app/testpmd: fix L4 checksum in multi-segments
[dpdk.git] / app / test-pmd / csumonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_branch_prediction.h>
28 #include <rte_mempool.h>
29 #include <rte_mbuf.h>
30 #include <rte_interrupts.h>
31 #include <rte_pci.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_ip.h>
35 #include <rte_tcp.h>
36 #include <rte_udp.h>
37 #include <rte_vxlan.h>
38 #include <rte_sctp.h>
39 #include <rte_gtp.h>
40 #include <rte_prefetch.h>
41 #include <rte_string_fns.h>
42 #include <rte_flow.h>
43 #ifdef RTE_LIB_GRO
44 #include <rte_gro.h>
45 #endif
46 #ifdef RTE_LIB_GSO
47 #include <rte_gso.h>
48 #endif
49 #include <rte_geneve.h>
50
51 #include "testpmd.h"
52
53 #define IP_DEFTTL  64   /* from RFC 1340. */
54
55 #define GRE_CHECKSUM_PRESENT    0x8000
56 #define GRE_KEY_PRESENT         0x2000
57 #define GRE_SEQUENCE_PRESENT    0x1000
58 #define GRE_EXT_LEN             4
59 #define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
60                                  GRE_SEQUENCE_PRESENT)
61
62 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
63 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
64 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
65 #else
66 #define _htons(x) (x)
67 #endif
68
69 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT;
70 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT;
71
72 /* structure that caches offload info for the current packet */
73 struct testpmd_offload_info {
74         uint16_t ethertype;
75 #ifdef RTE_LIB_GSO
76         uint8_t gso_enable;
77 #endif
78         uint16_t l2_len;
79         uint16_t l3_len;
80         uint16_t l4_len;
81         uint8_t l4_proto;
82         uint8_t is_tunnel;
83         uint16_t outer_ethertype;
84         uint16_t outer_l2_len;
85         uint16_t outer_l3_len;
86         uint8_t outer_l4_proto;
87         uint16_t tso_segsz;
88         uint16_t tunnel_tso_segsz;
89         uint32_t pkt_len;
90 };
91
92 /* simplified GRE header */
93 struct simple_gre_hdr {
94         uint16_t flags;
95         uint16_t proto;
96 } __rte_packed;
97
98 static uint16_t
99 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off,
100                     uint16_t ethertype)
101 {
102         if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
103                 return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off);
104         else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
105                 return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off);
106 }
107
108 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
109 static void
110 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
111 {
112         struct rte_tcp_hdr *tcp_hdr;
113
114         info->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
115         info->l4_proto = ipv4_hdr->next_proto_id;
116
117         /* only fill l4_len for TCP, it's useful for TSO */
118         if (info->l4_proto == IPPROTO_TCP) {
119                 tcp_hdr = (struct rte_tcp_hdr *)
120                         ((char *)ipv4_hdr + info->l3_len);
121                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
122         } else if (info->l4_proto == IPPROTO_UDP)
123                 info->l4_len = sizeof(struct rte_udp_hdr);
124         else
125                 info->l4_len = 0;
126 }
127
128 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
129 static void
130 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
131 {
132         struct rte_tcp_hdr *tcp_hdr;
133
134         info->l3_len = sizeof(struct rte_ipv6_hdr);
135         info->l4_proto = ipv6_hdr->proto;
136
137         /* only fill l4_len for TCP, it's useful for TSO */
138         if (info->l4_proto == IPPROTO_TCP) {
139                 tcp_hdr = (struct rte_tcp_hdr *)
140                         ((char *)ipv6_hdr + info->l3_len);
141                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
142         } else if (info->l4_proto == IPPROTO_UDP)
143                 info->l4_len = sizeof(struct rte_udp_hdr);
144         else
145                 info->l4_len = 0;
146 }
147
148 /*
149  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
150  * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN
151  * headers. The l4_len argument is only set in case of TCP (useful for TSO).
