1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2014-2018 Chelsio Communications.
14 #include <netinet/in.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
21 #include <rte_debug.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
34 #include <rte_kvargs.h>
45 * Allocate a chunk of memory. The allocated memory is cleared.
47 void *t4_alloc_mem(size_t size)
49 return rte_zmalloc(NULL, size, 0);
53 * Free memory allocated through t4_alloc_mem().
55 void t4_free_mem(void *addr)
61 * Response queue handler for the FW event queue.
63 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
64 __rte_unused const struct pkt_gl *gl)
66 u8 opcode = ((const struct rss_header *)rsp)->opcode;
68 rsp++; /* skip RSS header */
71 * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
73 if (unlikely(opcode == CPL_FW4_MSG &&
74 ((const struct cpl_fw4_msg *)rsp)->type ==
77 opcode = ((const struct rss_header *)rsp)->opcode;
79 if (opcode != CPL_SGE_EGR_UPDATE) {
80 dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
86 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
88 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
89 const struct cpl_fw6_msg *msg = (const void *)rsp;
91 t4_handle_fw_rpl(q->adapter, msg->data);
92 } else if (opcode == CPL_ABORT_RPL_RSS) {
93 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
95 hash_del_filter_rpl(q->adapter, p);
96 } else if (opcode == CPL_SET_TCB_RPL) {
97 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
99 filter_rpl(q->adapter, p);
100 } else if (opcode == CPL_ACT_OPEN_RPL) {
101 const struct cpl_act_open_rpl *p = (const void *)rsp;
103 hash_filter_rpl(q->adapter, p);
104 } else if (opcode == CPL_L2T_WRITE_RPL) {
105 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
107 do_l2t_write_rpl(q->adapter, p);
109 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
117 * Setup sge control queues to pass control information.
119 int setup_sge_ctrl_txq(struct adapter *adapter)
121 struct sge *s = &adapter->sge;
124 for_each_port(adapter, i) {
125 char name[RTE_ETH_NAME_MAX_LEN];
126 struct sge_ctrl_txq *q = &s->ctrlq[i];
129 err = t4_sge_alloc_ctrl_txq(adapter, q,
134 dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
138 snprintf(name, sizeof(name), "cxgbe_ctrl_pool_%d", i);
139 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
142 RTE_MBUF_DEFAULT_BUF_SIZE,
145 dev_err(adapter, "Can't create ctrl pool for port: %d",
153 t4_free_sge_resources(adapter);
158 * cxgbe_poll_for_completion: Poll rxq for completion
160 * @us: microseconds to delay
161 * @cnt: number of times to poll
162 * @c: completion to check for 'done' status
164 * Polls the rxq for reples until completion is done or the count
167 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int us,
168 unsigned int cnt, struct t4_completion *c)
171 unsigned int work_done, budget = 4;
176 for (i = 0; i < cnt; i++) {
177 cxgbe_poll(q, NULL, budget, &work_done);
178 t4_os_lock(&c->lock);
180 t4_os_unlock(&c->lock);
183 t4_os_unlock(&c->lock);
189 int setup_sge_fwevtq(struct adapter *adapter)
191 struct sge *s = &adapter->sge;
195 err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
196 msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
201 static int closest_timer(const struct sge *s, int time)
203 unsigned int i, match = 0;
204 int delta, min_delta = INT_MAX;
206 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
207 delta = time - s->timer_val[i];
210 if (delta < min_delta) {
218 static int closest_thres(const struct sge *s, int thres)
220 unsigned int i, match = 0;
221 int delta, min_delta = INT_MAX;
223 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
224 delta = thres - s->counter_val[i];
227 if (delta < min_delta) {
236 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
238 * @us: the hold-off time in us, or 0 to disable timer
239 * @cnt: the hold-off packet count, or 0 to disable counter
241 * Sets an Rx queue's interrupt hold-off time and packet count. At least
242 * one of the two needs to be enabled for the queue to generate interrupts.
244 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
247 struct adapter *adap = q->adapter;
248 unsigned int timer_val;
254 new_idx = closest_thres(&adap->sge, cnt);
255 if (q->desc && q->pktcnt_idx != new_idx) {
256 /* the queue has already been created, update it */
257 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
259 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
260 V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
261 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
266 q->pktcnt_idx = new_idx;
269 timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
270 closest_timer(&adap->sge, us);
273 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
275 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
276 V_QINTR_CNT_EN(cnt > 0);
281 * Allocate an active-open TID and set it to the supplied value.
283 int cxgbe_alloc_atid(struct tid_info *t, void *data)
287 t4_os_lock(&t->atid_lock);
289 union aopen_entry *p = t->afree;
291 atid = p - t->atid_tab;
296 t4_os_unlock(&t->atid_lock);
301 * Release an active-open TID.
303 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
305 union aopen_entry *p = &t->atid_tab[atid];
307 t4_os_lock(&t->atid_lock);
311 t4_os_unlock(&t->atid_lock);
315 * Populate a TID_RELEASE WR. Caller must properly size the skb.
317 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
319 struct cpl_tid_release *req;
321 req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
322 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
326 * Release a TID and inform HW. If we are unable to allocate the release
327 * message we defer to a work queue.
