net/ngbe: support YT PHY SGMII to RGMII mode
[dpdk.git] / doc / guides / sample_app_ug / ipsec_secgw.rst
1 ..  SPDX-License-Identifier: BSD-3-Clause
2     Copyright(c) 2016-2017 Intel Corporation.
3     Copyright (C) 2020 Marvell International Ltd.
4
5 IPsec Security Gateway Sample Application
6 =========================================
7
8 The IPsec Security Gateway application is an example of a "real world"
9 application using DPDK cryptodev framework.
10
11 Overview
12 --------
13
14 The application demonstrates the implementation of a Security Gateway
15 (not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301,
16 RFC4303, RFC3602 and RFC2404.
17
18 Internet Key Exchange (IKE) is not implemented, so only manual setting of
19 Security Policies and Security Associations is supported.
20
21 The Security Policies (SP) are implemented as ACL rules, the Security
22 Associations (SA) are stored in a table and the routing is implemented
23 using LPM.
24
25 The application classifies the ports as *Protected* and *Unprotected*.
26 Thus, traffic received on an Unprotected or Protected port is consider
27 Inbound or Outbound respectively.
28
29 The application also supports complete IPsec protocol offload to hardware
30 (Look aside crypto accelerator or using ethernet device). It also support
31 inline ipsec processing by the supported ethernet device during transmission.
32 These modes can be selected during the SA creation configuration.
33
34 In case of complete protocol offload, the processing of headers(ESP and outer
35 IP header) is done by the hardware and the application does not need to
36 add/remove them during outbound/inbound processing.
37
38 For inline offloaded outbound traffic, the application will not do the LPM
39 lookup for routing, as the port on which the packet has to be forwarded will be
40 part of the SA. Security parameters will be configured on that port only, and
41 sending the packet on other ports could result in unencrypted packets being
42 sent out.
43
44 The Path for IPsec Inbound traffic is:
45
46 *  Read packets from the port.
47 *  Classify packets between IPv4 and ESP.
48 *  Perform Inbound SA lookup for ESP packets based on their SPI.
49 *  Perform Verification/Decryption (Not needed in case of inline ipsec).
50 *  Remove ESP and outer IP header (Not needed in case of protocol offload).
51 *  Inbound SP check using ACL of decrypted packets and any other IPv4 packets.
52 *  Routing.
53 *  Write packet to port.
54
55 The Path for the IPsec Outbound traffic is:
56
57 *  Read packets from the port.
58 *  Perform Outbound SP check using ACL of all IPv4 traffic.
59 *  Perform Outbound SA lookup for packets that need IPsec protection.
60 *  Add ESP and outer IP header (Not needed in case protocol offload).
61 *  Perform Encryption/Digest (Not needed in case of inline ipsec).
62 *  Routing.
63 *  Write packet to port.
64
65 The application supports two modes of operation: poll mode and event mode.
66
67 * In the poll mode a core receives packets from statically configured list
68   of eth ports and eth ports' queues.
69
70 * In the event mode a core receives packets as events. After packet processing
71   is done core submits them back as events to an event device. This enables
72   multicore scaling and HW assisted scheduling by making use of the event device
73   capabilities. The event mode configuration is predefined. All packets reaching
74   given eth port will arrive at the same event queue. All event queues are mapped
75   to all event ports. This allows all cores to receive traffic from all ports.
76   Since the underlying event device might have varying capabilities, the worker
77   threads can be drafted differently to maximize performance. For example, if an
78   event device - eth device pair has Tx internal port, then application can call
79   rte_event_eth_tx_adapter_enqueue() instead of regular rte_event_enqueue_burst().
80   So a thread which assumes that the device pair has internal port will not be the
81   right solution for another pair. The infrastructure added for the event mode aims
82   to help application to have multiple worker threads by maximizing performance from
83   every type of event device without affecting existing paths/use cases. The worker
84   to be used will be determined by the operating conditions and the underlying device
85   capabilities. **Currently the application provides non-burst, internal port worker
86   threads and supports inline protocol only.** It also provides infrastructure for
87   non-internal port however does not define any worker threads.
88
89   Event mode also supports event vectorization. The event devices, ethernet device
90   pairs which support the capability ``RTE_EVENT_ETH_RX_ADAPTER_CAP_EVENT_VECTOR`` can
91   aggregate packets based on flow characteristics and generate a ``rte_event``
92   containing ``rte_event_vector``.
93   The aggregation size and timeout can be given using command line options vector-size
94   (default vector-size is 16) and vector-tmo (default vector-tmo is 102400ns).