152  */
153 static void
154 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
155 {
156         struct rte_ipv4_hdr *ipv4_hdr;
157         struct rte_ipv6_hdr *ipv6_hdr;
158         struct rte_vlan_hdr *vlan_hdr;
159
160         info->l2_len = sizeof(struct rte_ether_hdr);
161         info->ethertype = eth_hdr->ether_type;
162
163         while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) ||
164                info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) {
165                 vlan_hdr = (struct rte_vlan_hdr *)
166                         ((char *)eth_hdr + info->l2_len);
167                 info->l2_len  += sizeof(struct rte_vlan_hdr);
168                 info->ethertype = vlan_hdr->eth_proto;
169         }
170
171         switch (info->ethertype) {
172         case _htons(RTE_ETHER_TYPE_IPV4):
173                 ipv4_hdr = (struct rte_ipv4_hdr *)
174                         ((char *)eth_hdr + info->l2_len);
175                 parse_ipv4(ipv4_hdr, info);
176                 break;
177         case _htons(RTE_ETHER_TYPE_IPV6):
178                 ipv6_hdr = (struct rte_ipv6_hdr *)
179                         ((char *)eth_hdr + info->l2_len);
180                 parse_ipv6(ipv6_hdr, info);
181                 break;
182         default:
183                 info->l4_len = 0;
184                 info->l3_len = 0;
185                 info->l4_proto = 0;
186                 break;
187         }
188 }
189
190 /* Fill in outer layers length */
191 static void
192 update_tunnel_outer(struct testpmd_offload_info *info)
193 {
194         info->is_tunnel = 1;
195         info->outer_ethertype = info->ethertype;
196         info->outer_l2_len = info->l2_len;
197         info->outer_l3_len = info->l3_len;
198         info->outer_l4_proto = info->l4_proto;
199 }
200
201 /*
202  * Parse a GTP protocol header.
203  * No optional fields and next extension header type.
204  */
205 static void
206 parse_gtp(struct rte_udp_hdr *udp_hdr,
207           struct testpmd_offload_info *info)
208 {
209         struct rte_ipv4_hdr *ipv4_hdr;
210         struct rte_ipv6_hdr *ipv6_hdr;
211         struct rte_gtp_hdr *gtp_hdr;
212         uint8_t gtp_len = sizeof(*gtp_hdr);
213         uint8_t ip_ver;
214
215         /* Check udp destination port. */
216         if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
217             udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
218             udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
219                 return;
220
221         update_tunnel_outer(info);
222         info->l2_len = 0;
223
224         gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
225                   sizeof(struct rte_udp_hdr));
226
227         /*
228          * Check message type. If message type is 0xff, it is
229          * a GTP data packet. If not, it is a GTP control packet
230          */
231         if (gtp_hdr->msg_type == 0xff) {
232                 ip_ver = *(uint8_t *)((char *)udp_hdr +
233                          sizeof(struct rte_udp_hdr) +
234                          sizeof(struct rte_gtp_hdr));
235                 ip_ver = (ip_ver) & 0xf0;
236
237                 if (ip_ver == RTE_GTP_TYPE_IPV4) {
238                         ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
239                                    gtp_len);
240                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
241                         parse_ipv4(ipv4_hdr, info);
242                 } else if (ip_ver == RTE_GTP_TYPE_IPV6) {
243                         ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
244                                    gtp_len);
245                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
246                         parse_ipv6(ipv6_hdr, info);
247                 }
248         } else {
249                 info->ethertype = 0;
250                 info->l4_len = 0;
251                 info->l3_len = 0;
252                 info->l4_proto = 0;
253         }
254
255         info->l2_len += RTE_ETHER_GTP_HLEN;
256 }
257
258 /* Parse a vxlan header */
259 static void
260 parse_vxlan(struct rte_udp_hdr *udp_hdr,
261             struct testpmd_offload_info *info)
262 {
263         struct rte_ether_hdr *eth_hdr;
264
265         /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the
266          * default vxlan port (rfc7348) or that the rx offload flag is set
267          * (i40e only currently)
268          */
269         if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT))
270                 return;
271
272         update_tunnel_outer(info);
273
274         eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
275                 sizeof(struct rte_udp_hdr) +
276                 sizeof(struct rte_vxlan_hdr));
277
278         parse_ethernet(eth_hdr, info);
279         info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
280 }
281
282 /* Parse a vxlan-gpe header */
283 static void
284 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
285             struct testpmd_offload_info *info)
286 {
287         struct rte_ether_hdr *eth_hdr;
288         struct rte_ipv4_hdr *ipv4_hdr;
289         struct rte_ipv6_hdr *ipv6_hdr;
290         struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
291         uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
292
293         /* Check udp destination port. */
294         if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
295                 return;
296
297         vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
298                                 sizeof(struct rte_udp_hdr));
299
300         if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
301             RTE_VXLAN_GPE_TYPE_IPV4) {
302                 update_tunnel_outer(info);
303
304                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
305                            vxlan_gpe_len);
306
307                 parse_ipv4(ipv4_hdr, info);
308                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
309                 info->l2_len = 0;
310
311         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
312                 update_tunnel_outer(info);
313
314                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
315                            vxlan_gpe_len);
316
317                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
318                 parse_ipv6(ipv6_hdr, info);
319                 info->l2_len = 0;
320
321         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
322                 update_tunnel_outer(info);
323
324                 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
325                           vxlan_gpe_len);
326
327                 parse_ethernet(eth_hdr, info);
328         } else