329 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
330 unsigned short family)
332 struct rte_mbuf *mbuf;
333 struct adapter *adap = container_of(t, struct adapter, tids);
335 WARN_ON(tid >= t->ntids);
337 if (t->tid_tab[tid]) {
338 t->tid_tab[tid] = NULL;
339 rte_atomic32_dec(&t->conns_in_use);
340 if (t->hash_base && tid >= t->hash_base) {
341 if (family == FILTER_TYPE_IPV4)
342 rte_atomic32_dec(&t->hash_tids_in_use);
344 if (family == FILTER_TYPE_IPV4)
345 rte_atomic32_dec(&t->tids_in_use);
349 mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
351 mbuf->data_len = sizeof(struct cpl_tid_release);
352 mbuf->pkt_len = mbuf->data_len;
353 mk_tid_release(mbuf, tid);
354 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
361 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
362 unsigned short family)
364 t->tid_tab[tid] = data;
365 if (t->hash_base && tid >= t->hash_base) {
366 if (family == FILTER_TYPE_IPV4)
367 rte_atomic32_inc(&t->hash_tids_in_use);
369 if (family == FILTER_TYPE_IPV4)
370 rte_atomic32_inc(&t->tids_in_use);
373 rte_atomic32_inc(&t->conns_in_use);
379 static void tid_free(struct tid_info *t)
383 rte_bitmap_free(t->ftid_bmap);
385 if (t->ftid_bmap_array)
386 t4_os_free(t->ftid_bmap_array);
388 t4_os_free(t->tid_tab);
391 memset(t, 0, sizeof(struct tid_info));
395 * Allocate and initialize the TID tables. Returns 0 on success.
397 static int tid_init(struct tid_info *t)
400 unsigned int ftid_bmap_size;
401 unsigned int natids = t->natids;
402 unsigned int max_ftids = t->nftids;
404 ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
405 size = t->ntids * sizeof(*t->tid_tab) +
406 max_ftids * sizeof(*t->ftid_tab) +
407 natids * sizeof(*t->atid_tab);
409 t->tid_tab = t4_os_alloc(size);
413 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
414 t->ftid_tab = (struct filter_entry *)&t->tid_tab[t->natids];
415 t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
416 if (!t->ftid_bmap_array) {
421 t4_os_lock_init(&t->atid_lock);
422 t4_os_lock_init(&t->ftid_lock);
426 rte_atomic32_init(&t->tids_in_use);
427 rte_atomic32_set(&t->tids_in_use, 0);
428 rte_atomic32_init(&t->conns_in_use);
429 rte_atomic32_set(&t->conns_in_use, 0);
431 /* Setup the free list for atid_tab and clear the stid bitmap. */
434 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
435 t->afree = t->atid_tab;
438 t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
448 static inline bool is_x_1g_port(const struct link_config *lc)
450 return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
453 static inline bool is_x_10g_port(const struct link_config *lc)
455 unsigned int speeds, high_speeds;
457 speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
458 high_speeds = speeds &
459 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
461 return high_speeds != 0;
464 inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
465 unsigned int us, unsigned int cnt,
466 unsigned int size, unsigned int iqe_size)
469 cxgb4_set_rspq_intr_params(q, us, cnt);
470 q->iqe_len = iqe_size;
474 int cfg_queue_count(struct rte_eth_dev *eth_dev)
476 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
477 struct adapter *adap = pi->adapter;
478 struct sge *s = &adap->sge;
479 unsigned int max_queues = s->max_ethqsets / adap->params.nports;
481 if ((eth_dev->data->nb_rx_queues < 1) ||
482 (eth_dev->data->nb_tx_queues < 1))
485 if ((eth_dev->data->nb_rx_queues > max_queues) ||
486 (eth_dev->data->nb_tx_queues > max_queues))
489 if (eth_dev->data->nb_rx_queues > pi->rss_size)
492 /* We must configure RSS, since config has changed*/
493 pi->flags &= ~PORT_RSS_DONE;
495 pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
496 pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
501 void cfg_queues(struct rte_eth_dev *eth_dev)
503 struct rte_config *config = rte_eal_get_configuration();
504 struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
505 struct adapter *adap = pi->adapter;
506 struct sge *s = &adap->sge;
507 unsigned int i, nb_ports = 0, qidx = 0;
508 unsigned int q_per_port = 0;
510 if (!(adap->flags & CFG_QUEUES)) {
511 for_each_port(adap, i) {
512 struct port_info *tpi = adap2pinfo(adap, i);
514 nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
515 is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
519 * We default up to # of cores queues per 1G/10G port.
522 q_per_port = (s->max_ethqsets -
523 (adap->params.nports - nb_ports)) /
526 if (q_per_port > config->lcore_count)
527 q_per_port = config->lcore_count;
529 for_each_port(adap, i) {
530 struct port_info *pi = adap2pinfo(adap, i);
532 pi->first_qset = qidx;
534 /* Initially n_rx_qsets == n_tx_qsets */
535 pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
536 is_x_1g_port(&pi->link_cfg)) ?
538 pi->n_tx_qsets = pi->n_rx_qsets;
540 if (pi->n_rx_qsets > pi->rss_size)
541 pi->n_rx_qsets = pi->rss_size;
543 qidx += pi->n_rx_qsets;
546 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
547 struct sge_eth_rxq *r = &s->ethrxq[i];
549 init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
551 r->fl.size = (r->usembufs ? 1024 : 72);
554 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
555 s->ethtxq[i].q.size = 1024;
557 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
558 adap->flags |= CFG_QUEUES;
562 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
564 t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
568 void cxgbe_stats_reset(struct port_info *pi)
570 t4_clr_port_stats(pi->adapter, pi->tx_chan);
573 static void setup_memwin(struct adapter *adap)
577 /* For T5, only relative offset inside the PCIe BAR is passed */
578 mem_win0_base = MEMWIN0_BASE;
581 * Set up memory window for accessing adapter memory ranges. (Read
582 * back MA register to ensure that changes propagate before we attempt
583 * to use the new values.)
