app/testpmd: fix forward lcores number for DCB
[dpdk.git] / app / test-pmd / icmpecho.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2013 6WIND S.A.
3  */
4
5 #include <stdarg.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_per_lcore.h>
22 #include <rte_lcore.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_mempool.h>
27 #include <rte_mbuf.h>
28 #include <rte_ether.h>
29 #include <rte_ethdev.h>
30 #include <rte_arp.h>
31 #include <rte_ip.h>
32 #include <rte_icmp.h>
33 #include <rte_string_fns.h>
34 #include <rte_flow.h>
35
36 #include "testpmd.h"
37
38 static const char *
39 arp_op_name(uint16_t arp_op)
40 {
41         switch (arp_op) {
42         case RTE_ARP_OP_REQUEST:
43                 return "ARP Request";
44         case RTE_ARP_OP_REPLY:
45                 return "ARP Reply";
46         case RTE_ARP_OP_REVREQUEST:
47                 return "Reverse ARP Request";
48         case RTE_ARP_OP_REVREPLY:
49                 return "Reverse ARP Reply";
50         case RTE_ARP_OP_INVREQUEST:
51                 return "Peer Identify Request";
52         case RTE_ARP_OP_INVREPLY:
53                 return "Peer Identify Reply";
54         default:
55                 break;
56         }
57         return "Unkwown ARP op";
58 }
59
60 static const char *
61 ip_proto_name(uint16_t ip_proto)
62 {
63         static const char * ip_proto_names[] = {
64                 "IP6HOPOPTS", /**< IP6 hop-by-hop options */
65                 "ICMP",       /**< control message protocol */
66                 "IGMP",       /**< group mgmt protocol */
67                 "GGP",        /**< gateway^2 (deprecated) */
68                 "IPv4",       /**< IPv4 encapsulation */
69
70                 "UNASSIGNED",
71                 "TCP",        /**< transport control protocol */
72                 "ST",         /**< Stream protocol II */
73                 "EGP",        /**< exterior gateway protocol */
74                 "PIGP",       /**< private interior gateway */
75
76                 "RCC_MON",    /**< BBN RCC Monitoring */
77                 "NVPII",      /**< network voice protocol*/
78                 "PUP",        /**< pup */
79                 "ARGUS",      /**< Argus */
80                 "EMCON",      /**< EMCON */
81
82                 "XNET",       /**< Cross Net Debugger */
83                 "CHAOS",      /**< Chaos*/
84                 "UDP",        /**< user datagram protocol */
85                 "MUX",        /**< Multiplexing */
86                 "DCN_MEAS",   /**< DCN Measurement Subsystems */
87
88                 "HMP",        /**< Host Monitoring */
89                 "PRM",        /**< Packet Radio Measurement */
90                 "XNS_IDP",    /**< xns idp */
91                 "TRUNK1",     /**< Trunk-1 */
92                 "TRUNK2",     /**< Trunk-2 */
93
94                 "LEAF1",      /**< Leaf-1 */
95                 "LEAF2",      /**< Leaf-2 */
96                 "RDP",        /**< Reliable Data */
97                 "IRTP",       /**< Reliable Transaction */
98                 "TP4",        /**< tp-4 w/ class negotiation */
99
100                 "BLT",        /**< Bulk Data Transfer */
101                 "NSP",        /**< Network Services */
102                 "INP",        /**< Merit Internodal */
103                 "SEP",        /**< Sequential Exchange */
104                 "3PC",        /**< Third Party Connect */
105
106                 "IDPR",       /**< InterDomain Policy Routing */
107                 "XTP",        /**< XTP */
108                 "DDP",        /**< Datagram Delivery */
109                 "CMTP",       /**< Control Message Transport */
110                 "TPXX",       /**< TP++ Transport */
111
112                 "ILTP",       /**< IL transport protocol */
113                 "IPv6_HDR",   /**< IP6 header */
114                 "SDRP",       /**< Source Demand Routing */
115                 "IPv6_RTG",   /**< IP6 routing header */
116                 "IPv6_FRAG",  /**< IP6 fragmentation header */
117
118                 "IDRP",       /**< InterDomain Routing*/
119                 "RSVP",       /**< resource reservation */
120                 "GRE",        /**< General Routing Encap. */
121                 "MHRP",       /**< Mobile Host Routing */
122                 "BHA",        /**< BHA */
123
124                 "ESP",        /**< IP6 Encap Sec. Payload */
125                 "AH",         /**< IP6 Auth Header */
126                 "INLSP",      /**< Integ. Net Layer Security */
127                 "SWIPE",      /**< IP with encryption */
128                 "NHRP",       /**< Next Hop Resolution */
129
130                 "UNASSIGNED",
131                 "UNASSIGNED",
132                 "UNASSIGNED",