95   By default event vectorization is disabled and it can be enabled using event-vector
96   option.
97
98 Additionally the event mode introduces two submodes of processing packets:
99
100 * Driver submode: This submode has bare minimum changes in the application to support
101   IPsec. There are no lookups, no routing done in the application. And for inline
102   protocol use case, the worker thread resembles l2fwd worker thread as the IPsec
103   processing is done entirely in HW. This mode can be used to benchmark the raw
104   performance of the HW. The driver submode is selected with --single-sa option
105   (used also by poll mode). When --single-sa option is used in conjunction with event
106   mode then index passed to --single-sa is ignored.
107
108 * App submode: This submode has all the features currently implemented with the
109   application (non librte_ipsec path). All the lookups, routing follows existing
110   methods and report numbers that can be compared against regular poll mode
111   benchmark numbers.
112
113 Constraints
114 -----------
115
116 *  No IPv6 options headers.
117 *  No AH mode.
118 *  Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, DES-CBC,
119    HMAC-SHA1, HMAC-SHA256, AES-GMAC, AES_CTR, AES_XCBC_MAC, AES_CCM,
120    CHACHA20_POLY1305 and NULL.
121 *  Each SA must be handle by a unique lcore (*1 RX queue per port*).
122
123 Compiling the Application
124 -------------------------
125
126 To compile the sample application see :doc:`compiling`.
127
128 The application is located in the ``ipsec-secgw`` sub-directory.
129
130
131 Running the Application
132 -----------------------
133
134 The application has a number of command line options::
135
136
137    ./<build_dir>/examples/dpdk-ipsec-secgw [EAL options] --
138                         -p PORTMASK -P -u PORTMASK -j FRAMESIZE
139                         -l -w REPLAY_WINDOW_SIZE -e -a
140                         -c SAD_CACHE_SIZE
141                         -t STATISTICS_INTERVAL
142                         -s NUMBER_OF_MBUFS_IN_PACKET_POOL
143                         -f CONFIG_FILE_PATH
144                         --config (port,queue,lcore)[,(port,queue,lcore)]
145                         --single-sa SAIDX
146                         --cryptodev_mask MASK
147                         --transfer-mode MODE
148                         --event-schedule-type TYPE
149                         --rxoffload MASK
150                         --txoffload MASK
151                         --reassemble NUM
152                         --mtu MTU
153                         --frag-ttl FRAG_TTL_NS
154                         --desc-nb NUMBER_OF_DESC
155
156 Where:
157
158 *   ``-p PORTMASK``: Hexadecimal bitmask of ports to configure.
159
160 *   ``-P``: *optional*. Sets all ports to promiscuous mode so that packets are
161     accepted regardless of the packet's Ethernet MAC destination address.
162     Without this option, only packets with the Ethernet MAC destination address
163     set to the Ethernet address of the port are accepted (default is enabled).
164
165 *   ``-u PORTMASK``: hexadecimal bitmask of unprotected ports
166
167 *   ``-j FRAMESIZE``: *optional*. data buffer size (in bytes),
168     in other words maximum data size for one segment.
169     Packets with length bigger then FRAMESIZE still can be received,
170     but will be segmented.
171     Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
172     Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
173     Maximum value: UINT16_MAX (65535).
174
175 *   ``-l``: enables code-path that uses librte_ipsec.
176
177 *   ``-w REPLAY_WINDOW_SIZE``: specifies the IPsec sequence number replay window
178     size for each Security Association (available only with librte_ipsec
179     code path).
180
181 *   ``-e``: enables Security Association extended sequence number processing
182     (available only with librte_ipsec code path).
183
184 *   ``-a``: enables Security Association sequence number atomic behavior
185     (available only with librte_ipsec code path).
186
187 *   ``-c``: specifies the SAD cache size. Stores the most recent SA in a per
188     lcore cache. Cache represents flat array containing SA's indexed by SPI.
189     Zero value disables cache.
190     Default value: 128.
191
192 *   ``-t``: specifies the statistics screen update interval in seconds. If set
193     to zero or omitted statistics screen is disabled.
194     Default value: 0.
195
196 *   ``-s``: sets number of mbufs in packet pool, if not provided number of mbufs
197     will be calculated based on number of cores, eth ports and crypto queues.
198
199 *   ``-f CONFIG_FILE_PATH``: the full path of text-based file containing all
200     configuration items for running the application (See Configuration file
201     syntax section below). ``-f CONFIG_FILE_PATH`` **must** be specified.
202     **ONLY** the UNIX format configuration file is accepted.