586 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
588 mem_win0_base | V_BIR(0) |
589 V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
591 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
595 int init_rss(struct adapter *adap)
602 err = t4_init_rss_mode(adap, adap->mbox);
607 for_each_port(adap, i) {
608 struct port_info *pi = adap2pinfo(adap, i);
610 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
614 pi->rss_hf = CXGBE_RSS_HF_ALL;
620 * Dump basic information about the adapter.
622 void print_adapter_info(struct adapter *adap)
625 * Hardware/Firmware/etc. Version/Revision IDs.
627 t4_dump_version_info(adap);
630 void print_port_info(struct adapter *adap)
634 struct rte_pci_addr *loc = &adap->pdev->addr;
636 for_each_port(adap, i) {
637 const struct port_info *pi = adap2pinfo(adap, i);
640 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
641 bufp += sprintf(bufp, "100M/");
642 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
643 bufp += sprintf(bufp, "1G/");
644 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
645 bufp += sprintf(bufp, "10G/");
646 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
647 bufp += sprintf(bufp, "25G/");
648 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
649 bufp += sprintf(bufp, "40G/");
650 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
651 bufp += sprintf(bufp, "50G/");
652 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
653 bufp += sprintf(bufp, "100G/");
656 sprintf(bufp, "BASE-%s",
657 t4_get_port_type_description(
658 (enum fw_port_type)pi->port_type));
661 " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
662 loc->domain, loc->bus, loc->devid, loc->function,
663 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
664 (adap->flags & USING_MSIX) ? " MSI-X" :
665 (adap->flags & USING_MSI) ? " MSI" : "");
670 check_devargs_handler(__rte_unused const char *key, const char *value,
671 __rte_unused void *opaque)
673 if (strcmp(value, "1"))
679 int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key)
681 struct rte_kvargs *kvlist;
686 kvlist = rte_kvargs_parse(devargs->args, NULL);
690 if (!rte_kvargs_count(kvlist, key)) {
691 rte_kvargs_free(kvlist);
695 if (rte_kvargs_process(kvlist, key,
696 check_devargs_handler, NULL) < 0) {
697 rte_kvargs_free(kvlist);
700 rte_kvargs_free(kvlist);
705 static void configure_vlan_types(struct adapter *adapter)
707 struct rte_pci_device *pdev = adapter->pdev;
710 for_each_port(adapter, i) {
711 /* OVLAN Type 0x88a8 */
712 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
713 V_OVLAN_MASK(M_OVLAN_MASK) |
714 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
715 V_OVLAN_MASK(M_OVLAN_MASK) |
716 V_OVLAN_ETYPE(0x88a8));
717 /* OVLAN Type 0x9100 */
718 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
719 V_OVLAN_MASK(M_OVLAN_MASK) |
720 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
721 V_OVLAN_MASK(M_OVLAN_MASK) |
722 V_OVLAN_ETYPE(0x9100));
723 /* OVLAN Type 0x8100 */
724 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2),
725 V_OVLAN_MASK(M_OVLAN_MASK) |
726 V_OVLAN_ETYPE(M_OVLAN_ETYPE),
727 V_OVLAN_MASK(M_OVLAN_MASK) |
728 V_OVLAN_ETYPE(0x8100));
731 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
732 V_IVLAN_ETYPE(M_IVLAN_ETYPE),
733 V_IVLAN_ETYPE(0x8100));
735 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
736 F_OVLAN_EN0 | F_OVLAN_EN1 |
737 F_OVLAN_EN2 | F_IVLAN_EN,
738 F_OVLAN_EN0 | F_OVLAN_EN1 |
739 F_OVLAN_EN2 | F_IVLAN_EN);
742 if (cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_KEEP_OVLAN))
743 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
744 V_RM_OVLAN(1), V_RM_OVLAN(0));
747 static void configure_pcie_ext_tag(struct adapter *adapter)
750 int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
756 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
757 v |= PCI_EXP_DEVCTL_EXT_TAG;
758 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
759 if (is_t6(adapter->params.chip)) {
760 t4_set_reg_field(adapter, A_PCIE_CFG2,
761 V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
763 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
764 V_T6_MINTAG(M_T6_MINTAG),
767 t4_set_reg_field(adapter, A_PCIE_CFG2,
768 V_TOTMAXTAG(M_TOTMAXTAG),
770 t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
777 /* Figure out how many Queue Sets we can support */
778 void configure_max_ethqsets(struct adapter *adapter)
780 unsigned int ethqsets;
783 * We need to reserve an Ingress Queue for the Asynchronous Firmware
786 * For each Queue Set, we'll need the ability to allocate two Egress
787 * Contexts -- one for the Ingress Queue Free List and one for the TX
790 if (is_pf4(adapter)) {
791 struct pf_resources *pfres = &adapter->params.pfres;
793 ethqsets = pfres->niqflint - 1;
794 if (pfres->neq < ethqsets * 2)
795 ethqsets = pfres->neq / 2;
797 struct vf_resources *vfres = &adapter->params.vfres;
799 ethqsets = vfres->niqflint - 1;
800 if (vfres->nethctrl != ethqsets)
801 ethqsets = min(vfres->nethctrl, ethqsets);
802 if (vfres->neq < ethqsets * 2)
803 ethqsets = vfres->neq / 2;
806 if (ethqsets > MAX_ETH_QSETS)
807 ethqsets = MAX_ETH_QSETS;
808 adapter->sge.max_ethqsets = ethqsets;
812 * Tweak configuration based on system architecture, etc. Most of these have
813 * defaults assigned to them by Firmware Configuration Files (if we're using
814 * them) but need to be explicitly set if we're using hard-coded
815 * initialization. So these are essentially common tweaks/settings for
816 * Configuration Files and hard-coded initialization ...
