net/i40e: move testpmd commands
[dpdk.git] / app / test-pmd / txonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4
5 #include <stdarg.h>
6 #include <string.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_branch_prediction.h>
28 #include <rte_mempool.h>
29 #include <rte_mbuf.h>
30 #include <rte_interrupts.h>
31 #include <rte_pci.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_ip.h>
35 #include <rte_tcp.h>
36 #include <rte_udp.h>
37 #include <rte_string_fns.h>
38 #include <rte_flow.h>
39
40 #include "testpmd.h"
41
42 struct tx_timestamp {
43         rte_be32_t signature;
44         rte_be16_t pkt_idx;
45         rte_be16_t queue_idx;
46         rte_be64_t ts;
47 };
48
49 /* use RFC863 Discard Protocol */
50 uint16_t tx_udp_src_port = 9;
51 uint16_t tx_udp_dst_port = 9;
52
53 /* use RFC5735 / RFC2544 reserved network test addresses */
54 uint32_t tx_ip_src_addr = (198U << 24) | (18 << 16) | (0 << 8) | 1;
55 uint32_t tx_ip_dst_addr = (198U << 24) | (18 << 16) | (0 << 8) | 2;
56
57 #define IP_DEFTTL  64   /* from RFC 1340. */
58
59 static struct rte_ipv4_hdr pkt_ip_hdr; /**< IP header of transmitted packets. */
60 RTE_DEFINE_PER_LCORE(uint8_t, _ip_var); /**< IP address variation */
61 static struct rte_udp_hdr pkt_udp_hdr; /**< UDP header of tx packets. */
62
63 static uint64_t timestamp_mask; /**< Timestamp dynamic flag mask */
64 static int32_t timestamp_off; /**< Timestamp dynamic field offset */
65 static bool timestamp_enable; /**< Timestamp enable */
66 static uint64_t timestamp_initial[RTE_MAX_ETHPORTS];
67
68 static void
69 copy_buf_to_pkt_segs(void* buf, unsigned len, struct rte_mbuf *pkt,
70                      unsigned offset)
71 {
72         struct rte_mbuf *seg;
73         void *seg_buf;
74         unsigned copy_len;
75
76         seg = pkt;
77         while (offset >= seg->data_len) {
78                 offset -= seg->data_len;
79                 seg = seg->next;
80         }
81         copy_len = seg->data_len - offset;
82         seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
83         while (len > copy_len) {
84                 rte_memcpy(seg_buf, buf, (size_t) copy_len);
85                 len -= copy_len;
86                 buf = ((char*) buf + copy_len);
87                 seg = seg->next;
88                 seg_buf = rte_pktmbuf_mtod(seg, char *);
89                 copy_len = seg->data_len;
90         }
91         rte_memcpy(seg_buf, buf, (size_t) len);
92 }
93
94 static inline void
95 copy_buf_to_pkt(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset)
96 {
97         if (offset + len <= pkt->data_len) {
98                 rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset),
99                         buf, (size_t) len);
100                 return;
101         }
102         copy_buf_to_pkt_segs(buf, len, pkt, offset);
103 }
104
105 static void
106 setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
107                          struct rte_udp_hdr *udp_hdr,
108                          uint16_t pkt_data_len)
109 {
110         uint16_t *ptr16;
111         uint32_t ip_cksum;
112         uint16_t pkt_len;
113
114         /*
115          * Initialize UDP header.
116          */
117         pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
118         udp_hdr->src_port = rte_cpu_to_be_16(tx_udp_src_port);
119         udp_hdr->dst_port = rte_cpu_to_be_16(tx_udp_dst_port);
120         udp_hdr->dgram_len      = RTE_CPU_TO_BE_16(pkt_len);
121         udp_hdr->dgram_cksum    = 0; /* No UDP checksum. */
122
123         /*
124          * Initialize IP header.