203
204 *   ``--config (port,queue,lcore)[,(port,queue,lcore)]``: in poll mode determines
205     which queues from which ports are mapped to which cores. In event mode this
206     option is not used as packets are dynamically scheduled to cores by HW.
207
208 *   ``--single-sa SAIDX``: in poll mode use a single SA for outbound traffic,
209     bypassing the SP on both Inbound and Outbound. This option is meant for
210     debugging/performance purposes. In event mode selects driver submode, SA index
211     value is ignored.
212
213 *   ``--cryptodev_mask MASK``: hexadecimal bitmask of the crypto devices
214     to configure.
215
216 *   ``--transfer-mode MODE``: sets operating mode of the application
217     "poll"  : packet transfer via polling (default)
218     "event" : Packet transfer via event device
219
220 *   ``--event-schedule-type TYPE``: queue schedule type, applies only when
221     --transfer-mode is set to event.
222     "ordered"  : Ordered (default)
223     "atomic"   : Atomic
224     "parallel" : Parallel
225     When --event-schedule-type is set as RTE_SCHED_TYPE_ORDERED/ATOMIC, event
226     device will ensure the ordering. Ordering will be lost when tried in PARALLEL.
227
228 *   ``--rxoffload MASK``: RX HW offload capabilities to enable/use on this port
229     (bitmask of RTE_ETH_RX_OFFLOAD_* values). It is an optional parameter and
230     allows user to disable some of the RX HW offload capabilities.
231     By default all HW RX offloads are enabled.
232
233 *   ``--txoffload MASK``: TX HW offload capabilities to enable/use on this port
234     (bitmask of RTE_ETH_TX_OFFLOAD_* values). It is an optional parameter and
235     allows user to disable some of the TX HW offload capabilities.
236     By default all HW TX offloads are enabled.
237
238 *   ``--reassemble NUM``: max number of entries in reassemble fragment table.
239     Zero value disables reassembly functionality.
240     Default value: 0.
241
242 *   ``--mtu MTU``: MTU value (in bytes) on all attached ethernet ports.
243     Outgoing packets with length bigger then MTU will be fragmented.
244     Incoming packets with length bigger then MTU will be discarded.
245     Default value: 1500.
246
247 *   ``--frag-ttl FRAG_TTL_NS``: fragment lifetime (in nanoseconds).
248     If packet is not reassembled within this time, received fragments
249     will be discarded. Fragment lifetime should be decreased when
250     there is a high fragmented traffic loss in high bandwidth networks.
251     Should be lower for low number of reassembly buckets.
252     Valid values: from 1 ns to 10 s. Default value: 10000000 (10 s).
253
254 *   ``--per-port-pool``: Enable per ethdev port pktmbuf pool.
255      By default one packet mbuf pool per socket is created and configured
256      via Rx queue setup.
257
258 *   ``--vector-pool-sz``: Number of buffers in vector pool.
259     By default, vector pool size depeneds on packet pool size
260     and size of each vector.
261
262 *   ``--desc-nb NUMBER_OF_DESC``: Number of descriptors per queue pair.
263     Default value: 2048.
264
265 The mapping of lcores to port/queues is similar to other l3fwd applications.
266
267 For example, given the following command line to run application in poll mode::
268
269     ./<build_dir>/examples/dpdk-ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048       \
270            --vdev "crypto_null" -- -p 0xf -P -u 0x3             \
271            --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)"       \
272            -f /path/to/config_file --transfer-mode poll         \
273
274 where each option means:
275
276 *   The ``-l`` option enables cores 20 and 21.
277
278 *   The ``-n`` option sets memory 4 channels.
279
280 *   The ``--socket-mem`` to use 2GB on socket 1.
281
282 *   The ``--vdev "crypto_null"`` option creates virtual NULL cryptodev PMD.
283
284 *   The ``-p`` option enables ports (detected) 0, 1, 2 and 3.
285
286 *   The ``-P`` option enables promiscuous mode.
287
288 *   The ``-u`` option sets ports 0 and 1 as unprotected, leaving 2 and 3 as protected.