133                 "ICMPv6",     /**< ICMP6 */
134                 "IPv6NONEXT", /**< IP6 no next header */
135
136                 "Ipv6DSTOPTS",/**< IP6 destination option */
137                 "AHIP",       /**< any host internal protocol */
138                 "CFTP",       /**< CFTP */
139                 "HELLO",      /**< "hello" routing protocol */
140                 "SATEXPAK",   /**< SATNET/Backroom EXPAK */
141
142                 "KRYPTOLAN",  /**< Kryptolan */
143                 "RVD",        /**< Remote Virtual Disk */
144                 "IPPC",       /**< Pluribus Packet Core */
145                 "ADFS",       /**< Any distributed FS */
146                 "SATMON",     /**< Satnet Monitoring */
147
148                 "VISA",       /**< VISA Protocol */
149                 "IPCV",       /**< Packet Core Utility */
150                 "CPNX",       /**< Comp. Prot. Net. Executive */
151                 "CPHB",       /**< Comp. Prot. HeartBeat */
152                 "WSN",        /**< Wang Span Network */
153
154                 "PVP",        /**< Packet Video Protocol */
155                 "BRSATMON",   /**< BackRoom SATNET Monitoring */
156                 "ND",         /**< Sun net disk proto (temp.) */
157                 "WBMON",      /**< WIDEBAND Monitoring */
158                 "WBEXPAK",    /**< WIDEBAND EXPAK */
159
160                 "EON",        /**< ISO cnlp */
161                 "VMTP",       /**< VMTP */
162                 "SVMTP",      /**< Secure VMTP */
163                 "VINES",      /**< Banyon VINES */
164                 "TTP",        /**< TTP */
165
166                 "IGP",        /**< NSFNET-IGP */
167                 "DGP",        /**< dissimilar gateway prot. */
168                 "TCF",        /**< TCF */
169                 "IGRP",       /**< Cisco/GXS IGRP */
170                 "OSPFIGP",    /**< OSPFIGP */
171
172                 "SRPC",       /**< Strite RPC protocol */
173                 "LARP",       /**< Locus Address Resolution */
174                 "MTP",        /**< Multicast Transport */
175                 "AX25",       /**< AX.25 Frames */
176                 "4IN4",       /**< IP encapsulated in IP */
177
178                 "MICP",       /**< Mobile Int.ing control */
179                 "SCCSP",      /**< Semaphore Comm. security */
180                 "ETHERIP",    /**< Ethernet IP encapsulation */
181                 "ENCAP",      /**< encapsulation header */
182                 "AES",        /**< any private encr. scheme */
183
184                 "GMTP",       /**< GMTP */
185                 "IPCOMP",     /**< payload compression (IPComp) */
186                 "UNASSIGNED",
187                 "UNASSIGNED",
188                 "PIM",        /**< Protocol Independent Mcast */
189         };
190
191         if (ip_proto < RTE_DIM(ip_proto_names))
192                 return ip_proto_names[ip_proto];
193         switch (ip_proto) {
194 #ifdef IPPROTO_PGM
195         case IPPROTO_PGM:  /**< PGM */
196                 return "PGM";
197 #endif
198         case IPPROTO_SCTP:  /**< Stream Control Transport Protocol */
199                 return "SCTP";
200 #ifdef IPPROTO_DIVERT
201         case IPPROTO_DIVERT: /**< divert pseudo-protocol */
202                 return "DIVERT";
203 #endif
204         case IPPROTO_RAW: /**< raw IP packet */
205                 return "RAW";
206         default:
207                 break;
208         }
209         return "UNASSIGNED";
210 }
211
212 static void
213 ipv4_addr_to_dot(uint32_t be_ipv4_addr, char *buf)
214 {
215         uint32_t ipv4_addr;
216
217         ipv4_addr = rte_be_to_cpu_32(be_ipv4_addr);
218         sprintf(buf, "%d.%d.%d.%d", (ipv4_addr >> 24) & 0xFF,
219                 (ipv4_addr >> 16) & 0xFF, (ipv4_addr >> 8) & 0xFF,
220                 ipv4_addr & 0xFF);
221 }
222
223 static void
224 ether_addr_dump(const char *what, const struct rte_ether_addr *ea)
225 {
226         char buf[RTE_ETHER_ADDR_FMT_SIZE];
227
228         rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, ea);
229         if (what)
230                 printf("%s", what);
231         printf("%s", buf);
232 }
233
234 static void
235 ipv4_addr_dump(const char *what, uint32_t be_ipv4_addr)
236 {
237         char buf[16];
238
239         ipv4_addr_to_dot(be_ipv4_addr, buf);
240         if (what)
241                 printf("%s", what);
242         printf("%s", buf);
243 }
244
245 static uint16_t
246 ipv4_hdr_cksum(struct rte_ipv4_hdr *ip_h)
247 {
248         uint16_t *v16_h;
249         uint32_t ip_cksum;
250
251         /*
252          * Compute the sum of successive 16-bit words of the IPv4 header,
253          * skipping the checksum field of the header.