125          */
126         pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
127         ip_hdr->version_ihl   = RTE_IPV4_VHL_DEF;
128         ip_hdr->type_of_service   = 0;
129         ip_hdr->fragment_offset = 0;
130         ip_hdr->time_to_live   = IP_DEFTTL;
131         ip_hdr->next_proto_id = IPPROTO_UDP;
132         ip_hdr->packet_id = 0;
133         ip_hdr->total_length   = RTE_CPU_TO_BE_16(pkt_len);
134         ip_hdr->src_addr = rte_cpu_to_be_32(tx_ip_src_addr);
135         ip_hdr->dst_addr = rte_cpu_to_be_32(tx_ip_dst_addr);
136
137         /*
138          * Compute IP header checksum.
139          */
140         ptr16 = (unaligned_uint16_t*) ip_hdr;
141         ip_cksum = 0;
142         ip_cksum += ptr16[0]; ip_cksum += ptr16[1];
143         ip_cksum += ptr16[2]; ip_cksum += ptr16[3];
144         ip_cksum += ptr16[4];
145         ip_cksum += ptr16[6]; ip_cksum += ptr16[7];
146         ip_cksum += ptr16[8]; ip_cksum += ptr16[9];
147
148         /*
149          * Reduce 32 bit checksum to 16 bits and complement it.
150          */
151         ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) +
152                 (ip_cksum & 0x0000FFFF);
153         if (ip_cksum > 65535)
154                 ip_cksum -= 65535;
155         ip_cksum = (~ip_cksum) & 0x0000FFFF;
156         if (ip_cksum == 0)
157                 ip_cksum = 0xFFFF;
158         ip_hdr->hdr_checksum = (uint16_t) ip_cksum;
159 }
160
161 static inline void
162 update_pkt_header(struct rte_mbuf *pkt, uint32_t total_pkt_len)
163 {
164         struct rte_ipv4_hdr *ip_hdr;
165         struct rte_udp_hdr *udp_hdr;
166         uint16_t pkt_data_len;
167         uint16_t pkt_len;
168
169         pkt_data_len = (uint16_t) (total_pkt_len - (
170                                         sizeof(struct rte_ether_hdr) +
171                                         sizeof(struct rte_ipv4_hdr) +
172                                         sizeof(struct rte_udp_hdr)));
173         /* update UDP packet length */
174         udp_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_udp_hdr *,
175                                 sizeof(struct rte_ether_hdr) +
176                                 sizeof(struct rte_ipv4_hdr));
177         pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
178         udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
179
180         /* update IP packet length and checksum */
181         ip_hdr = rte_pktmbuf_mtod_offset(pkt, struct rte_ipv4_hdr *,
182                                 sizeof(struct rte_ether_hdr));
183         ip_hdr->hdr_checksum = 0;
184         pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
185         ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
186         ip_hdr->hdr_checksum = rte_ipv4_cksum(ip_hdr);
187 }
188
189 static inline bool
190 pkt_burst_prepare(struct rte_mbuf *pkt, struct rte_mempool *mbp,
191                 struct rte_ether_hdr *eth_hdr, const uint16_t vlan_tci,
192                 const uint16_t vlan_tci_outer, const uint64_t ol_flags,
193                 const uint16_t idx, struct fwd_stream *fs)
194 {
195         struct rte_mbuf *pkt_segs[RTE_MAX_SEGS_PER_PKT];
196         struct rte_mbuf *pkt_seg;
197         uint32_t nb_segs, pkt_len;
198         uint8_t i;
199
200         if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND))
201                 nb_segs = rte_rand() % tx_pkt_nb_segs + 1;
202         else
203                 nb_segs = tx_pkt_nb_segs;
204
205         if (nb_segs > 1) {
206                 if (rte_mempool_get_bulk(mbp, (void **)pkt_segs, nb_segs - 1))
207                         return false;
208         }
209
210         rte_pktmbuf_reset_headroom(pkt);
211         pkt->data_len = tx_pkt_seg_lengths[0];
212         pkt->ol_flags &= RTE_MBUF_F_EXTERNAL;
213         pkt->ol_flags |= ol_flags;
214         pkt->vlan_tci = vlan_tci;
215         pkt->vlan_tci_outer = vlan_tci_outer;
216         pkt->l2_len = sizeof(struct rte_ether_hdr);
217         pkt->l3_len = sizeof(struct rte_ipv4_hdr);
218
219         pkt_len = pkt->data_len;
220         pkt_seg = pkt;
221         for (i = 1; i < nb_segs; i++) {
222                 pkt_seg->next = pkt_segs[i - 1];
223                 pkt_seg = pkt_seg->next;
224                 pkt_seg->data_len = tx_pkt_seg_lengths[i];
225                 pkt_len += pkt_seg->data_len;
226         }
227         pkt_seg->next = NULL; /* Last segment of packet. */
228         /*
229          * Copy headers in first packet segment(s).