329                 return;
330
331         info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
332 }
333
334 /* Parse a geneve header */
335 static void
336 parse_geneve(struct rte_udp_hdr *udp_hdr,
337             struct testpmd_offload_info *info)
338 {
339         struct rte_ether_hdr *eth_hdr;
340         struct rte_ipv4_hdr *ipv4_hdr;
341         struct rte_ipv6_hdr *ipv6_hdr;
342         struct rte_geneve_hdr *geneve_hdr;
343         uint16_t geneve_len;
344
345         /* Check udp destination port. */
346         if (udp_hdr->dst_port != _htons(geneve_udp_port))
347                 return;
348
349         geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr +
350                                 sizeof(struct rte_udp_hdr));
351         geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4;
352         if (!geneve_hdr->proto || geneve_hdr->proto ==
353             _htons(RTE_ETHER_TYPE_IPV4)) {
354                 update_tunnel_outer(info);
355                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr +
356                            geneve_len);
357                 parse_ipv4(ipv4_hdr, info);
358                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
359                 info->l2_len = 0;
360         } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
361                 update_tunnel_outer(info);
362                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr +
363                            geneve_len);
364                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
365                 parse_ipv6(ipv6_hdr, info);
366                 info->l2_len = 0;
367
368         } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) {
369                 update_tunnel_outer(info);
370                 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr +
371                           geneve_len);
372                 parse_ethernet(eth_hdr, info);
373         } else
374                 return;
375
376         info->l2_len +=
377                 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) +
378                 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4);
379 }
380
381 /* Parse a gre header */
382 static void
383 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
384 {
385         struct rte_ether_hdr *eth_hdr;
386         struct rte_ipv4_hdr *ipv4_hdr;
387         struct rte_ipv6_hdr *ipv6_hdr;
388         uint8_t gre_len = 0;
389
390         gre_len += sizeof(struct simple_gre_hdr);
391
392         if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
393                 gre_len += GRE_EXT_LEN;
394         if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
395                 gre_len += GRE_EXT_LEN;
396         if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
397                 gre_len += GRE_EXT_LEN;
398
399         if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
400                 update_tunnel_outer(info);
401
402                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
403
404                 parse_ipv4(ipv4_hdr, info);
405                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
406                 info->l2_len = 0;
407
408         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
409                 update_tunnel_outer(info);
410
411                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
412
413                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
414                 parse_ipv6(ipv6_hdr, info);
415                 info->l2_len = 0;
416
417         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
418                 update_tunnel_outer(info);
419
420                 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
421
422                 parse_ethernet(eth_hdr, info);
423         } else
424                 return;
425
426         info->l2_len += gre_len;
427 }
428
429
430 /* Parse an encapsulated ip or ipv6 header */
431 static void
432 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
433 {
434         struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
435         struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
436         uint8_t ip_version;
437
438         ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
439
440         if (ip_version != 4 && ip_version != 6)
441                 return;
442
443         info->is_tunnel = 1;
444         info->outer_ethertype = info->ethertype;
445         info->outer_l2_len = info->l2_len;
446         info->outer_l3_len = info->l3_len;
447
448         if (ip_version == 4) {
449                 parse_ipv4(ipv4_hdr, info);
450                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
451         } else {
452                 parse_ipv6(ipv6_hdr, info);
453                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
454         }
455         info->l2_len = 0;
456 }
457
458 /* if possible, calculate the checksum of a packet in hw or sw,
459  * depending on the testpmd command line configuration */
460 static uint64_t
461 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
462         uint64_t tx_offloads, struct rte_mbuf *m)
463 {
464         struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
465         struct rte_udp_hdr *udp_hdr;
466         struct rte_tcp_hdr *tcp_hdr;
467         struct rte_sctp_hdr *sctp_hdr;
468         uint64_t ol_flags = 0;
469         uint32_t max_pkt_len, tso_segsz = 0;
470         uint16_t l4_off;
471
472         /* ensure packet is large enough to require tso */
473         if (!info->is_tunnel) {
474                 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
475                         info->tso_segsz;
476                 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
477                         tso_segsz = info->tso_segsz;
478         } else {
479                 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
480                         info->l2_len + info->l3_len + info->l4_len +
481                         info->tunnel_tso_segsz;
482                 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
483                         tso_segsz = info->tunnel_tso_segsz;
484         }
485
486         if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
487                 ipv4_hdr = l3_hdr;
488
489                 ol_flags |= RTE_MBUF_F_TX_IPV4;
490                 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
491                         ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
492                 } else {
493                         if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) {
494                                 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
495                         } else {