254          */
255         v16_h = (unaligned_uint16_t *) ip_h;
256         ip_cksum = v16_h[0] + v16_h[1] + v16_h[2] + v16_h[3] +
257                 v16_h[4] + v16_h[6] + v16_h[7] + v16_h[8] + v16_h[9];
258
259         /* reduce 32 bit checksum to 16 bits and complement it */
260         ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16);
261         ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16);
262         ip_cksum = (~ip_cksum) & 0x0000FFFF;
263         return (ip_cksum == 0) ? 0xFFFF : (uint16_t) ip_cksum;
264 }
265
266 #define is_multicast_ipv4_addr(ipv4_addr) \
267         (((rte_be_to_cpu_32((ipv4_addr)) >> 24) & 0x000000FF) == 0xE0)
268
269 /*
270  * Receive a burst of packets, lookup for ICMP echo requests, and, if any,
271  * send back ICMP echo replies.
272  */
273 static void
274 reply_to_icmp_echo_rqsts(struct fwd_stream *fs)
275 {
276         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
277         struct rte_mbuf *pkt;
278         struct rte_ether_hdr *eth_h;
279         struct rte_vlan_hdr *vlan_h;
280         struct rte_arp_hdr  *arp_h;
281         struct rte_ipv4_hdr *ip_h;
282         struct rte_icmp_hdr *icmp_h;
283         struct rte_ether_addr eth_addr;
284         uint32_t retry;
285         uint32_t ip_addr;
286         uint16_t nb_rx;
287         uint16_t nb_tx;
288         uint16_t nb_replies;
289         uint16_t eth_type;
290         uint16_t vlan_id;
291         uint16_t arp_op;
292         uint16_t arp_pro;
293         uint32_t cksum;
294         uint8_t  i;
295         int l2_len;
296         uint64_t start_tsc = 0;
297
298         get_start_cycles(&start_tsc);
299
300         /*
301          * First, receive a burst of packets.
302          */
303         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
304                                  nb_pkt_per_burst);
305         inc_rx_burst_stats(fs, nb_rx);
306         if (unlikely(nb_rx == 0))
307                 return;
308
309         fs->rx_packets += nb_rx;
310         nb_replies = 0;
311         for (i = 0; i < nb_rx; i++) {
312                 if (likely(i < nb_rx - 1))
313                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
314                                                        void *));
315                 pkt = pkts_burst[i];
316                 eth_h = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
317                 eth_type = RTE_BE_TO_CPU_16(eth_h->ether_type);
318                 l2_len = sizeof(struct rte_ether_hdr);
319                 if (verbose_level > 0) {
320                         printf("\nPort %d pkt-len=%u nb-segs=%u\n",
321                                fs->rx_port, pkt->pkt_len, pkt->nb_segs);
322                         ether_addr_dump("  ETH:  src=", &eth_h->s_addr);
323                         ether_addr_dump(" dst=", &eth_h->d_addr);
324                 }
325                 if (eth_type == RTE_ETHER_TYPE_VLAN) {
326                         vlan_h = (struct rte_vlan_hdr *)
327                                 ((char *)eth_h + sizeof(struct rte_ether_hdr));
328                         l2_len  += sizeof(struct rte_vlan_hdr);
329                         eth_type = rte_be_to_cpu_16(vlan_h->eth_proto);
330                         if (verbose_level > 0) {
331                                 vlan_id = rte_be_to_cpu_16(vlan_h->vlan_tci)
332                                         & 0xFFF;
333                                 printf(" [vlan id=%u]", vlan_id);
334                         }
335                 }
336                 if (verbose_level > 0) {
337                         printf(" type=0x%04x\n", eth_type);
338                 }
339
340                 /* Reply to ARP requests */
341                 if (eth_type == RTE_ETHER_TYPE_ARP) {
342                         arp_h = (struct rte_arp_hdr *) ((char *)eth_h + l2_len);
343                         arp_op = RTE_BE_TO_CPU_16(arp_h->arp_opcode);
344                         arp_pro = RTE_BE_TO_CPU_16(arp_h->arp_protocol);
345                         if (verbose_level > 0) {
346                                 printf("  ARP:  hrd=%d proto=0x%04x hln=%d "
347                                        "pln=%d op=%u (%s)\n",