289
290 *   The ``--config`` option enables one queue per port with the following mapping:
291
292     +----------+-----------+-----------+---------------------------------------+
293     | **Port** | **Queue** | **lcore** | **Description**                       |
294     |          |           |           |                                       |
295     +----------+-----------+-----------+---------------------------------------+
296     | 0        | 0         | 20        | Map queue 0 from port 0 to lcore 20.  |
297     |          |           |           |                                       |
298     +----------+-----------+-----------+---------------------------------------+
299     | 1        | 0         | 20        | Map queue 0 from port 1 to lcore 20.  |
300     |          |           |           |                                       |
301     +----------+-----------+-----------+---------------------------------------+
302     | 2        | 0         | 21        | Map queue 0 from port 2 to lcore 21.  |
303     |          |           |           |                                       |
304     +----------+-----------+-----------+---------------------------------------+
305     | 3        | 0         | 21        | Map queue 0 from port 3 to lcore 21.  |
306     |          |           |           |                                       |
307     +----------+-----------+-----------+---------------------------------------+
308
309 *   The ``-f /path/to/config_file`` option enables the application read and
310     parse the configuration file specified, and configures the application
311     with a given set of SP, SA and Routing entries accordingly. The syntax of
312     the configuration file will be explained below in more detail. Please
313     **note** the parser only accepts UNIX format text file. Other formats
314     such as DOS/MAC format will cause a parse error.
315
316 *   The ``--transfer-mode`` option selects poll mode for processing packets.
317
318 Similarly for example, given the following command line to run application in
319 event app mode::
320
321     ./<build_dir>/examples/dpdk-ipsec-secgw -c 0x3 -- -P -p 0x3 -u 0x1       \
322            -f /path/to/config_file --transfer-mode event \
323            --event-schedule-type parallel --event-vector --vector-size 32    \
324            --vector-tmo 102400                           \
325
326 where each option means:
327
328 *   The ``-c`` option selects cores 0 and 1 to run on.
329
330 *   The ``-P`` option enables promiscuous mode.
331
332 *   The ``-p`` option enables ports (detected) 0 and 1.
333
334 *   The ``-u`` option sets ports 0 as unprotected, leaving 1 as protected.
335
336 *   The ``-f /path/to/config_file`` option has the same behavior as in poll
337     mode example.
338
339 *   The ``--transfer-mode`` option selects event mode for processing packets.
340
341 *   The ``--event-schedule-type`` option selects parallel ordering of event queues.
342
343 *   The ``--event-vector`` option enables event vectorization.
344
345 *   The ``--vector-size`` option specifies max vector size.
346
347 *   The ``--vector-tmo`` option specifies max timeout in nanoseconds for vectorization.
348
349
350 Refer to the *DPDK Getting Started Guide* for general information on running
351 applications and the Environment Abstraction Layer (EAL) options.
352
353 The application would do a best effort to "map" crypto devices to cores, with
354 hardware devices having priority. Basically, hardware devices if present would
355 be assigned to a core before software ones.
356 This means that if the application is using a single core and both hardware
357 and software crypto devices are detected, hardware devices will be used.
358
359 A way to achieve the case where you want to force the use of virtual crypto
360 devices is to only use the Ethernet devices needed (via the allow flag)
361 and therefore implicitly blocking all hardware crypto devices.
362
363 For example, something like the following command line:
364
365 .. code-block:: console
366
367     ./<build_dir>/examples/dpdk-ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \
368             -a 81:00.0 -a 81:00.1 -a 81:00.2 -a 81:00.3 \
369             --vdev "crypto_aesni_mb" --vdev "crypto_null" \
370             -- \
371             -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \
372             -f sample.cfg
373
374
375 Configurations
376 --------------
377
378 The following sections provide the syntax of configurations to initialize
379 your SP, SA, Routing, Flow and Neighbour tables.
380 Configurations shall be specified in the configuration file to be passed to
381 the application. The file is then parsed by the application. The successful
382 parsing will result in the appropriate rules being applied to the tables
383 accordingly.
384
385
386 Configuration File Syntax
387 ~~~~~~~~~~~~~~~~~~~~~~~~~
388
389 As mention in the overview, the Security Policies are ACL rules.
390 The application parsers the rules specified in the configuration file and
391 passes them to the ACL table, and replicates them per socket in use.
392
393 Following are the configuration file syntax.
394
395 General rule syntax
396 ^^^^^^^^^^^^^^^^^^^
397
398 The parse treats one line in the configuration file as one configuration
399 item (unless the line concatenation symbol exists). Every configuration
400 item shall follow the syntax of either SP, SA, Routing, Flow or Neighbour
401 rules specified below.
402
403 The configuration parser supports the following special symbols:
404
405  * Comment symbol **#**. Any character from this symbol to the end of
406    line is treated as comment and will not be parsed.
407
408  * Line concatenation symbol **\\**. This symbol shall be placed in the end
409    of the line to be concatenated to the line below. Multiple lines'
410    concatenation is supported.
