doc: show how to include code in guides
[dpdk.git] / doc / guides / bbdevs / fpga_lte_fec.rst
1 ..  SPDX-License-Identifier: BSD-3-Clause
2     Copyright(c) 2019 Intel Corporation
3
4 Intel(R) FPGA LTE FEC Poll Mode Driver
5 ======================================
6
7 The BBDEV FPGA LTE FEC poll mode driver (PMD) supports an FPGA implementation of a VRAN
8 Turbo Encode / Decode LTE wireless acceleration function, using Intel's PCI-e and FPGA
9 based Vista Creek device.
10
11 Features
12 --------
13
14 FPGA LTE FEC PMD supports the following features:
15
16 - Turbo Encode in the DL with total throughput of 4.5 Gbits/s
17 - Turbo Decode in the UL with total throughput of 1.5 Gbits/s assuming 8 decoder iterations
18 - 8 VFs per PF (physical device)
19 - Maximum of 32 UL queues per VF
20 - Maximum of 32 DL queues per VF
21 - PCIe Gen-3 x8 Interface
22 - MSI-X
23 - SR-IOV
24
25
26 FPGA LTE FEC PMD supports the following BBDEV capabilities:
27
28 * For the turbo encode operation:
29    - ``RTE_BBDEV_TURBO_CRC_24B_ATTACH`` :  set to attach CRC24B to CB(s)
30    - ``RTE_BBDEV_TURBO_RATE_MATCH`` :  if set then do not do Rate Match bypass
31    - ``RTE_BBDEV_TURBO_ENC_INTERRUPTS`` :  set for encoder dequeue interrupts
32
33
34 * For the turbo decode operation:
35    - ``RTE_BBDEV_TURBO_CRC_TYPE_24B`` :  check CRC24B from CB(s)
36    - ``RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE`` :  perform subblock de-interleave
37    - ``RTE_BBDEV_TURBO_DEC_INTERRUPTS`` :  set for decoder dequeue interrupts
38    - ``RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN`` :  set if negative LLR encoder i/p is supported
39    - ``RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP`` :  keep CRC24B bits appended while decoding
40
41
42 Limitations
43 -----------
44
45 FPGA LTE FEC does not support the following:
46
47 - Scatter-Gather function
48
49
50 Installation
51 --------------
52
53 Section 3 of the DPDK manual provides instructions on installing and compiling DPDK.
54
55 DPDK requires hugepages to be configured as detailed in section 2 of the DPDK manual.
56 The bbdev test application has been tested with a configuration 40 x 1GB hugepages. The
57 hugepage configuration of a server may be examined using:
58
59 .. code-block:: console
60
61    grep Huge* /proc/meminfo
62
63
64 Initialization
65 --------------
66
67 When the device first powers up, its PCI Physical Functions (PF) can be listed through this command:
68
69 .. code-block:: console
70
71   sudo lspci -vd1172:5052
72
73 The physical and virtual functions are compatible with Linux UIO drivers:
74 ``vfio`` and ``igb_uio``. However, in order to work the FPGA LTE FEC device firstly needs
75 to be bound to one of these linux drivers through DPDK.
76
77
78 Bind PF UIO driver(s)
79 ~~~~~~~~~~~~~~~~~~~~~
80
81 Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use
82 ``lspci`` to confirm the PF device is under use by ``igb_uio`` DPDK UIO driver.
83
84 The igb_uio driver may be bound to the PF PCI device using one of two methods:
85
86
87 1. PCI functions (physical or virtual, depending on the use case) can be bound to
88 the UIO driver by repeating this command for every function.
89
90 .. code-block:: console
91
92   insmod igb_uio.ko
93   echo "1172 5052" > /sys/bus/pci/drivers/igb_uio/new_id
94   lspci -vd1172:
95
96
97 2. Another way to bind PF with DPDK UIO driver is by using the ``dpdk-devbind.py`` tool
98
99 .. code-block:: console
100
101   cd <dpdk-top-level-directory>
102   ./usertools/dpdk-devbind.py -b igb_uio 0000:06:00.0
103
104 where the PCI device ID (example: 0000:06:00.0) is obtained using lspci -vd1172:
105
106
107 In the same way the FPGA LTE FEC PF can be bound with vfio, but vfio driver does not
108 support SR-IOV configuration right out of the box, so it will need to be patched.