348                                        RTE_BE_TO_CPU_16(arp_h->arp_hardware),
349                                        arp_pro, arp_h->arp_hlen,
350                                        arp_h->arp_plen, arp_op,
351                                        arp_op_name(arp_op));
352                         }
353                         if ((RTE_BE_TO_CPU_16(arp_h->arp_hardware) !=
354                              RTE_ARP_HRD_ETHER) ||
355                             (arp_pro != RTE_ETHER_TYPE_IPV4) ||
356                             (arp_h->arp_hlen != 6) ||
357                             (arp_h->arp_plen != 4)
358                             ) {
359                                 rte_pktmbuf_free(pkt);
360                                 if (verbose_level > 0)
361                                         printf("\n");
362                                 continue;
363                         }
364                         if (verbose_level > 0) {
365                                 rte_ether_addr_copy(&arp_h->arp_data.arp_sha,
366                                                 &eth_addr);
367                                 ether_addr_dump("        sha=", &eth_addr);
368                                 ip_addr = arp_h->arp_data.arp_sip;
369                                 ipv4_addr_dump(" sip=", ip_addr);
370                                 printf("\n");
371                                 rte_ether_addr_copy(&arp_h->arp_data.arp_tha,
372                                                 &eth_addr);
373                                 ether_addr_dump("        tha=", &eth_addr);
374                                 ip_addr = arp_h->arp_data.arp_tip;
375                                 ipv4_addr_dump(" tip=", ip_addr);
376                                 printf("\n");
377                         }
378                         if (arp_op != RTE_ARP_OP_REQUEST) {
379                                 rte_pktmbuf_free(pkt);
380                                 continue;
381                         }
382
383                         /*
384                          * Build ARP reply.
385                          */
386
387                         /* Use source MAC address as destination MAC address. */
388                         rte_ether_addr_copy(&eth_h->s_addr, &eth_h->d_addr);
389                         /* Set source MAC address with MAC address of TX port */
390                         rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
391                                         &eth_h->s_addr);
392
393                         arp_h->arp_opcode = rte_cpu_to_be_16(RTE_ARP_OP_REPLY);
394                         rte_ether_addr_copy(&arp_h->arp_data.arp_tha,
395                                         &eth_addr);
396                         rte_ether_addr_copy(&arp_h->arp_data.arp_sha,
397                                         &arp_h->arp_data.arp_tha);
398                         rte_ether_addr_copy(&eth_h->s_addr,
399                                         &arp_h->arp_data.arp_sha);
400
401                         /* Swap IP addresses in ARP payload */
402                         ip_addr = arp_h->arp_data.arp_sip;
403                         arp_h->arp_data.arp_sip = arp_h->arp_data.arp_tip;
404                         arp_h->arp_data.arp_tip = ip_addr;
405                         pkts_burst[nb_replies++] = pkt;
406                         continue;
407                 }
408
409                 if (eth_type != RTE_ETHER_TYPE_IPV4) {
410                         rte_pktmbuf_free(pkt);
411                         continue;
412                 }
413                 ip_h = (struct rte_ipv4_hdr *) ((char *)eth_h + l2_len);
414                 if (verbose_level > 0) {
415                         ipv4_addr_dump("  IPV4: src=", ip_h->src_addr);
416                         ipv4_addr_dump(" dst=", ip_h->dst_addr);
417                         printf(" proto=%d (%s)\n",
418                                ip_h->next_proto_id,
419                                ip_proto_name(ip_h->next_proto_id));
420                 }
421
422                 /*
423                  * Check if packet is a ICMP echo request.