818 static int adap_init0_tweaks(struct adapter *adapter)
823 * Fix up various Host-Dependent Parameters like Page Size, Cache
824 * Line Size, etc. The firmware default is for a 4KB Page Size and
825 * 64B Cache Line Size ...
827 t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
831 * Keep the chip default offset to deliver Ingress packets into our
832 * DMA buffers to zero
835 t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
836 V_PKTSHIFT(rx_dma_offset));
838 t4_set_reg_field(adapter, A_SGE_FLM_CFG,
839 V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
840 V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
842 t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
843 V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
845 t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
846 V_IDMAARBROUNDROBIN(1U));
849 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
850 * adds the pseudo header itself.
852 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
853 F_CSUM_HAS_PSEUDO_HDR, 0);
859 * Attempt to initialize the adapter via a Firmware Configuration File.
861 static int adap_init0_config(struct adapter *adapter, int reset)
863 struct fw_caps_config_cmd caps_cmd;
864 unsigned long mtype = 0, maddr = 0;
865 u32 finiver, finicsum, cfcsum;
867 int config_issued = 0;
869 char config_name[20];
872 * Reset device if necessary.
875 ret = t4_fw_reset(adapter, adapter->mbox,
876 F_PIORSTMODE | F_PIORST);
878 dev_warn(adapter, "Firmware reset failed, error %d\n",
884 cfg_addr = t4_flash_cfg_addr(adapter);
887 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
892 strcpy(config_name, "On Flash");
893 mtype = FW_MEMTYPE_CF_FLASH;
897 * Issue a Capability Configuration command to the firmware to get it
898 * to parse the Configuration File. We don't use t4_fw_config_file()
899 * because we want the ability to modify various features after we've
900 * processed the configuration file ...
902 memset(&caps_cmd, 0, sizeof(caps_cmd));
903 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
904 F_FW_CMD_REQUEST | F_FW_CMD_READ);
905 caps_cmd.cfvalid_to_len16 =
906 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
907 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
908 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
910 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
913 * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
914 * Configuration File in FLASH), our last gasp effort is to use the
915 * Firmware Configuration File which is embedded in the firmware. A
916 * very few early versions of the firmware didn't have one embedded
917 * but we can ignore those.
919 if (ret == -ENOENT) {
920 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
923 memset(&caps_cmd, 0, sizeof(caps_cmd));
924 caps_cmd.op_to_write =
925 cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
926 F_FW_CMD_REQUEST | F_FW_CMD_READ);
927 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
928 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
929 sizeof(caps_cmd), &caps_cmd);
930 strcpy(config_name, "Firmware Default");
937 finiver = be32_to_cpu(caps_cmd.finiver);
938 finicsum = be32_to_cpu(caps_cmd.finicsum);
939 cfcsum = be32_to_cpu(caps_cmd.cfcsum);
940 if (finicsum != cfcsum)
941 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
945 * If we're a pure NIC driver then disable all offloading facilities.
946 * This will allow the firmware to optimize aspects of the hardware
947 * configuration which will result in improved performance.
949 caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
950 caps_cmd.toecaps = 0;
951 caps_cmd.iscsicaps = 0;
952 caps_cmd.rdmacaps = 0;
953 caps_cmd.fcoecaps = 0;
956 * And now tell the firmware to use the configuration we just loaded.
958 caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
959 F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
960 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
961 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
964 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
970 * Tweak configuration based on system architecture, etc.
972 ret = adap_init0_tweaks(adapter);
974 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
979 * And finally tell the firmware to initialize itself using the
980 * parameters from the Configuration File.
982 ret = t4_fw_initialize(adapter, adapter->mbox);
984 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
990 * Return successfully and note that we're operating with parameters
991 * not supplied by the driver, rather than from hard-wired
992 * initialization constants buried in the driver.
995 "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
996 config_name, finiver, cfcsum);
1001 * Something bad happened. Return the error ... (If the "error"
1002 * is that there's no Configuration File on the adapter we don't
1003 * want to issue a warning since this is fairly common.)
1006 if (config_issued && ret != -ENOENT)
1007 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1010 dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1014 static int adap_init0(struct adapter *adap)
1016 struct fw_caps_config_cmd caps_cmd;
1019 enum dev_state state;
1020 u32 params[7], val[7];
1022 int mbox = adap->mbox;
1025 * Contact FW, advertising Master capability.