411
412
413 SP rule syntax
414 ^^^^^^^^^^^^^^
415
416 The SP rule syntax is shown as follows:
417
418 .. code-block:: console
419
420     sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip>
421     <proto> <sport> <dport>
422
423
424 where each options means:
425
426 ``<ip_ver>``
427
428  * IP protocol version
429
430  * Optional: No
431
432  * Available options:
433
434    * *ipv4*: IP protocol version 4
435    * *ipv6*: IP protocol version 6
436
437 ``<dir>``
438
439  * The traffic direction
440
441  * Optional: No
442
443  * Available options:
444
445    * *in*: inbound traffic
446    * *out*: outbound traffic
447
448 ``<action>``
449
450  * IPsec action
451
452  * Optional: No
453
454  * Available options:
455
456    * *protect <SA_idx>*: the specified traffic is protected by SA rule
457      with id SA_idx
458    * *bypass*: the specified traffic is bypassed
459    * *discard*: the specified traffic is discarded
460
461 ``<priority>``
462
463  * Rule priority
464
465  * Optional: Yes, default priority 0 will be used
466
467  * Syntax: *pri <id>*
468
469 ``<src_ip>``
470
471  * The source IP address and mask
472
473  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
474
475  * Syntax:
476
477    * *src X.X.X.X/Y* for IPv4
478    * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
479
480 ``<dst_ip>``
481
482  * The destination IP address and mask
483
484  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
485
486  * Syntax:
487
488    * *dst X.X.X.X/Y* for IPv4
489    * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
490
491 ``<proto>``
492
493  * The protocol start and end range
494
495  * Optional: yes, default range of 0 to 0 will be used
496
497  * Syntax: *proto X:Y*
498
499 ``<sport>``
500
501  * The source port start and end range
502
503  * Optional: yes, default range of 0 to 0 will be used
504
505  * Syntax: *sport X:Y*
506
507 ``<dport>``
508
509  * The destination port start and end range
510
511  * Optional: yes, default range of 0 to 0 will be used
512
513  * Syntax: *dport X:Y*
514
515 Example SP rules:
516
517 .. code-block:: console
518
519     sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \
520     dport 0:65535
521
522     sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\
523     0000:0000/96 sport 0:65535 dport 0:65535
524
525
526 SA rule syntax
527 ^^^^^^^^^^^^^^
528
529 The successfully parsed SA rules will be stored in an array table.
530
531 The SA rule syntax is shown as follows:
532
533 .. code-block:: console
534
535     sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key>
536     <mode> <src_ip> <dst_ip> <action_type> <port_id> <fallback>
537     <flow-direction> <port_id> <queue_id> <udp-encap>
538
539 where each options means:
540
541 ``<dir>``
542
543  * The traffic direction
544
545  * Optional: No
546
547  * Available options:
548
549    * *in*: inbound traffic
550    * *out*: outbound traffic
551
552 ``<spi>``
553
554  * The SPI number
555
556  * Optional: No
557
558  * Syntax: unsigned integer number
559
560 ``<cipher_algo>``
561
562  * Cipher algorithm
563
564  * Optional: Yes, unless <aead_algo> is not used
565
566  * Available options:
567
568    * *null*: NULL algorithm
569    * *aes-128-cbc*: AES-CBC 128-bit algorithm
570    * *aes-192-cbc*: AES-CBC 192-bit algorithm
571    * *aes-256-cbc*: AES-CBC 256-bit algorithm
572    * *aes-128-ctr*: AES-CTR 128-bit algorithm
573    * *3des-cbc*: 3DES-CBC 192-bit algorithm
574    * *des-cbc*: DES-CBC 64-bit algorithm
575
576  * Syntax: *cipher_algo <your algorithm>*
577
578 ``<cipher_key>``
579
580  * Cipher key, NOT available when 'null' algorithm is used
581
582  * Optional: Yes, unless <aead_algo> is not used.
583    Must be followed by <cipher_algo> option
584
585  * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
586    The number of bytes should be as same as the specified cipher algorithm
587    key size.
588
589    For example: *cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
590    A1:B2:C3:D4*
591
592 ``<auth_algo>``
593
594  * Authentication algorithm
595
596  * Optional: Yes, unless <aead_algo> is not used
597
598  * Available options:
599
600     * *null*: NULL algorithm
601     * *sha1-hmac*: HMAC SHA1 algorithm
602     * *sha256-hmac*: HMAC SHA256 algorithm
603     * *aes-xcbc-mac*: AES XCBC MAC algorithm
604
605 ``<auth_key>``
606
607  * Authentication key, NOT available when 'null' or 'aes-128-gcm' algorithm
608    is used.
609
610  * Optional: Yes, unless <aead_algo> is not used.