230          */
231         copy_buf_to_pkt(eth_hdr, sizeof(*eth_hdr), pkt, 0);
232         copy_buf_to_pkt(&pkt_ip_hdr, sizeof(pkt_ip_hdr), pkt,
233                         sizeof(struct rte_ether_hdr));
234         if (txonly_multi_flow) {
235                 uint8_t  ip_var = RTE_PER_LCORE(_ip_var);
236                 struct rte_ipv4_hdr *ip_hdr;
237                 uint32_t addr;
238
239                 ip_hdr = rte_pktmbuf_mtod_offset(pkt,
240                                 struct rte_ipv4_hdr *,
241                                 sizeof(struct rte_ether_hdr));
242                 /*
243                  * Generate multiple flows by varying IP src addr. This
244                  * enables packets are well distributed by RSS in
245                  * receiver side if any and txonly mode can be a decent
246                  * packet generator for developer's quick performance
247                  * regression test.
248                  */
249                 addr = (tx_ip_dst_addr | (ip_var++ << 8)) + rte_lcore_id();
250                 ip_hdr->src_addr = rte_cpu_to_be_32(addr);
251                 RTE_PER_LCORE(_ip_var) = ip_var;
252         }
253         copy_buf_to_pkt(&pkt_udp_hdr, sizeof(pkt_udp_hdr), pkt,
254                         sizeof(struct rte_ether_hdr) +
255                         sizeof(struct rte_ipv4_hdr));
256
257         if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND) || txonly_multi_flow)
258                 update_pkt_header(pkt, pkt_len);
259
260         if (unlikely(timestamp_enable)) {
261                 uint64_t skew = fs->ts_skew;
262                 struct tx_timestamp timestamp_mark;
263
264                 if (unlikely(!skew)) {
265                         struct rte_eth_dev_info dev_info;
266                         unsigned int txqs_n;
267                         uint64_t phase;
268                         int ret;
269
270                         ret = eth_dev_info_get_print_err(fs->tx_port, &dev_info);
271                         if (ret != 0) {
272                                 TESTPMD_LOG(ERR,
273                                         "Failed to get device info for port %d,"
274                                         "could not finish timestamp init",
275                                         fs->tx_port);
276                                 return false;
277                         }
278                         txqs_n = dev_info.nb_tx_queues;
279                         phase = tx_pkt_times_inter * fs->tx_queue /
280                                          (txqs_n ? txqs_n : 1);
281                         /*
282                          * Initialize the scheduling time phase shift
283                          * depending on queue index.
284                          */
285                         skew = timestamp_initial[fs->tx_port] +
286                                tx_pkt_times_inter + phase;
287                         fs->ts_skew = skew;
288                 }
289                 timestamp_mark.pkt_idx = rte_cpu_to_be_16(idx);
290                 timestamp_mark.queue_idx = rte_cpu_to_be_16(fs->tx_queue);
291                 timestamp_mark.signature = rte_cpu_to_be_32(0xBEEFC0DE);
292                 if (unlikely(!idx)) {
293                         skew += tx_pkt_times_inter;
294                         pkt->ol_flags |= timestamp_mask;
295                         *RTE_MBUF_DYNFIELD
296                                 (pkt, timestamp_off, uint64_t *) = skew;
297                         fs->ts_skew = skew;
298                         timestamp_mark.ts = rte_cpu_to_be_64(skew);
299                 } else if (tx_pkt_times_intra) {
300                         skew += tx_pkt_times_intra;
301                         pkt->ol_flags |= timestamp_mask;
302                         *RTE_MBUF_DYNFIELD
303                                 (pkt, timestamp_off, uint64_t *) = skew;
304                         fs->ts_skew = skew;
305                         timestamp_mark.ts = rte_cpu_to_be_64(skew);
306                 } else {
307                         timestamp_mark.ts = RTE_BE64(0);
308                 }
309                 copy_buf_to_pkt(&timestamp_mark, sizeof(timestamp_mark), pkt,
310                         sizeof(struct rte_ether_hdr) +
311                         sizeof(struct rte_ipv4_hdr) +
312                         sizeof(pkt_udp_hdr));
313         }
314         /*
315          * Complete first mbuf of packet and append it to the
316          * burst of packets to be transmitted.