1027 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1029 dev_err(adap, "%s: could not connect to FW, error %d\n",
1034 CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1038 adap->flags |= MASTER_PF;
1040 if (state == DEV_STATE_INIT) {
1042 * Force halt and reset FW because a previous instance may have
1043 * exited abnormally without properly shutting down
1045 ret = t4_fw_halt(adap, adap->mbox, reset);
1047 dev_err(adap, "Failed to halt. Exit.\n");
1051 ret = t4_fw_restart(adap, adap->mbox, reset);
1053 dev_err(adap, "Failed to restart. Exit.\n");
1056 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1059 t4_get_version_info(adap);
1061 ret = t4_get_core_clock(adap, &adap->params.vpd);
1063 dev_err(adap, "%s: could not get core clock, error %d\n",
1069 * If the firmware is initialized already (and we're not forcing a
1070 * master initialization), note that we're living with existing
1071 * adapter parameters. Otherwise, it's time to try initializing the
1074 if (state == DEV_STATE_INIT) {
1075 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1076 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1078 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1080 ret = adap_init0_config(adap, reset);
1081 if (ret == -ENOENT) {
1083 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1088 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1092 /* Now that we've successfully configured and initialized the adapter
1093 * (or found it already initialized), we can ask the Firmware what
1094 * resources it has provisioned for us.
1096 ret = t4_get_pfres(adap);
1098 dev_err(adap->pdev_dev,
1099 "Unable to retrieve resource provisioning info\n");
1103 /* Find out what ports are available to us. */
1104 v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1105 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1106 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1108 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1113 adap->params.nports = hweight32(port_vec);
1114 adap->params.portvec = port_vec;
1116 dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1117 adap->params.nports);
1120 * Give the SGE code a chance to pull in anything that it needs ...
1121 * Note that this must be called after we retrieve our VPD parameters
1122 * in order to know how to convert core ticks to seconds, etc.
1124 ret = t4_sge_init(adap);
1126 dev_err(adap, "t4_sge_init failed with error %d\n",
1132 * Grab some of our basic fundamental operating parameters.
1134 #define FW_PARAM_DEV(param) \
1135 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
1136 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
1138 #define FW_PARAM_PFVF(param) \
1139 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
1140 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
1141 V_FW_PARAMS_PARAM_Y(0) | \
1142 V_FW_PARAMS_PARAM_Z(0))
1144 params[0] = FW_PARAM_PFVF(L2T_START);
1145 params[1] = FW_PARAM_PFVF(L2T_END);
1146 params[2] = FW_PARAM_PFVF(FILTER_START);
1147 params[3] = FW_PARAM_PFVF(FILTER_END);
1148 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1151 adap->l2t_start = val[0];
1152 adap->l2t_end = val[1];
1153 adap->tids.ftid_base = val[2];
1154 adap->tids.nftids = val[3] - val[2] + 1;
1156 params[0] = FW_PARAM_PFVF(CLIP_START);
1157 params[1] = FW_PARAM_PFVF(CLIP_END);
1158 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1161 adap->clipt_start = val[0];
1162 adap->clipt_end = val[1];
1165 * Get device capabilities so we can determine what resources we need
1168 memset(&caps_cmd, 0, sizeof(caps_cmd));
1169 caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1170 F_FW_CMD_REQUEST | F_FW_CMD_READ);
1171 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1172 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1177 if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1178 is_t6(adap->params.chip)) {
1179 if (init_hash_filter(adap) < 0)
1183 /* See if FW supports FW_FILTER2 work request */
1184 if (is_t4(adap->params.chip)) {
1185 adap->params.filter2_wr_support = 0;
1187 params[0] = FW_PARAM_DEV(FILTER2_WR);
1188 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1190 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1193 /* query tid-related parameters */
1194 params[0] = FW_PARAM_DEV(NTID);
1195 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1199 adap->tids.ntids = val[0];
1200 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1202 /* If we're running on newer firmware, let it know that we're
1203 * prepared to deal with encapsulated CPL messages. Older
1204 * firmware won't understand this and we'll just get
1205 * unencapsulated messages ...
1207 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1209 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1212 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1213 * capability. Earlier versions of the firmware didn't have the
1214 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1215 * permission to use ULPTX MEMWRITE DSGL.
1217 if (is_t4(adap->params.chip)) {
1218 adap->params.ulptx_memwrite_dsgl = false;
1220 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1221 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1223 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1227 * The MTU/MSS Table is initialized by now, so load their values. If
1228 * we're initializing the adapter, then we'll make any modifications
1229 * we want to the MTU/MSS Table and also initialize the congestion
1232 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1233 if (state != DEV_STATE_INIT) {
1237 * The default MTU Table contains values 1492 and 1500.
1238 * However, for TCP, it's better to have two values which are
1239 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1240 * This allows us to have a TCP Data Payload which is a
1241 * multiple of 8 regardless of what combination of TCP Options
1242 * are in use (always a multiple of 4 bytes) which is
1243 * important for performance reasons. For instance, if no
1244 * options are in use, then we have a 20-byte IP header and a
1245 * 20-byte TCP header. In this case, a 1500-byte MSS would
1246 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1247 * which is not a multiple of 8. So using an MSS of 1488 in
1248 * this case results in a TCP Data Payload of 1448 bytes which
1249 * is a multiple of 8. On the other hand, if 12-byte TCP Time
1250 * Stamps have been negotiated, then an MTU of 1500 bytes
1251 * results in a TCP Data Payload of 1448 bytes which, as
1252 * above, is a multiple of 8 bytes ...