611    Must be followed by <auth_algo> option
612
613  * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
614    The number of bytes should be as same as the specified authentication
615    algorithm key size.
616
617    For example: *auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
618    A1:B2:C3:D4*
619
620 ``<aead_algo>``
621
622  * AEAD algorithm
623
624  * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used
625
626  * Available options:
627
628    * *aes-128-gcm*: AES-GCM 128-bit algorithm
629    * *aes-192-gcm*: AES-GCM 192-bit algorithm
630    * *aes-256-gcm*: AES-GCM 256-bit algorithm
631
632  * Syntax: *cipher_algo <your algorithm>*
633
634 ``<aead_key>``
635
636  * Cipher key, NOT available when 'null' algorithm is used
637
638  * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used.
639    Must be followed by <aead_algo> option
640
641  * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
642    Last 4 bytes of the provided key will be used as 'salt' and so, the
643    number of bytes should be same as the sum of specified AEAD algorithm
644    key size and salt size (4 bytes).
645
646    For example: *aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
647    A1:B2:C3:D4:A1:B2:C3:D4*
648
649 ``<mode>``
650
651  * The operation mode
652
653  * Optional: No
654
655  * Available options:
656
657    * *ipv4-tunnel*: Tunnel mode for IPv4 packets
658    * *ipv6-tunnel*: Tunnel mode for IPv6 packets
659    * *transport*: transport mode
660
661  * Syntax: mode XXX
662
663 ``<src_ip>``
664
665  * The source IP address. This option is not available when
666    transport mode is used
667
668  * Optional: Yes, default address 0.0.0.0 will be used
669
670  * Syntax:
671
672    * *src X.X.X.X* for IPv4
673    * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6
674
675 ``<dst_ip>``
676
677  * The destination IP address. This option is not available when
678    transport mode is used
679
680  * Optional: Yes, default address 0.0.0.0 will be used
681
682  * Syntax:
683
684    * *dst X.X.X.X* for IPv4
685    * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6
686
687 ``<type>``
688
689  * Action type to specify the security action. This option specify
690    the SA to be performed with look aside protocol offload to HW
691    accelerator or protocol offload on ethernet device or inline
692    crypto processing on the ethernet device during transmission.
693
694  * Optional: Yes, default type *no-offload*
695
696  * Available options:
697
698    * *lookaside-protocol-offload*: look aside protocol offload to HW accelerator
699    * *inline-protocol-offload*: inline protocol offload on ethernet device
700    * *inline-crypto-offload*: inline crypto processing on ethernet device
701    * *no-offload*: no offloading to hardware
702
703  ``<port_id>``
704
705  * Port/device ID of the ethernet/crypto accelerator for which the SA is
706    configured. For *inline-crypto-offload* and *inline-protocol-offload*, this
707    port will be used for routing. The routing table will not be referred in
708    this case.
709
710  * Optional: No, if *type* is not *no-offload*
711
712  * Syntax:
713
714    * *port_id X* X is a valid device number in decimal
715
716  ``<fallback>``
717
718  * Action type for ingress IPsec packets that inline processor failed to
719    process. Only a combination of *inline-crypto-offload* as a primary
720    session and *lookaside-none* as a fall-back session is supported at the
721    moment.
722
723    If used in conjunction with IPsec window, its width needs be increased
724    due to different processing times of inline and lookaside modes which
725    results in packet reordering.
726
727  * Optional: Yes.
728
729  * Available options:
730
731    * *lookaside-none*: use automatically chosen cryptodev to process packets
732
733  * Syntax:
734
735    * *fallback lookaside-none*
736
737 ``<flow-direction>``
738
739  * Option for redirecting a specific inbound ipsec flow of a port to a specific
740    queue of that port.
741
742  * Optional: Yes.
743
744  * Available options:
745
746    * *port_id*: Port ID of the NIC for which the SA is configured.
747    * *queue_id*: Queue ID to which traffic should be redirected.
748
749  ``<udp-encap>``
750
751  * Option to enable IPsec UDP encapsulation for NAT Traversal.
752    Only *lookaside-protocol-offload* and *inline-crypto-offload* modes are
753    supported at the moment.
754
755  * Optional: Yes, it is disabled by default
756
757  * Syntax:
758
759    * *udp-encap*
760
761  ``<mss>``
762
763  * Maximum segment size for TSO offload, available for egress SAs only.
764
765  * Optional: Yes, TSO offload not set by default
766
767  * Syntax:
768
769    * *mss N* N is the segment size in bytes
770
771
772 ``<telemetry>``
773
774  * Option to enable per SA telemetry.