496                                 ipv4_hdr->hdr_checksum = 0;
497                                 ipv4_hdr->hdr_checksum =
498                                         rte_ipv4_cksum(ipv4_hdr);
499                         }
500                 }
501         } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
502                 ol_flags |= RTE_MBUF_F_TX_IPV6;
503         else
504                 return 0; /* packet type not supported, nothing to do */
505
506         if (info->l4_proto == IPPROTO_UDP) {
507                 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
508                 /* do not recalculate udp cksum if it was 0 */
509                 if (udp_hdr->dgram_cksum != 0) {
510                         if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) {
511                                 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM;
512                         } else {
513                                 if (info->is_tunnel)
514                                         l4_off = info->outer_l2_len +
515                                                  info->outer_l3_len +
516                                                  info->l2_len + info->l3_len;
517                                 else
518                                         l4_off = info->l2_len + info->l3_len;
519                                 udp_hdr->dgram_cksum = 0;
520                                 udp_hdr->dgram_cksum =
521                                         get_udptcp_checksum(m, l3_hdr, l4_off,
522                                                 info->ethertype);
523                         }
524                 }
525 #ifdef RTE_LIB_GSO
526                 if (info->gso_enable)
527                         ol_flags |= RTE_MBUF_F_TX_UDP_SEG;
528 #endif
529         } else if (info->l4_proto == IPPROTO_TCP) {
530                 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
531                 if (tso_segsz)
532                         ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
533                 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) {
534                         ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
535                 } else {
536                         if (info->is_tunnel)
537                                 l4_off = info->outer_l2_len + info->outer_l3_len +
538                                          info->l2_len + info->l3_len;
539                         else
540                                 l4_off = info->l2_len + info->l3_len;
541                         tcp_hdr->cksum = 0;
542                         tcp_hdr->cksum =
543                                 get_udptcp_checksum(m, l3_hdr, l4_off,
544                                         info->ethertype);
545                 }
546 #ifdef RTE_LIB_GSO
547                 if (info->gso_enable)
548                         ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
549 #endif
550         } else if (info->l4_proto == IPPROTO_SCTP) {
551                 sctp_hdr = (struct rte_sctp_hdr *)
552                         ((char *)l3_hdr + info->l3_len);
553                 /* sctp payload must be a multiple of 4 to be
554                  * offloaded */
555                 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) &&
556                         ((ipv4_hdr->total_length & 0x3) == 0)) {
557                         ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM;
558                 } else {
559                         sctp_hdr->cksum = 0;
560                         /* XXX implement CRC32c, example available in
561                          * RFC3309 */
562                 }
563         }
564
565         return ol_flags;
566 }
567
568 /* Calculate the checksum of outer header */
569 static uint64_t
570 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
571         uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m)
572 {
573         struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
574         struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
575         struct rte_udp_hdr *udp_hdr;
576         uint64_t ol_flags = 0;
577
578         if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
579                 ipv4_hdr->hdr_checksum = 0;
580                 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4;
581
582                 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM)
583                         ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM;
584                 else
585                         ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
586         } else
587                 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6;
588
589         if (info->outer_l4_proto != IPPROTO_UDP)
590                 return ol_flags;
591
592         udp_hdr = (struct rte_udp_hdr *)
593                 ((char *)outer_l3_hdr + info->outer_l3_len);
594
595         if (tso_enabled)
596                 ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
597
598         /* Skip SW outer UDP checksum generation if HW supports it */
599         if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) {
600                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
601                         udp_hdr->dgram_cksum
602                                 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
603                 else
604                         udp_hdr->dgram_cksum
605                                 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
606
607                 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM;
608                 return ol_flags;
609         }
610
611         /* outer UDP checksum is done in software. In the other side, for
612          * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
613          * set to zero.
614          *
615          * If a packet will be TSOed into small packets by NIC, we cannot
616          * set/calculate a non-zero checksum, because it will be a wrong
617          * value after the packet be split into several small packets.
618          */
619         if (tso_enabled)
620                 udp_hdr->dgram_cksum = 0;
621
622         /* do not recalculate udp cksum if it was 0 */
623         if (udp_hdr->dgram_cksum != 0) {
624                 udp_hdr->dgram_cksum = 0;
625                 udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr,
626                                         info->outer_l2_len + info->outer_l3_len,
627                                         info->outer_ethertype);
628         }
629
630         return ol_flags;
631 }
632
633 /*
634  * Helper function.
635  * Performs actual copying.
636  * Returns number of segments in the destination mbuf on success,
637  * or negative error code on failure.