1254 for (i = 0; i < NMTUS; i++)
1255 if (adap->params.mtus[i] == 1492) {
1256 adap->params.mtus[i] = 1488;
1260 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1261 adap->params.b_wnd);
1263 t4_init_sge_params(adap);
1264 t4_init_tp_params(adap);
1265 configure_pcie_ext_tag(adap);
1266 configure_vlan_types(adap);
1267 configure_max_ethqsets(adap);
1269 adap->params.drv_memwin = MEMWIN_NIC;
1270 adap->flags |= FW_OK;
1271 dev_debug(adap, "%s: returning zero..\n", __func__);
1275 * Something bad happened. If a command timed out or failed with EIO
1276 * FW does not operate within its spec or something catastrophic
1277 * happened to HW/FW, stop issuing commands.
1280 if (ret != -ETIMEDOUT && ret != -EIO)
1281 t4_fw_bye(adap, adap->mbox);
1286 * t4_os_portmod_changed - handle port module changes
1287 * @adap: the adapter associated with the module change
1288 * @port_id: the port index whose module status has changed
1290 * This is the OS-dependent handler for port module changes. It is
1291 * invoked when a port module is removed or inserted for any OS-specific
1294 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1296 static const char * const mod_str[] = {
1297 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1300 const struct port_info *pi = adap2pinfo(adap, port_id);
1302 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1303 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1304 else if (pi->mod_type < ARRAY_SIZE(mod_str))
1305 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1306 mod_str[pi->mod_type]);
1307 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1308 dev_info(adap, "Port%d: unsupported port module inserted\n",
1310 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1311 dev_info(adap, "Port%d: unknown port module inserted\n",
1313 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1314 dev_info(adap, "Port%d: transceiver module error\n",
1317 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1318 pi->port_id, pi->mod_type);
1321 inline bool force_linkup(struct adapter *adap)
1323 struct rte_pci_device *pdev = adap->pdev;
1326 return false; /* force_linkup not required for pf driver*/
1327 if (!cxgbe_get_devargs(pdev->device.devargs,
1328 CXGBE_DEVARG_FORCE_LINK_UP))
1334 * link_start - enable a port
1335 * @dev: the port to enable
1337 * Performs the MAC and PHY actions needed to enable a port.
1339 int link_start(struct port_info *pi)
1341 struct adapter *adapter = pi->adapter;
1345 mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1346 (ETHER_HDR_LEN + ETHER_CRC_LEN);
1349 * We do not set address filters and promiscuity here, the stack does
1350 * that step explicitly.
1352 ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1,
1355 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1356 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1358 pi->xact_addr_filt = ret;
1362 if (ret == 0 && is_pf4(adapter))
1363 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1367 * Enabling a Virtual Interface can result in an interrupt
1368 * during the processing of the VI Enable command and, in some
1369 * paths, result in an attempt to issue another command in the
1370 * interrupt context. Thus, we disable interrupts during the
1371 * course of the VI Enable command ...
1373 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1377 if (ret == 0 && force_linkup(adapter))
1378 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1383 * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1385 * @rss_hf: Hash configuration to apply
1387 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1389 struct adapter *adapter = pi->adapter;
1390 const struct sge_eth_rxq *rxq;
1395 /* Should never be called before setting up sge eth rx queues */
1396 if (!(adapter->flags & FULL_INIT_DONE)) {
1397 dev_err(adap, "%s No RXQs available on port %d\n",
1398 __func__, pi->port_id);
1402 /* Don't allow unsupported hash functions */
1403 if (rss_hf & ~CXGBE_RSS_HF_ALL)
1406 if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1407 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1409 if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1410 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1412 if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1413 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1414 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1416 if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1417 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1419 if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1420 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1421 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1423 if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1424 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1425 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1426 F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1428 rxq = &adapter->sge.ethrxq[pi->first_qset];
1429 rss = rxq[0].rspq.abs_id;
1431 /* If Tunnel All Lookup isn't specified in the global RSS
1432 * Configuration, then we need to specify a default Ingress
1433 * Queue for any ingress packets which aren't hashed. We'll
1434 * use our first ingress queue ...
1436 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1442 * cxgbe_write_rss - write the RSS table for a given port
1444 * @queues: array of queue indices for RSS
1446 * Sets up the portion of the HW RSS table for the port's VI to distribute
1447 * packets to the Rx queues in @queues.
1449 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1453 struct adapter *adapter = pi->adapter;
1454 const struct sge_eth_rxq *rxq;
1456 /* Should never be called before setting up sge eth rx queues */
1457 BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1459 rxq = &adapter->sge.ethrxq[pi->first_qset];
1460 rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1464 /* map the queue indices to queue ids */
1465 for (i = 0; i < pi->rss_size; i++, queues++)
1466 rss[i] = rxq[*queues].rspq.abs_id;
1468 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1469 pi->rss_size, rss, pi->rss_size);
1475 * setup_rss - configure RSS
1476 * @adapter: the adapter
1478 * Sets up RSS to distribute packets to multiple receive queues. We
1479 * configure the RSS CPU lookup table to distribute to the number of HW
1480 * receive queues, and the response queue lookup table to narrow that
1481 * down to the response queues actually configured for each port.
1482 * We always configure the RSS mapping for all ports since the mapping
1483 * table has plenty of entries.