317          */
318         pkt->nb_segs = nb_segs;
319         pkt->pkt_len = pkt_len;
320
321         return true;
322 }
323
324 /*
325  * Transmit a burst of multi-segments packets.
326  */
327 static void
328 pkt_burst_transmit(struct fwd_stream *fs)
329 {
330         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
331         struct rte_port *txp;
332         struct rte_mbuf *pkt;
333         struct rte_mempool *mbp;
334         struct rte_ether_hdr eth_hdr;
335         uint16_t nb_tx;
336         uint16_t nb_pkt;
337         uint16_t vlan_tci, vlan_tci_outer;
338         uint32_t retry;
339         uint64_t ol_flags = 0;
340         uint64_t tx_offloads;
341         uint64_t start_tsc = 0;
342
343         get_start_cycles(&start_tsc);
344
345         mbp = current_fwd_lcore()->mbp;
346         txp = &ports[fs->tx_port];
347         tx_offloads = txp->dev_conf.txmode.offloads;
348         vlan_tci = txp->tx_vlan_id;
349         vlan_tci_outer = txp->tx_vlan_id_outer;
350         if (tx_offloads & RTE_ETH_TX_OFFLOAD_VLAN_INSERT)
351                 ol_flags = RTE_MBUF_F_TX_VLAN;
352         if (tx_offloads & RTE_ETH_TX_OFFLOAD_QINQ_INSERT)
353                 ol_flags |= RTE_MBUF_F_TX_QINQ;
354         if (tx_offloads & RTE_ETH_TX_OFFLOAD_MACSEC_INSERT)
355                 ol_flags |= RTE_MBUF_F_TX_MACSEC;
356
357         /*
358          * Initialize Ethernet header.
359          */
360         rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], &eth_hdr.dst_addr);
361         rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, &eth_hdr.src_addr);
362         eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
363
364         if (rte_mempool_get_bulk(mbp, (void **)pkts_burst,
365                                 nb_pkt_per_burst) == 0) {
366                 for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
367                         if (unlikely(!pkt_burst_prepare(pkts_burst[nb_pkt], mbp,
368                                                         &eth_hdr, vlan_tci,
369                                                         vlan_tci_outer,
370                                                         ol_flags,
371                                                         nb_pkt, fs))) {
372                                 rte_mempool_put_bulk(mbp,
373                                                 (void **)&pkts_burst[nb_pkt],
374                                                 nb_pkt_per_burst - nb_pkt);
375                                 break;
376                         }
377                 }
378         } else {
379                 for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
380                         pkt = rte_mbuf_raw_alloc(mbp);
381                         if (pkt == NULL)
382                                 break;
383                         if (unlikely(!pkt_burst_prepare(pkt, mbp, &eth_hdr,
384                                                         vlan_tci,
385                                                         vlan_tci_outer,
386                                                         ol_flags,
387                                                         nb_pkt, fs))) {
388                                 rte_pktmbuf_free(pkt);
389                                 break;
390                         }
391                         pkts_burst[nb_pkt] = pkt;
392                 }
393         }
394
395         if (nb_pkt == 0)
396                 return;
397
398         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt);
399
400         /*
401          * Retry if necessary
402          */
403         if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) {
404                 retry = 0;
405                 while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) {
406                         rte_delay_us(burst_tx_delay_time);
407                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
408                                         &pkts_burst[nb_tx], nb_pkt - nb_tx);
409                 }
410         }
411         fs->tx_packets += nb_tx;
412
413         if (txonly_multi_flow)
414                 RTE_PER_LCORE(_ip_var) -= nb_pkt - nb_tx;
415
416         inc_tx_burst_stats(fs, nb_tx);
417         if (unlikely(nb_tx < nb_pkt)) {
418                 if (verbose_level > 0 && fs->fwd_dropped == 0)
419                         printf("port %d tx_queue %d - drop "