638  */
639 static int
640 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
641         uint16_t seglen[], uint8_t nb_seg)
642 {
643         uint32_t dlen, slen, tlen;
644         uint32_t i, len;
645         const struct rte_mbuf *m;
646         const uint8_t *src;
647         uint8_t *dst;
648
649         dlen = 0;
650         slen = 0;
651         tlen = 0;
652
653         dst = NULL;
654         src = NULL;
655
656         m = ms;
657         i = 0;
658         while (ms != NULL && i != nb_seg) {
659
660                 if (slen == 0) {
661                         slen = rte_pktmbuf_data_len(ms);
662                         src = rte_pktmbuf_mtod(ms, const uint8_t *);
663                 }
664
665                 if (dlen == 0) {
666                         dlen = RTE_MIN(seglen[i], slen);
667                         md[i]->data_len = dlen;
668                         md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
669                         dst = rte_pktmbuf_mtod(md[i], uint8_t *);
670                 }
671
672                 len = RTE_MIN(slen, dlen);
673                 memcpy(dst, src, len);
674                 tlen += len;
675                 slen -= len;
676                 dlen -= len;
677                 src += len;
678                 dst += len;
679
680                 if (slen == 0)
681                         ms = ms->next;
682                 if (dlen == 0)
683                         i++;
684         }
685
686         if (ms != NULL)
687                 return -ENOBUFS;
688         else if (tlen != m->pkt_len)
689                 return -EINVAL;
690
691         md[0]->nb_segs = nb_seg;
692         md[0]->pkt_len = tlen;
693         md[0]->vlan_tci = m->vlan_tci;
694         md[0]->vlan_tci_outer = m->vlan_tci_outer;
695         md[0]->ol_flags = m->ol_flags;
696         md[0]->tx_offload = m->tx_offload;
697
698         return nb_seg;
699 }
700
701 /*
702  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
703  * Copy packet contents and offload information into the new segmented mbuf.
704  */
705 static struct rte_mbuf *
706 pkt_copy_split(const struct rte_mbuf *pkt)
707 {
708         int32_t n, rc;
709         uint32_t i, len, nb_seg;
710         struct rte_mempool *mp;
711         uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
712         struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
713
714         mp = current_fwd_lcore()->mbp;
715
716         if (tx_pkt_split == TX_PKT_SPLIT_RND)
717                 nb_seg = rte_rand() % tx_pkt_nb_segs + 1;
718         else
719                 nb_seg = tx_pkt_nb_segs;
720
721         memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
722
723         /* calculate number of segments to use and their length. */
724         len = 0;
725         for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
726                 len += seglen[i];
727                 md[i] = NULL;
728         }
729
730         n = pkt->pkt_len - len;
731
732         /* update size of the last segment to fit rest of the packet */
733         if (n >= 0) {
734                 seglen[i - 1] += n;
735                 len += n;
736         }
737
738         nb_seg = i;
739         while (i != 0) {
740                 p = rte_pktmbuf_alloc(mp);
741                 if (p == NULL) {
742                         TESTPMD_LOG(ERR,
743                                 "failed to allocate %u-th of %u mbuf "
744                                 "from mempool: %s\n",
745                                 nb_seg - i, nb_seg, mp->name);
746                         break;
747                 }
748
749                 md[--i] = p;
750                 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
751                         TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
752                                 "expected seglen: %u, "
753                                 "actual mbuf tailroom: %u\n",
754                                 mp->name, i, seglen[i],
755                                 rte_pktmbuf_tailroom(md[i]));
756                         break;
757                 }
758         }
759
760         /* all mbufs successfully allocated, do copy */
761         if (i == 0) {
762                 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
763                 if (rc < 0)
764                         TESTPMD_LOG(ERR,
765                                 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
766                                 "into %u segments failed with error code: %d\n",
767                                 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
768
769                 /* figure out how many mbufs to free. */
770                 i = RTE_MAX(rc, 0);
771         }
772
773         /* free unused mbufs */
774         for (; i != nb_seg; i++) {
775                 rte_pktmbuf_free_seg(md[i]);
776                 md[i] = NULL;
777         }
778
779         return md[0];
780 }
781
782 /*
783  * Receive a burst of packets, and for each packet:
784  *  - parse packet, and try to recognize a supported packet type (1)
785  *  - if it's not a supported packet type, don't touch the packet, else:
786  *  - reprocess the checksum of all supported layers. This is done in SW
787  *    or HW, depending on testpmd command line configuration
788  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
789  *    segmentation offload (this implies HW TCP checksum)
790  * Then transmit packets on the output port.
791  *
792  * (1) Supported packets are:
793  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
794  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
795  *           UDP|TCP|SCTP
796  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
797  *           UDP|TCP|SCTP
798  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
799  *           UDP|TCP|SCTP
800  *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
801  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
802  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
803  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
804  *
805  * The testpmd command line for this forward engine sets the flags
806  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
807  * whether a checksum must be calculated in software or in hardware. The
808  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
809  * OUTER_IP is only useful for tunnel packets.