775    Currently only supported with IPsec library path.
776
777  * Optional: Yes, it is disabled by default
778
779  * Syntax:
780
781    * *telemetry*
782
783  ``<esn>``
784
785  * Enable ESN and set the initial ESN value.
786
787  * Optional: Yes, ESN not enabled by default
788
789  * Syntax:
790
791    * *esn N* N is the initial ESN value
792
793 Example SA rules:
794
795 .. code-block:: console
796
797     sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \
798     src 172.16.1.5 dst 172.16.2.5
799
800     sa out 25 cipher_algo aes-128-cbc \
801     cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
802     auth_algo sha1-hmac \
803     auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
804     mode ipv6-tunnel \
805     src 1111:1111:1111:1111:1111:1111:1111:5555 \
806     dst 2222:2222:2222:2222:2222:2222:2222:5555
807
808     sa in 105 aead_algo aes-128-gcm \
809     aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
810     mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5
811
812     sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
813     auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
814     mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \
815     type lookaside-protocol-offload port_id 4
816
817     sa in 35 aead_algo aes-128-gcm \
818     aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
819     mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \
820     type inline-crypto-offload port_id 0
821
822     sa in 117 cipher_algo null auth_algo null mode ipv4-tunnel src 172.16.2.7 \
823     dst 172.16.1.7 flow-direction 0 2
824
825 Routing rule syntax
826 ^^^^^^^^^^^^^^^^^^^
827
828 The Routing rule syntax is shown as follows:
829
830 .. code-block:: console
831
832     rt <ip_ver> <src_ip> <dst_ip> <port>
833
834
835 where each options means:
836
837 ``<ip_ver>``
838
839  * IP protocol version
840
841  * Optional: No
842
843  * Available options:
844
845    * *ipv4*: IP protocol version 4
846    * *ipv6*: IP protocol version 6
847
848 ``<src_ip>``
849
850  * The source IP address and mask
851
852  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
853
854  * Syntax:
855
856    * *src X.X.X.X/Y* for IPv4
857    * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
858
859 ``<dst_ip>``
860
861  * The destination IP address and mask
862
863  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
864
865  * Syntax:
866
867    * *dst X.X.X.X/Y* for IPv4
868    * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
869
870 ``<port>``
871
872  * The traffic output port id
873
874  * Optional: yes, default output port 0 will be used
875
876  * Syntax: *port X*
877
878 Example SP rules:
879
880 .. code-block:: console
881
882     rt ipv4 dst 172.16.1.5/32 port 0
883
884     rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0
885
886 Flow rule syntax
887 ^^^^^^^^^^^^^^^^
888
889 Flow rule enables the usage of hardware classification capabilities to match specific
890 ingress traffic and redirect the packets to the specified queue. This feature is
891 optional and relies on hardware ``rte_flow`` support.
892
893 The flow rule syntax is shown as follows:
894
895 .. code-block:: console
896
897     flow <ip_ver> <src_ip> <dst_ip> <port> <queue>
898
899
900 where each options means:
901
902 ``<ip_ver>``
903
904  * IP protocol version
905
906  * Optional: No
907
908  * Available options:
909
910    * *ipv4*: IP protocol version 4
911    * *ipv6*: IP protocol version 6
912
913 ``<src_ip>``
914
915  * The source IP address and mask
916
917  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
918
919  * Syntax:
920
921    * *src X.X.X.X/Y* for IPv4
922    * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
923
924 ``<dst_ip>``
925
926  * The destination IP address and mask
927
928  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
929
930  * Syntax:
931
932    * *dst X.X.X.X/Y* for IPv4
933    * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
934
935 ``<port>``
936
937  * The traffic input port id
938
939  * Optional: yes, default input port 0 will be used
940
941  * Syntax: *port X*
942
943 ``<queue>``
944
945  * The traffic input queue id
946
947  * Optional: yes, default input queue 0 will be used
948
949  * Syntax: *queue X*
950
951 Example flow rules:
952
953 .. code-block:: console
954
955     flow ipv4 dst 172.16.1.5/32 port 0 queue 0
956
957     flow ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 1 queue 0
958
959
960 Neighbour rule syntax
961 ^^^^^^^^^^^^^^^^^^^^^
962
963 The Neighbour rule syntax is shown as follows:
964
965 .. code-block:: console
966
967     neigh <port> <dst_mac>
968
969
970 where each options means:
971
972 ``<port>``
973
974  * The output port id
975
976  * Optional: No
977
978  * Syntax: *port X*
979
980 ``<dst_mac>``
981
982  * The destination ethernet address to use for that port
983
984  * Optional: No
985
986  * Syntax:
987
988    * XX:XX:XX:XX:XX:XX
989
990 Example Neighbour rules:
991
992 .. code-block:: console
993
994     neigh port 0 DE:AD:BE:EF:01:02
995
996 Test directory
997 --------------
998
999 The test directory contains scripts for testing the various encryption
1000 algorithms.
