculate udp cksum if it was 0 */
441 if (udp_hdr->dgram_cksum != 0) {
442 udp_hdr->dgram_cksum = 0;
443 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
444 udp_hdr->dgram_cksum =
445 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
447 udp_hdr->dgram_cksum =
448 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
456 * Performs actual copying.
457 * Returns number of segments in the destination mbuf on success,
458 * or negative error code on failure.
461 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
462 uint16_t seglen[], uint8_t nb_seg)
464 uint32_t dlen, slen, tlen;
466 const struct rte_mbuf *m;
479 while (ms != NULL && i != nb_seg) {
482 slen = rte_pktmbuf_data_len(ms);
483 src = rte_pktmbuf_mtod(ms, const uint8_t *);
487 dlen = RTE_MIN(seglen[i], slen);
488 md[i]->data_len = dlen;
489 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
490 dst = rte_pktmbuf_mtod(md[i], uint8_t *);
493 len = RTE_MIN(slen, dlen);
494 memcpy(dst, src, len);
509 else if (tlen != m->pkt_len)
512 md[0]->nb_segs = nb_seg;
513 md[0]->pkt_len = tlen;
514 md[0]->vlan_tci = m->vlan_tci;
515 md[0]->vlan_tci_outer = m->vlan_tci_outer;
516 md[0]->ol_flags = m->ol_flags;
517 md[0]->tx_offload = m->tx_offload;
523 * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
524 * Copy packet contents and offload information into then new segmented mbuf.
526 static struct rte_mbuf *
527 pkt_copy_split(const struct rte_mbuf *pkt)
530 uint32_t i, len, nb_seg;
531 struct rte_mempool *mp;
532 uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
533 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
535 mp = current_fwd_lcore()->mbp;
537 if (tx_pkt_split == TX_PKT_SPLIT_RND)
538 nb_seg = random() % tx_pkt_nb_segs + 1;
540 nb_seg = tx_pkt_nb_segs;
542 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
544 /* calculate number of segments to use and their length. */
546 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
551 n = pkt->pkt_len - len;
553 /* update size of the last segment to fit rest of the packet */
561 p = rte_pktmbuf_alloc(mp);
564 "failed to allocate %u-th of %u mbuf "
565 "from mempool: %s\n",
566 nb_seg - i, nb_seg, mp->name);
571 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
572 RTE_LOG(ERR, USER1, "mempool %s, %u-th segment: "
573 "expected seglen: %u, "
574 "actual mbuf tailroom: %u\n",
575 mp->name, i, seglen[i],
576 rte_pktmbuf_tailroom(md[i]));
581 /* all mbufs successfully allocated, do copy */
583 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
586 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
587 "into %u segments failed with error code: %d\n",
588 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
590 /* figure out how many mbufs to free. */
594 /* free unused mbufs */
595 for (; i != nb_seg; i++) {
596 rte_pktmbuf_free_seg(md[i]);
604 * Receive a burst of packets, and for each packet:
605 * - parse packet, and try to recognize a supported packet type (1)
606 * - if it's not a supported packet type, don't touch the packet, else:
607 * - reprocess the checksum of all supported layers. This is done in SW
608 * or HW, depending on testpmd command line configuration
609 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
610 * segmentation offload (this implies HW TCP checksum)
611 * Then transmit packets on the output port.
613 * (1) Supported packets are:
614 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
615 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
617 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
618 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
619 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
621 * The testpmd command line for this forward engine sets the flags
622 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
623 * wether a checksum must be calculated in software or in hardware. The
624 * IP, UDP, TCP and SCTP flags always concern the inner layer. The
625 * OUTER_IP is only useful for tunnel packets.
628 pkt_burst_checksum_forward(struct fwd_stream *fs)
630 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
631 struct rte_port *txp;
632 struct rte_mbuf *m, *p;
633 struct ether_hdr *eth_hdr;
634 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
639 uint64_t rx_ol_flags, tx_ol_flags;
640 uint16_t testpmd_ol_flags;
642 uint32_t rx_bad_ip_csum;
643 uint32_t rx_bad_l4_csum;
644 struct testpmd_offload_info info;
646 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
649 uint64_t core_cycles;
652 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
653 start_tsc = rte_rdtsc();
656 /* receive a burst of packet */
657 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
659 if (unlikely(nb_rx == 0))
662 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
663 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
665 fs->rx_packets += nb_rx;
669 txp = &ports[fs->tx_port];
670 testpmd_ol_flags = txp->tx_ol_flags;
671 memset(&info, 0, sizeof(info));
672 info.tso_segsz = txp->tso_segsz;
673 info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
675 for (i = 0; i < nb_rx; i++) {
676 if (likely(i < nb_rx - 1))
677 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
682 info.pkt_len = rte_pktmbuf_pkt_len(m);
684 rx_ol_flags = m->ol_flags;
686 /* Update the L3/L4 checksum error packet statistics */
687 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
689 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
692 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
693 * and inner headers */
695 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
696 ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
698 ether_addr_copy(&ports[fs->tx_port].eth_addr,