810  */
811 static void
812 pkt_burst_checksum_forward(struct fwd_stream *fs)
813 {
814         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
815 #ifdef RTE_LIB_GSO
816         struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
817         struct rte_gso_ctx *gso_ctx;
818 #endif
819         struct rte_mbuf **tx_pkts_burst;
820         struct rte_port *txp;
821         struct rte_mbuf *m, *p;
822         struct rte_ether_hdr *eth_hdr;
823         void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
824 #ifdef RTE_LIB_GRO
825         void **gro_ctx;
826         uint16_t gro_pkts_num;
827         uint8_t gro_enable;
828 #endif
829         uint16_t nb_rx;
830         uint16_t nb_tx;
831         uint16_t nb_prep;
832         uint16_t i;
833         uint64_t rx_ol_flags, tx_ol_flags;
834         uint64_t tx_offloads;
835         uint32_t retry;
836         uint32_t rx_bad_ip_csum;
837         uint32_t rx_bad_l4_csum;
838         uint32_t rx_bad_outer_l4_csum;
839         uint32_t rx_bad_outer_ip_csum;
840         struct testpmd_offload_info info;
841
842         uint64_t start_tsc = 0;
843
844         get_start_cycles(&start_tsc);
845
846         /* receive a burst of packet */
847         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
848                                  nb_pkt_per_burst);
849         inc_rx_burst_stats(fs, nb_rx);
850         if (unlikely(nb_rx == 0))
851                 return;
852
853         fs->rx_packets += nb_rx;
854         rx_bad_ip_csum = 0;
855         rx_bad_l4_csum = 0;
856         rx_bad_outer_l4_csum = 0;
857         rx_bad_outer_ip_csum = 0;
858 #ifdef RTE_LIB_GRO
859         gro_enable = gro_ports[fs->rx_port].enable;
860 #endif
861
862         txp = &ports[fs->tx_port];
863         tx_offloads = txp->dev_conf.txmode.offloads;
864         memset(&info, 0, sizeof(info));
865         info.tso_segsz = txp->tso_segsz;
866         info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
867 #ifdef RTE_LIB_GSO
868         if (gso_ports[fs->tx_port].enable)
869                 info.gso_enable = 1;
870 #endif
871
872         for (i = 0; i < nb_rx; i++) {
873                 if (likely(i < nb_rx - 1))
874                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
875                                                        void *));
876
877                 m = pkts_burst[i];
878                 info.is_tunnel = 0;
879                 info.pkt_len = rte_pktmbuf_pkt_len(m);
880                 tx_ol_flags = m->ol_flags &
881                               (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL);
882                 rx_ol_flags = m->ol_flags;
883
884                 /* Update the L3/L4 checksum error packet statistics */
885                 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD)
886                         rx_bad_ip_csum += 1;
887                 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD)
888                         rx_bad_l4_csum += 1;
889                 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD)
890                         rx_bad_outer_l4_csum += 1;
891                 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD)
892                         rx_bad_outer_ip_csum += 1;
893
894                 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
895                  * and inner headers */
896
897                 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
898                 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
899                                 &eth_hdr->dst_addr);
900                 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
901                                 &eth_hdr->src_addr);
902                 parse_ethernet(eth_hdr, &info);
903                 l3_hdr = (char *)eth_hdr + info.l2_len;
904
905                 /* check if it's a supported tunnel */
906                 if (txp->parse_tunnel) {
907                         if (info.l4_proto == IPPROTO_UDP) {
908                                 struct rte_udp_hdr *udp_hdr;
909
910                                 udp_hdr = (struct rte_udp_hdr *)
911                                         ((char *)l3_hdr + info.l3_len);
912                                 parse_gtp(udp_hdr, &info);
913                                 if (info.is_tunnel) {
914                                         tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP;
915                                         goto tunnel_update;
916                                 }
917                                 parse_vxlan_gpe(udp_hdr, &info);
918                                 if (info.is_tunnel) {
919                                         tx_ol_flags |=
920                                                 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE;
921                                         goto tunnel_update;
922                                 }
923                                 parse_vxlan(udp_hdr, &info);
924                                 if (info.is_tunnel) {
925                                         tx_ol_flags |=
926                                                 RTE_MBUF_F_TX_TUNNEL_VXLAN;
927                                         goto tunnel_update;
928                                 }
929                                 parse_geneve(udp_hdr, &info);
930                                 if (info.is_tunnel) {
931                                         tx_ol_flags |=
932                                                 RTE_MBUF_F_TX_TUNNEL_GENEVE;
933                                         goto tunnel_update;
934                                 }
935                                 /* Always keep last. */
936                                 if (unlikely(RTE_ETH_IS_TUNNEL_PKT(
937                                                         m->packet_type) != 0)) {
938                                         TESTPMD_LOG(DEBUG, "Unknown tunnel packet. UDP dst port: %hu",
939                                                 udp_hdr->dst_port);
940                                 }
941                         } else if (info.l4_proto == IPPROTO_GRE) {
942                                 struct simple_gre_hdr *gre_hdr;
943
944                                 gre_hdr = (struct simple_gre_hdr *)
945                                         ((char *)l3_hdr + info.l3_len);
946                                 parse_gre(gre_hdr, &info);
947                                 if (info.is_tunnel)