109
110
111 Enable Virtual Functions
112 ~~~~~~~~~~~~~~~~~~~~~~~~
113
114 Now, it should be visible in the printouts that PCI PF is under igb_uio control
115 "``Kernel driver in use: igb_uio``"
116
117 To show the number of available VFs on the device, read ``sriov_totalvfs`` file..
118
119 .. code-block:: console
120
121   cat /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_totalvfs
122
123   where 0000\:<b>\:<d>.<f> is the PCI device ID
124
125
126 To enable VFs via igb_uio, echo the number of virtual functions intended to
127 enable to ``max_vfs`` file..
128
129 .. code-block:: console
130
131   echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/max_vfs
132
133
134 Afterwards, all VFs must be bound to appropriate UIO drivers as required, same
135 way it was done with the physical function previously.
136
137 Enabling SR-IOV via vfio driver is pretty much the same, except that the file
138 name is different:
139
140 .. code-block:: console
141
142   echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_numvfs
143
144
145 Configure the VFs through PF
146 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
147
148 The PCI virtual functions must be configured before working or getting assigned
149 to VMs/Containers. The configuration involves allocating the number of hardware
150 queues, priorities, load balance, bandwidth and other settings necessary for the
151 device to perform FEC functions.
152
153 This configuration needs to be executed at least once after reboot or PCI FLR and can
154 be achieved by using the function ``rte_fpga_lte_fec_configure()``, which sets up the
155 parameters defined in ``rte_fpga_lte_fec_conf`` structure:
156
157 .. code-block:: c
158
159   struct rte_fpga_lte_fec_conf {
160       bool pf_mode_en;
161       uint8_t vf_ul_queues_number[FPGA_LTE_FEC_NUM_VFS];
162       uint8_t vf_dl_queues_number[FPGA_LTE_FEC_NUM_VFS];
163       uint8_t ul_bandwidth;
164       uint8_t dl_bandwidth;
165       uint8_t ul_load_balance;
166       uint8_t dl_load_balance;
167       uint16_t flr_time_out;
168   };
169
170 - ``pf_mode_en``: identifies whether only PF is to be used, or the VFs. PF and
171   VFs are mutually exclusive and cannot run simultaneously.
172   Set to 1 for PF mode enabled.
173   If PF mode is enabled all queues available in the device are assigned
174   exclusively to PF and 0 queues given to VFs.
175
176 - ``vf_*l_queues_number``: defines the hardware queue mapping for every VF.
177
178 - ``*l_bandwidth``: in case of congestion on PCIe interface. The device
179   allocates different bandwidth to UL and DL. The weight is configured by this
180   setting. The unit of weight is 3 code blocks. For example, if the code block
181   cbps (code block per second) ratio between UL and DL is 12:1, then the
182   configuration value should be set to 36:3. The schedule algorithm is based
183   on code block regardless the length of each block.
184
185 - ``*l_load_balance``: hardware queues are load-balanced in a round-robin
186   fashion. Queues get filled first-in first-out until they reach a pre-defined
187   watermark level, if exceeded, they won't get assigned new code blocks..
188   This watermark is defined by this setting.
189
190   If all hardware queues exceeds the watermark, no code blocks will be
191   streamed in from UL/DL code block FIFO.
192
193 - ``flr_time_out``: specifies how many 16.384us to be FLR time out. The
194   time_out = flr_time_out x 16.384us. For instance, if you want to set 10ms for
195   the FLR time out then set this setting to 0x262=610.