420                                "(nb_pkt:%u - nb_tx:%u)=%u packets\n",
421                                fs->tx_port, fs->tx_queue,
422                                (unsigned) nb_pkt, (unsigned) nb_tx,
423                                (unsigned) (nb_pkt - nb_tx));
424                 fs->fwd_dropped += (nb_pkt - nb_tx);
425                 do {
426                         rte_pktmbuf_free(pkts_burst[nb_tx]);
427                 } while (++nb_tx < nb_pkt);
428         }
429
430         get_end_cycles(fs, start_tsc);
431 }
432
433 static int
434 tx_only_begin(portid_t pi)
435 {
436         uint16_t pkt_hdr_len, pkt_data_len;
437         int dynf;
438
439         pkt_hdr_len = (uint16_t)(sizeof(struct rte_ether_hdr) +
440                                  sizeof(struct rte_ipv4_hdr) +
441                                  sizeof(struct rte_udp_hdr));
442         pkt_data_len = tx_pkt_length - pkt_hdr_len;
443
444         if ((tx_pkt_split == TX_PKT_SPLIT_RND || txonly_multi_flow) &&
445             tx_pkt_seg_lengths[0] < pkt_hdr_len) {
446                 TESTPMD_LOG(ERR,
447                             "Random segment number or multiple flow is enabled, "
448                             "but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
449                             tx_pkt_seg_lengths[0], pkt_hdr_len);
450                 return -EINVAL;
451         }
452
453         setup_pkt_udp_ip_headers(&pkt_ip_hdr, &pkt_udp_hdr, pkt_data_len);
454
455         timestamp_enable = false;
456         timestamp_mask = 0;
457         timestamp_off = -1;
458         dynf = rte_mbuf_dynflag_lookup
459                                 (RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
460         if (dynf >= 0)
461                 timestamp_mask = 1ULL << dynf;
462         dynf = rte_mbuf_dynfield_lookup
463                                 (RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
464         if (dynf >= 0)
465                 timestamp_off = dynf;
466         timestamp_enable = tx_pkt_times_inter &&
467                            timestamp_mask &&
468                            timestamp_off >= 0 &&
469                            !rte_eth_read_clock(pi, &timestamp_initial[pi]);
470
471         if (timestamp_enable) {
472                 pkt_hdr_len += sizeof(struct tx_timestamp);
473
474                 if (tx_pkt_split == TX_PKT_SPLIT_RND) {
475                         if (tx_pkt_seg_lengths[0] < pkt_hdr_len) {
476                                 TESTPMD_LOG(ERR,
477                                             "Time stamp and random segment number are enabled, "
478                                             "but tx_pkt_seg_lengths[0] %u < %u (needed)\n",
479                                             tx_pkt_seg_lengths[0], pkt_hdr_len);
480                                 return -EINVAL;
481                         }
482                 } else {
483                         uint16_t total = 0;
484                         uint8_t i;
485
486                         for (i = 0; i < tx_pkt_nb_segs; i++) {
487                                 total += tx_pkt_seg_lengths[i];
488                                 if (total >= pkt_hdr_len)
489                                         break;
490                         }
491
492                         if (total < pkt_hdr_len) {
493                                 TESTPMD_LOG(ERR,
494                                             "Not enough Tx segment space for time stamp info, "
495                                             "total %u < %u (needed)\n",
496                                             total, pkt_hdr_len);
497                                 return -EINVAL;
498                         }
499                 }
500         }
501
502         /* Make sure all settings are visible on forwarding cores.*/
503         rte_wmb();
504         return 0;
505 }
506
507 static void
508 tx_only_stream_init(struct fwd_stream *fs)
509 {
510         fs->disabled = ports[fs->tx_port].txq[fs->tx_queue].state ==
511                                                 RTE_ETH_QUEUE_STATE_STOPPED;
512 }
513
514 struct fwd_engine tx_only_engine = {
515         .fwd_mode_name  = "txonly",
516         .port_fwd_begin = tx_only_begin,
517         .port_fwd_end   = NULL,
518         .stream_init    = tx_only_stream_init,
519         .packet_fwd     = pkt_burst_transmit,
520 };