948                                         tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE;
949                         } else if (info.l4_proto == IPPROTO_IPIP) {
950                                 void *encap_ip_hdr;
951
952                                 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
953                                 parse_encap_ip(encap_ip_hdr, &info);
954                                 if (info.is_tunnel)
955                                         tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP;
956                         }
957                 }
958
959 tunnel_update:
960                 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
961                 if (info.is_tunnel) {
962                         outer_l3_hdr = l3_hdr;
963                         l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
964                 }
965
966                 /* step 2: depending on user command line configuration,
967                  * recompute checksum either in software or flag the
968                  * mbuf to offload the calculation to the NIC. If TSO
969                  * is configured, prepare the mbuf for TCP segmentation. */
970
971                 /* process checksums of inner headers first */
972                 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
973                         tx_offloads, m);
974
975                 /* Then process outer headers if any. Note that the software
976                  * checksum will be wrong if one of the inner checksums is
977                  * processed in hardware. */
978                 if (info.is_tunnel == 1) {
979                         tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
980                                         tx_offloads,
981                                         !!(tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG),
982                                         m);
983                 }
984
985                 /* step 3: fill the mbuf meta data (flags and header lengths) */
986
987                 m->tx_offload = 0;
988                 if (info.is_tunnel == 1) {
989                         if (info.tunnel_tso_segsz ||
990                             (tx_offloads &
991                              RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
992                             (tx_offloads &
993                              RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) {
994                                 m->outer_l2_len = info.outer_l2_len;
995                                 m->outer_l3_len = info.outer_l3_len;
996                                 m->l2_len = info.l2_len;
997                                 m->l3_len = info.l3_len;
998                                 m->l4_len = info.l4_len;
999                                 m->tso_segsz = info.tunnel_tso_segsz;
1000                         }
1001                         else {
1002                                 /* if there is a outer UDP cksum
1003                                    processed in sw and the inner in hw,
1004                                    the outer checksum will be wrong as
1005                                    the payload will be modified by the
1006                                    hardware */
1007                                 m->l2_len = info.outer_l2_len +
1008                                         info.outer_l3_len + info.l2_len;
1009                                 m->l3_len = info.l3_len;
1010                                 m->l4_len = info.l4_len;
1011                         }
1012                 } else {
1013                         /* this is only useful if an offload flag is
1014                          * set, but it does not hurt to fill it in any
1015                          * case */
1016                         m->l2_len = info.l2_len;
1017                         m->l3_len = info.l3_len;
1018                         m->l4_len = info.l4_len;
1019                         m->tso_segsz = info.tso_segsz;
1020                 }
1021                 m->ol_flags = tx_ol_flags;
1022
1023                 /* Do split & copy for the packet. */
1024                 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
1025                         p = pkt_copy_split(m);
1026                         if (p != NULL) {
1027                                 rte_pktmbuf_free(m);
1028                                 m = p;
1029                                 pkts_burst[i] = m;
1030                         }
1031                 }
1032
1033                 /* if verbose mode is enabled, dump debug info */
1034                 if (verbose_level > 0) {
1035                         char buf[256];
1036
1037                         printf("-----------------\n");
1038                         printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
1039                                 fs->rx_port, m, m->pkt_len, m->nb_segs);
1040                         /* dump rx parsed packet info */
1041                         rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
1042                         printf("rx: l2_len=%d ethertype=%x l3_len=%d "
1043                                 "l4_proto=%d l4_len=%d flags=%s\n",
1044                                 info.l2_len, rte_be_to_cpu_16(info.ethertype),
1045                                 info.l3_len, info.l4_proto, info.l4_len, buf);
1046                         if (rx_ol_flags & RTE_MBUF_F_RX_LRO)
1047                                 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
1048                         if (info.is_tunnel == 1)
1049                                 printf("rx: outer_l2_len=%d outer_ethertype=%x "
1050                                         "outer_l3_len=%d\n", info.outer_l2_len,
1051                                         rte_be_to_cpu_16(info.outer_ethertype),
1052                                         info.outer_l3_len);
1053                         /* dump tx packet info */
1054                         if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1055                                             RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1056                                             RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1057                                             RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) ||
1058                                 info.tso_segsz != 0)