1485 int setup_rss(struct port_info *pi)
1488 struct adapter *adapter = pi->adapter;
1490 dev_debug(adapter, "%s: pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1491 __func__, pi->rss_size, pi->n_rx_qsets);
1493 if (!(pi->flags & PORT_RSS_DONE)) {
1494 if (adapter->flags & FULL_INIT_DONE) {
1495 /* Fill default values with equal distribution */
1496 for (j = 0; j < pi->rss_size; j++)
1497 pi->rss[j] = j % pi->n_rx_qsets;
1499 err = cxgbe_write_rss(pi, pi->rss);
1503 err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1506 pi->flags |= PORT_RSS_DONE;
1513 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1515 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1517 /* 0-increment GTS to start the timer and enable interrupts */
1518 t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1519 T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1520 V_SEINTARM(q->intr_params) |
1521 V_INGRESSQID(q->cntxt_id));
1524 void cxgbe_enable_rx_queues(struct port_info *pi)
1526 struct adapter *adap = pi->adapter;
1527 struct sge *s = &adap->sge;
1530 for (i = 0; i < pi->n_rx_qsets; i++)
1531 enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1535 * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1536 * @port_type: Firmware Port Type
1537 * @fw_caps: Firmware Port Capabilities
1538 * @speed_caps: Device Info Speed Capabilities
1540 * Translate a Firmware Port Capabilities specification to Device Info
1541 * Speed Capabilities.
1543 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1544 unsigned int fw_caps,
1547 #define SET_SPEED(__speed_name) \
1549 *speed_caps |= ETH_LINK_ ## __speed_name; \
1552 #define FW_CAPS_TO_SPEED(__fw_name) \
1554 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1555 SET_SPEED(__fw_name); \
1558 switch (port_type) {
1559 case FW_PORT_TYPE_BT_SGMII:
1560 case FW_PORT_TYPE_BT_XFI:
1561 case FW_PORT_TYPE_BT_XAUI:
1562 FW_CAPS_TO_SPEED(SPEED_100M);
1563 FW_CAPS_TO_SPEED(SPEED_1G);
1564 FW_CAPS_TO_SPEED(SPEED_10G);
1567 case FW_PORT_TYPE_KX4:
1568 case FW_PORT_TYPE_KX:
1569 case FW_PORT_TYPE_FIBER_XFI:
1570 case FW_PORT_TYPE_FIBER_XAUI:
1571 case FW_PORT_TYPE_SFP:
1572 case FW_PORT_TYPE_QSFP_10G:
1573 case FW_PORT_TYPE_QSA:
1574 FW_CAPS_TO_SPEED(SPEED_1G);
1575 FW_CAPS_TO_SPEED(SPEED_10G);
1578 case FW_PORT_TYPE_KR:
1579 SET_SPEED(SPEED_10G);
1582 case FW_PORT_TYPE_BP_AP:
1583 case FW_PORT_TYPE_BP4_AP:
1584 SET_SPEED(SPEED_1G);
1585 SET_SPEED(SPEED_10G);
1588 case FW_PORT_TYPE_BP40_BA:
1589 case FW_PORT_TYPE_QSFP:
1590 SET_SPEED(SPEED_40G);
1593 case FW_PORT_TYPE_CR_QSFP:
1594 case FW_PORT_TYPE_SFP28:
1595 case FW_PORT_TYPE_KR_SFP28:
1596 FW_CAPS_TO_SPEED(SPEED_1G);
1597 FW_CAPS_TO_SPEED(SPEED_10G);
1598 FW_CAPS_TO_SPEED(SPEED_25G);
1601 case FW_PORT_TYPE_CR2_QSFP:
1602 SET_SPEED(SPEED_50G);
1605 case FW_PORT_TYPE_KR4_100G:
1606 case FW_PORT_TYPE_CR4_QSFP:
1607 FW_CAPS_TO_SPEED(SPEED_25G);
1608 FW_CAPS_TO_SPEED(SPEED_40G);
1609 FW_CAPS_TO_SPEED(SPEED_50G);
1610 FW_CAPS_TO_SPEED(SPEED_100G);
1617 #undef FW_CAPS_TO_SPEED
1622 * cxgbe_get_speed_caps - Fetch supported speed capabilities
1623 * @pi: Underlying port's info
1624 * @speed_caps: Device Info speed capabilities
1626 * Fetch supported speed capabilities of the underlying port.
1628 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1632 fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1635 if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1636 *speed_caps |= ETH_LINK_SPEED_FIXED;
1640 * cxgbe_set_link_status - Set device link up or down.
1641 * @pi: Underlying port's info
1642 * @status: 0 - down, 1 - up
1644 * Set the device link up or down.
1646 int cxgbe_set_link_status(struct port_info *pi, bool status)
1648 struct adapter *adapter = pi->adapter;
1651 err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1653 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1658 t4_reset_link_config(adapter, pi->pidx);
1664 * cxgb_up - enable the adapter
1665 * @adap: adapter being enabled
1667 * Called when the first port is enabled, this function performs the
1668 * actions necessary to make an adapter operational, such as completing
1669 * the initialization of HW modules, and enabling interrupts.
1671 int cxgbe_up(struct adapter *adap)
1673 enable_rx(adap, &adap->sge.fw_evtq);
1674 t4_sge_tx_monitor_start(adap);
1676 t4_intr_enable(adap);
1677 adap->flags |= FULL_INIT_DONE;
1679 /* TODO: deadman watchdog ?? */
1686 int cxgbe_down(struct port_info *pi)
1688 return cxgbe_set_link_status(pi, false);
1692 * Release resources when all the ports have been stopped.