424                  */
425                 icmp_h = (struct rte_icmp_hdr *) ((char *)ip_h +
426                                               sizeof(struct rte_ipv4_hdr));
427                 if (! ((ip_h->next_proto_id == IPPROTO_ICMP) &&
428                        (icmp_h->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) &&
429                        (icmp_h->icmp_code == 0))) {
430                         rte_pktmbuf_free(pkt);
431                         continue;
432                 }
433
434                 if (verbose_level > 0)
435                         printf("  ICMP: echo request seq id=%d\n",
436                                rte_be_to_cpu_16(icmp_h->icmp_seq_nb));
437
438                 /*
439                  * Prepare ICMP echo reply to be sent back.
440                  * - switch ethernet source and destinations addresses,
441                  * - use the request IP source address as the reply IP
442                  *    destination address,
443                  * - if the request IP destination address is a multicast
444                  *   address:
445                  *     - choose a reply IP source address different from the
446                  *       request IP source address,
447                  *     - re-compute the IP header checksum.
448                  *   Otherwise:
449                  *     - switch the request IP source and destination
450                  *       addresses in the reply IP header,
451                  *     - keep the IP header checksum unchanged.
452                  * - set RTE_IP_ICMP_ECHO_REPLY in ICMP header.
453                  * ICMP checksum is computed by assuming it is valid in the
454                  * echo request and not verified.
455                  */
456                 rte_ether_addr_copy(&eth_h->s_addr, &eth_addr);
457                 rte_ether_addr_copy(&eth_h->d_addr, &eth_h->s_addr);
458                 rte_ether_addr_copy(&eth_addr, &eth_h->d_addr);
459                 ip_addr = ip_h->src_addr;
460                 if (is_multicast_ipv4_addr(ip_h->dst_addr)) {
461                         uint32_t ip_src;
462
463                         ip_src = rte_be_to_cpu_32(ip_addr);
464                         if ((ip_src & 0x00000003) == 1)
465                                 ip_src = (ip_src & 0xFFFFFFFC) | 0x00000002;
466                         else
467                                 ip_src = (ip_src & 0xFFFFFFFC) | 0x00000001;
468                         ip_h->src_addr = rte_cpu_to_be_32(ip_src);
469                         ip_h->dst_addr = ip_addr;
470                         ip_h->hdr_checksum = ipv4_hdr_cksum(ip_h);
471                 } else {
472                         ip_h->src_addr = ip_h->dst_addr;
473                         ip_h->dst_addr = ip_addr;
474                 }
475                 icmp_h->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
476                 cksum = ~icmp_h->icmp_cksum & 0xffff;
477                 cksum += ~htons(RTE_IP_ICMP_ECHO_REQUEST << 8) & 0xffff;
478                 cksum += htons(RTE_IP_ICMP_ECHO_REPLY << 8);
479                 cksum = (cksum & 0xffff) + (cksum >> 16);
480                 cksum = (cksum & 0xffff) + (cksum >> 16);
481                 icmp_h->icmp_cksum = ~cksum;
482                 pkts_burst[nb_replies++] = pkt;
483         }
484
485         /* Send back ICMP echo replies, if any. */
486         if (nb_replies > 0) {
487                 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst,
488                                          nb_replies);
489                 /*
490                  * Retry if necessary
491                  */
492                 if (unlikely(nb_tx < nb_replies) && fs->retry_enabled) {
493                         retry = 0;
494                         while (nb_tx < nb_replies &&
495                                         retry++ < burst_tx_retry_num) {
496                                 rte_delay_us(burst_tx_delay_time);
497                                 nb_tx += rte_eth_tx_burst(fs->tx_port,
498                                                 fs->tx_queue,
499                                                 &pkts_burst[nb_tx],
500                                                 nb_replies - nb_tx);
501                         }
502                 }
503                 fs->tx_packets += nb_tx;
504                 inc_tx_burst_stats(fs, nb_tx);
505                 if (unlikely(nb_tx < nb_replies)) {
506                         fs->fwd_dropped += (nb_replies - nb_tx);
507                         do {
508                                 rte_pktmbuf_free(pkts_burst[nb_tx]);
509                         } while (++nb_tx < nb_replies);
510                 }
511         }
512
513         get_end_cycles(fs, start_tsc);
514 }
515
516 struct fwd_engine icmp_echo_engine = {
517         .fwd_mode_name  = "icmpecho",
518         .port_fwd_begin = NULL,
519         .port_fwd_end   = NULL,
520         .packet_fwd     = reply_to_icmp_echo_rqsts,
521 };