196
197
198 An example configuration code calling the function ``rte_fpga_lte_fec_configure()`` is shown
199 below:
200
201 .. code-block:: c
202
203   struct rte_fpga_lte_fec_conf conf;
204   unsigned int i;
205
206   memset(&conf, 0, sizeof(struct rte_fpga_lte_fec_conf));
207   conf.pf_mode_en = 1;
208
209   for (i = 0; i < FPGA_LTE_FEC_NUM_VFS; ++i) {
210       conf.vf_ul_queues_number[i] = 4;
211       conf.vf_dl_queues_number[i] = 4;
212   }
213   conf.ul_bandwidth = 12;
214   conf.dl_bandwidth = 5;
215   conf.dl_load_balance = 64;
216   conf.ul_load_balance = 64;
217
218   /* setup FPGA PF */
219   ret = rte_fpga_lte_fec_configure(info->dev_name, &conf);
220   TEST_ASSERT_SUCCESS(ret,
221       "Failed to configure 4G FPGA PF for bbdev %s",
222       info->dev_name);
223
224
225 Test Application
226 ----------------
227
228 BBDEV provides a test application, ``test-bbdev.py`` and range of test data for testing
229 the functionality of FPGA LTE FEC turbo encode and turbo decode, depending on the device's
230 capabilities. The test application is located under app->test-bbdev folder and has the
231 following options:
232
233 .. code-block:: console
234
235   "-p", "--testapp-path": specifies path to the bbdev test app.
236   "-e", "--eal-params"  : EAL arguments which are passed to the test app.
237   "-t", "--timeout"     : Timeout in seconds (default=300).
238   "-c", "--test-cases"  : Defines test cases to run. Run all if not specified.
239   "-v", "--test-vector" : Test vector path (default=dpdk_path+/app/test-bbdev/test_vectors/bbdev_null.data).
240   "-n", "--num-ops"     : Number of operations to process on device (default=32).
241   "-b", "--burst-size"  : Operations enqueue/dequeue burst size (default=32).
242   "-l", "--num-lcores"  : Number of lcores to run (default=16).
243   "-i", "--init-device" : Initialise PF device with default values.
244
245
246 To execute the test application tool using simple turbo decode or turbo encode data,
247 type one of the following:
248
249 .. code-block:: console
250
251   ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_dec_default.data
252   ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_enc_default.data
253
254
255 The test application ``test-bbdev.py``, supports the ability to configure the PF device with
256 a default set of values, if the "-i" or "- -init-device" option is included. The default values
257 are defined in test_bbdev_perf.c as:
258
259 - VF_UL_QUEUE_VALUE 4
260 - VF_DL_QUEUE_VALUE 4
261 - UL_BANDWIDTH 3
262 - DL_BANDWIDTH 3
263 - UL_LOAD_BALANCE 128
264 - DL_LOAD_BALANCE 128
265 - FLR_TIMEOUT 610
266
267
268 Test Vectors
269 ~~~~~~~~~~~~
270
271 In addition to the simple turbo decoder and turbo encoder tests, bbdev also provides
272 a range of additional tests under the test_vectors folder, which may be useful. The results
273 of these tests will depend on the FPGA LTE FEC capabilities:
274
275 * turbo decoder tests:
276    - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data``
277    - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data``
278    - ``turbo_dec_c1_k6144_r0_e34560_negllr.data``
279    - ``turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data``
280    - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data``
281    - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data``
282
283
284 * turbo encoder tests:
285    - ``turbo_enc_c1_k40_r0_e1190_rm.data``
286    - ``turbo_enc_c1_k40_r0_e1194_rm.data``
287    - ``turbo_enc_c1_k40_r0_e1196_rm.data``
288    - ``turbo_enc_c1_k40_r0_e272_rm.data``
289    - ``turbo_enc_c1_k6144_r0_e18444.data``
290    - ``turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data``
291    - ``turbo_enc_c2_k5952_r0_e17868_crc24b.data``
292    - ``turbo_enc_c3_k4800_r2_e14412_crc24b.data``
293    - ``turbo_enc_c4_k4800_r2_e14412_crc24b.data``
294
295
296 Alternate Baseband Device configuration tool
297 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
298
299 On top of the embedded configuration feature supported in test-bbdev using "- -init-device"
300 option, there is also a tool available to perform that device configuration using a companion
301 application.
302 The ``pf_bb_config`` application notably enables then to run bbdev-test from the VF
303 and not only limited to the PF as captured above.
304
305 See for more details: https://github.com/intel/pf-bb-config
306
307 Specifically for the BBDEV FPGA LTE FEC PMD, the command below can be used:
308
309 .. code-block:: console
310
311   ./pf_bb_config FPGA_LTE -c fpga_lte/fpga_lte_config_vf.cfg
312   ./test-bbdev.py -e="-c 0xff0 -a${VF_PCI_ADDR}" -c validation -n 64 -b 32 -l 1 -v ./turbo_dec_default.data