1694 void cxgbe_close(struct adapter *adapter)
1696 struct port_info *pi;
1699 if (adapter->flags & FULL_INIT_DONE) {
1700 tid_free(&adapter->tids);
1701 t4_cleanup_mpstcam(adapter);
1702 t4_cleanup_clip_tbl(adapter);
1703 t4_cleanup_l2t(adapter);
1704 if (is_pf4(adapter))
1705 t4_intr_disable(adapter);
1706 t4_sge_tx_monitor_stop(adapter);
1707 t4_free_sge_resources(adapter);
1708 for_each_port(adapter, i) {
1709 pi = adap2pinfo(adapter, i);
1711 t4_free_vi(adapter, adapter->mbox,
1712 adapter->pf, 0, pi->viid);
1713 rte_eth_dev_release_port(pi->eth_dev);
1715 adapter->flags &= ~FULL_INIT_DONE;
1718 if (is_pf4(adapter) && (adapter->flags & FW_OK))
1719 t4_fw_bye(adapter, adapter->mbox);
1722 int cxgbe_probe(struct adapter *adapter)
1724 struct port_info *pi;
1730 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1731 chip = t4_get_chip_type(adapter,
1732 CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1736 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1737 G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1739 adapter->mbox = func;
1742 t4_os_lock_init(&adapter->mbox_lock);
1743 TAILQ_INIT(&adapter->mbox_list);
1744 t4_os_lock_init(&adapter->win0_lock);
1746 err = t4_prep_adapter(adapter);
1750 setup_memwin(adapter);
1751 err = adap_init0(adapter);
1753 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1758 if (!is_t4(adapter->params.chip)) {
1760 * The userspace doorbell BAR is split evenly into doorbell
1761 * regions, each associated with an egress queue. If this
1762 * per-queue region is large enough (at least UDBS_SEG_SIZE)
1763 * then it can be used to submit a tx work request with an
1764 * implied doorbell. Enable write combining on the BAR if
1765 * there is room for such work requests.
1767 int s_qpp, qpp, num_seg;
1769 s_qpp = (S_QUEUESPERPAGEPF0 +
1770 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1772 qpp = 1 << ((t4_read_reg(adapter,
1773 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1774 & M_QUEUESPERPAGEPF0);
1775 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1777 dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1779 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1780 if (!adapter->bar2) {
1781 dev_err(adapter, "cannot map device bar2 region\n");
1785 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1789 for_each_port(adapter, i) {
1790 const unsigned int numa_node = rte_socket_id();
1791 char name[RTE_ETH_NAME_MAX_LEN];
1792 struct rte_eth_dev *eth_dev;
1794 snprintf(name, sizeof(name), "%s_%d",
1795 adapter->pdev->device.name, i);
1798 /* First port is already allocated by DPDK */
1799 eth_dev = adapter->eth_dev;
1804 * now do all data allocation - for eth_dev structure,
1805 * and internal (private) data for the remaining ports
1808 /* reserve an ethdev entry */
1809 eth_dev = rte_eth_dev_allocate(name);
1813 eth_dev->data->dev_private =
1814 rte_zmalloc_socket(name, sizeof(struct port_info),
1815 RTE_CACHE_LINE_SIZE, numa_node);
1816 if (!eth_dev->data->dev_private)
1820 pi = (struct port_info *)eth_dev->data->dev_private;
1821 adapter->port[i] = pi;
1822 pi->eth_dev = eth_dev;
1823 pi->adapter = adapter;
1824 pi->xact_addr_filt = -1;
1828 pi->eth_dev->device = &adapter->pdev->device;
1829 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1830 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1831 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1833 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1835 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1837 if (!pi->eth_dev->data->mac_addrs) {
1838 dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1845 /* First port will be notified by upper layer */
1846 rte_eth_dev_probing_finish(eth_dev);
1850 if (adapter->flags & FW_OK) {
1851 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1853 dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1859 cfg_queues(adapter->eth_dev);
1861 print_adapter_info(adapter);
1862 print_port_info(adapter);
1864 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1865 adapter->clipt_end);
1866 if (!adapter->clipt) {
1867 /* We tolerate a lack of clip_table, giving up some
1870 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1873 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1874 if (!adapter->l2t) {
1875 /* We tolerate a lack of L2T, giving up some functionality */
1876 dev_warn(adapter, "could not allocate L2T. Continuing\n");
1879 if (tid_init(&adapter->tids) < 0) {
1880 /* Disable filtering support */
1881 dev_warn(adapter, "could not allocate TID table, "
1882 "filter support disabled. Continuing\n");
1885 adapter->mpstcam = t4_init_mpstcam(adapter);
1886 if (!adapter->mpstcam)
1887 dev_warn(adapter, "could not allocate mps tcam table."
1890 if (is_hashfilter(adapter)) {
1891 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1892 u32 hash_base, hash_reg;
1894 hash_reg = A_LE_DB_TID_HASHBASE;
1895 hash_base = t4_read_reg(adapter, hash_reg);
1896 adapter->tids.hash_base = hash_base / 4;
1899 /* Disable hash filtering support */
1901 "Maskless filter support disabled. Continuing\n");
1904 err = init_rss(adapter);
1911 for_each_port(adapter, i) {
1912 pi = adap2pinfo(adapter, i);
1914 t4_free_vi(adapter, adapter->mbox, adapter->pf,
1916 rte_eth_dev_release_port(pi->eth_dev);
1919 if (adapter->flags & FW_OK)
1920 t4_fw_bye(adapter, adapter->mbox);