700 parse_ethernet(eth_hdr, &info);
701 l3_hdr = (char *)eth_hdr + info.l2_len;
703 /* check if it's a supported tunnel */
704 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_PARSE_TUNNEL) {
705 if (info.l4_proto == IPPROTO_UDP) {
706 struct udp_hdr *udp_hdr;
708 udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
710 parse_vxlan(udp_hdr, &info, m->packet_type);
712 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN;
713 } else if (info.l4_proto == IPPROTO_GRE) {
714 struct simple_gre_hdr *gre_hdr;
716 gre_hdr = (struct simple_gre_hdr *)
717 ((char *)l3_hdr + info.l3_len);
718 parse_gre(gre_hdr, &info);
720 tx_ol_flags |= PKT_TX_TUNNEL_GRE;
721 } else if (info.l4_proto == IPPROTO_IPIP) {
724 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
725 parse_encap_ip(encap_ip_hdr, &info);
727 tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
731 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
732 if (info.is_tunnel) {
733 outer_l3_hdr = l3_hdr;
734 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
737 /* step 2: depending on user command line configuration,
738 * recompute checksum either in software or flag the
739 * mbuf to offload the calculation to the NIC. If TSO
740 * is configured, prepare the mbuf for TCP segmentation. */
742 /* process checksums of inner headers first */
743 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
746 /* Then process outer headers if any. Note that the software
747 * checksum will be wrong if one of the inner checksums is
748 * processed in hardware. */
749 if (info.is_tunnel == 1) {
750 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
752 !!(tx_ol_flags & PKT_TX_TCP_SEG));
755 /* step 3: fill the mbuf meta data (flags and header lengths) */
757 if (info.is_tunnel == 1) {
758 if (info.tunnel_tso_segsz ||
760 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) ||
761 (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
762 m->outer_l2_len = info.outer_l2_len;
763 m->outer_l3_len = info.outer_l3_len;
764 m->l2_len = info.l2_len;
765 m->l3_len = info.l3_len;
766 m->l4_len = info.l4_len;
767 m->tso_segsz = info.tunnel_tso_segsz;
770 /* if there is a outer UDP cksum
771 processed in sw and the inner in hw,
772 the outer checksum will be wrong as
773 the payload will be modified by the
775 m->l2_len = info.outer_l2_len +
776 info.outer_l3_len + info.l2_len;
777 m->l3_len = info.l3_len;
778 m->l4_len = info.l4_len;
781 /* this is only useful if an offload flag is
782 * set, but it does not hurt to fill it in any
784 m->l2_len = info.l2_len;
785 m->l3_len = info.l3_len;
786 m->l4_len = info.l4_len;
787 m->tso_segsz = info.tso_segsz;
789 m->ol_flags = tx_ol_flags;
791 /* Do split & copy for the packet. */
792 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
793 p = pkt_copy_split(m);
801 /* if verbose mode is enabled, dump debug info */
802 if (verbose_level > 0) {
805 printf("-----------------\n");
806 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
807 fs->rx_port, m, m->pkt_len, m->nb_segs);
808 /* dump rx parsed packet info */
809 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
810 printf("rx: l2_len=%d ethertype=%x l3_len=%d "
811 "l4_proto=%d l4_len=%d flags=%s\n",
812 info.l2_len, rte_be_to_cpu_16(info.ethertype),
813 info.l3_len, info.l4_proto, info.l4_len, buf);
814 if (rx_ol_flags & PKT_RX_LRO)
815 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
816 if (info.is_tunnel == 1)
817 printf("rx: outer_l2_len=%d outer_ethertype=%x "
818 "outer_l3_len=%d\n", info.outer_l2_len,
819 rte_be_to_cpu_16(info.outer_ethertype),
821 /* dump tx packet info */
822 if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM |
823 TESTPMD_TX_OFFLOAD_UDP_CKSUM |
824 TESTPMD_TX_OFFLOAD_TCP_CKSUM |
825 TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) ||
827 printf("tx: m->l2_len=%d m->l3_len=%d "
829 m->l2_len, m->l3_len, m->l4_len);
830 if (info.is_tunnel == 1) {
831 if ((testpmd_ol_flags &
832 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) ||
833 (tx_ol_flags & PKT_TX_OUTER_IPV6))
834 printf("tx: m->outer_l2_len=%d "
835 "m->outer_l3_len=%d\n",
838 if (info.tunnel_tso_segsz != 0 &&
839 (m->ol_flags & PKT_TX_TCP_SEG))
840 printf("tx: m->tso_segsz=%d\n",
842 } else if (info.tso_segsz != 0 &&
843 (m->ol_flags & PKT_TX_TCP_SEG))
844 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
845 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
846 printf("tx: flags=%s", buf);
851 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
853 if (nb_prep != nb_rx)
854 printf("Preparing packet burst to transmit failed: %s\n",
855 rte_strerror(rte_errno));
857 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst,
863 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
865 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
866 rte_delay_us(burst_tx_delay_time);
867 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
868 &pkts_burst[nb_tx], nb_rx - nb_tx);
871 fs->tx_packets += nb_tx;
872 fs->rx_bad_ip_csum += rx_bad_ip_csum;
873 fs->rx_bad_l4_csum += rx_bad_l4_csum;
875 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
876 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
878 if (unlikely(nb_tx < nb_rx)) {
879 fs->fwd_dropped += (nb_rx - nb_tx);
881 rte_pktmbuf_free(pkts_burst[nb_tx]);
882 } while (++nb_tx < nb_rx);
884 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
885 end_tsc = rte_rdtsc();
886 core_cycles = (end_tsc - start_tsc);
887 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
891 struct fwd_engine csum_fwd_engine = {
892 .fwd_mode_name = "csum",
893 .port_fwd_begin = NULL,
894 .port_fwd_end = NULL,
895 .packet_fwd = pkt_burst_checksum_forward,