1001
1002 The purpose of the scripts is to automate ipsec-secgw testing
1003 using another system running linux as a DUT.
1004
1005 The user must setup the following environment variables:
1006
1007 *   ``SGW_PATH``: path to the ipsec-secgw binary to test.
1008
1009 *   ``REMOTE_HOST``: IP address/hostname of the DUT.
1010
1011 *   ``REMOTE_IFACE``: interface name for the test-port on the DUT.
1012
1013 *   ``ETH_DEV``: ethernet device to be used on the SUT by DPDK ('-a <pci-id>')
1014
1015 Also the user can optionally setup:
1016
1017 *   ``SGW_LCORE``: lcore to run ipsec-secgw on (default value is 0)
1018
1019 *   ``CRYPTO_DEV``: crypto device to be used ('-a <pci-id>'). If none specified
1020     appropriate vdevs will be created by the script
1021
1022 Scripts can be used for multiple test scenarios. To check all available
1023 options run:
1024
1025 .. code-block:: console
1026
1027     /bin/bash run_test.sh -h
1028
1029 Note that most of the tests require the appropriate crypto PMD/device to be
1030 available.
1031
1032 Server configuration
1033 ~~~~~~~~~~~~~~~~~~~~
1034
1035 Two servers are required for the tests, SUT and DUT.
1036
1037 Make sure the user from the SUT can ssh to the DUT without entering the password.
1038 To enable this feature keys must be setup on the DUT.
1039
1040 ``ssh-keygen`` will make a private & public key pair on the SUT.
1041
1042 ``ssh-copy-id`` <user name>@<target host name> on the SUT will copy the public
1043 key to the DUT. It will ask for credentials so that it can upload the public key.
1044
1045 The SUT and DUT are connected through at least 2 NIC ports.
1046
1047 One NIC port is expected to be managed by linux on both machines and will be
1048 used as a control path.
1049
1050 The second NIC port (test-port) should be bound to DPDK on the SUT, and should
1051 be managed by linux on the DUT.
1052
1053 The script starts ``ipsec-secgw`` with 2 NIC devices: ``test-port`` and
1054 ``tap vdev``.
1055
1056 It then configures the local tap interface and the remote interface and IPsec
1057 policies in the following way:
1058
1059 Traffic going over the test-port in both directions has to be protected by IPsec.
1060
1061 Traffic going over the TAP port in both directions does not have to be protected.
1062
1063 i.e:
1064
1065 DUT OS(NIC1)--(IPsec)-->(NIC1)ipsec-secgw(TAP)--(plain)-->(TAP)SUT OS
1066
1067 SUT OS(TAP)--(plain)-->(TAP)psec-secgw(NIC1)--(IPsec)-->(NIC1)DUT OS
1068
1069 It then tries to perform some data transfer using the scheme described above.
1070
1071 Usage
1072 ~~~~~
1073
1074 In the ipsec-secgw/test directory run
1075
1076 /bin/bash run_test.sh <options> <ipsec_mode>
1077
1078 Available options:
1079
1080 *   ``-4`` Perform tests with use of IPv4. One or both [-46] options needs to be
1081     selected.
1082
1083 *   ``-6`` Perform tests with use of IPv6. One or both [-46] options needs to be
1084     selected.
1085
1086 *   ``-m`` Add IPSec tunnel mixed IP version tests - outer IP version different
1087     than inner. Inner IP version will match selected option [-46].
1088
1089 *   ``-i`` Run tests in inline mode. Regular tests will not be invoked.
1090
1091 *   ``-f`` Run tests for fallback mechanism. Regular tests will not be invoked.
1092
1093 *   ``-l`` Run tests in legacy mode only. It cannot be used with options [-fsc].
1094     On default library mode is used.
1095
1096 *   ``-s`` Run all tests with reassembly support. On default only tests for
1097     fallback mechanism use reassembly support.
1098
1099 *   ``-c`` Run tests with use of cpu-crypto. For inline tests it will not be
1100     applied. On default lookaside-none is used.
1101
1102 *   ``-p`` Perform packet validation tests. Option [-46] is not required.
1103
1104 *   ``-h`` Show usage.
1105
1106 If <ipsec_mode> is specified, only tests for that mode will be invoked. For the
1107 list of available modes please refer to run_test.sh.