1059                                 printf("tx: m->l2_len=%d m->l3_len=%d "
1060                                         "m->l4_len=%d\n",
1061                                         m->l2_len, m->l3_len, m->l4_len);
1062                         if (info.is_tunnel == 1) {
1063                                 if ((tx_offloads &
1064                                     RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1065                                     (tx_offloads &
1066                                     RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1067                                     (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6))
1068                                         printf("tx: m->outer_l2_len=%d "
1069                                                 "m->outer_l3_len=%d\n",
1070                                                 m->outer_l2_len,
1071                                                 m->outer_l3_len);
1072                                 if (info.tunnel_tso_segsz != 0 &&
1073                                                 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG))
1074                                         printf("tx: m->tso_segsz=%d\n",
1075                                                 m->tso_segsz);
1076                         } else if (info.tso_segsz != 0 &&
1077                                         (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG))
1078                                 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1079                         rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1080                         printf("tx: flags=%s", buf);
1081                         printf("\n");
1082                 }
1083         }
1084
1085 #ifdef RTE_LIB_GRO
1086         if (unlikely(gro_enable)) {
1087                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1088                         nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1089                                         &(gro_ports[fs->rx_port].param));
1090                 } else {
1091                         gro_ctx = current_fwd_lcore()->gro_ctx;
1092                         nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1093
1094                         if (++fs->gro_times >= gro_flush_cycles) {
1095                                 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1096                                 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1097                                         gro_pkts_num = MAX_PKT_BURST - nb_rx;
1098
1099                                 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1100                                                 RTE_GRO_TCP_IPV4,
1101                                                 &pkts_burst[nb_rx],
1102                                                 gro_pkts_num);
1103                                 fs->gro_times = 0;
1104                         }
1105                 }
1106         }
1107 #endif
1108
1109 #ifdef RTE_LIB_GSO
1110         if (gso_ports[fs->tx_port].enable != 0) {
1111                 uint16_t nb_segments = 0;
1112
1113                 gso_ctx = &(current_fwd_lcore()->gso_ctx);
1114                 gso_ctx->gso_size = gso_max_segment_size;
1115                 for (i = 0; i < nb_rx; i++) {
1116                         int ret;
1117
1118                         ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1119                                         &gso_segments[nb_segments],
1120                                         GSO_MAX_PKT_BURST - nb_segments);
1121                         if (ret >= 1) {
1122                                 /* pkts_burst[i] can be freed safely here. */
1123                                 rte_pktmbuf_free(pkts_burst[i]);
1124                                 nb_segments += ret;
1125                         } else if (ret == 0) {
1126                                 /* 0 means it can be transmitted directly
1127                                  * without gso.
1128                                  */
1129                                 gso_segments[nb_segments] = pkts_burst[i];
1130                                 nb_segments += 1;
1131                         } else {
1132                                 TESTPMD_LOG(DEBUG, "Unable to segment packet");
1133                                 rte_pktmbuf_free(pkts_burst[i]);
1134                         }
1135                 }
1136
1137                 tx_pkts_burst = gso_segments;
1138                 nb_rx = nb_segments;
1139         } else
1140 #endif
1141                 tx_pkts_burst = pkts_burst;
1142
1143         nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1144                         tx_pkts_burst, nb_rx);
1145         if (nb_prep != nb_rx)
1146                 fprintf(stderr,
1147                         "Preparing packet burst to transmit failed: %s\n",
1148                         rte_strerror(rte_errno));
1149
1150         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1151                         nb_prep);
1152
1153         /*
1154          * Retry if necessary
1155          */
1156         if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1157                 retry = 0;
1158                 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1159                         rte_delay_us(burst_tx_delay_time);
1160                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1161                                         &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1162                 }
1163         }
1164         fs->tx_packets += nb_tx;
1165         fs->rx_bad_ip_csum += rx_bad_ip_csum;
1166         fs->rx_bad_l4_csum += rx_bad_l4_csum;
1167         fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1168         fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum;
1169
1170         inc_tx_burst_stats(fs, nb_tx);
1171         if (unlikely(nb_tx < nb_rx)) {
1172                 fs->fwd_dropped += (nb_rx - nb_tx);
1173                 do {
1174                         rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1175                 } while (++nb_tx < nb_rx);
1176         }
1177
1178         get_end_cycles(fs, start_tsc);
1179 }
1180
1181 struct fwd_engine csum_fwd_engine = {
1182         .fwd_mode_name  = "csum",
1183         .port_fwd_begin = NULL,
1184         .port_fwd_end   = NULL,
1185         .packet_fwd     = pkt_burst_checksum_forward,
1186 };