examples/ipsec-secgw: support fragmentation and reassembly
[dpdk.git] / doc / guides / sample_app_ug / ipsec_secgw.rst
1 ..  SPDX-License-Identifier: BSD-3-Clause
2     Copyright(c) 2016-2017 Intel Corporation.
3
4 IPsec Security Gateway Sample Application
5 =========================================
6
7 The IPsec Security Gateway application is an example of a "real world"
8 application using DPDK cryptodev framework.
9
10 Overview
11 --------
12
13 The application demonstrates the implementation of a Security Gateway
14 (not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301,
15 RFC4303, RFC3602 and RFC2404.
16
17 Internet Key Exchange (IKE) is not implemented, so only manual setting of
18 Security Policies and Security Associations is supported.
19
20 The Security Policies (SP) are implemented as ACL rules, the Security
21 Associations (SA) are stored in a table and the routing is implemented
22 using LPM.
23
24 The application classifies the ports as *Protected* and *Unprotected*.
25 Thus, traffic received on an Unprotected or Protected port is consider
26 Inbound or Outbound respectively.
27
28 The application also supports complete IPsec protocol offload to hardware
29 (Look aside crypto accelerator or using ethernet device). It also support
30 inline ipsec processing by the supported ethernet device during transmission.
31 These modes can be selected during the SA creation configuration.
32
33 In case of complete protocol offload, the processing of headers(ESP and outer
34 IP header) is done by the hardware and the application does not need to
35 add/remove them during outbound/inbound processing.
36
37 For inline offloaded outbound traffic, the application will not do the LPM
38 lookup for routing, as the port on which the packet has to be forwarded will be
39 part of the SA. Security parameters will be configured on that port only, and
40 sending the packet on other ports could result in unencrypted packets being
41 sent out.
42
43 The Path for IPsec Inbound traffic is:
44
45 *  Read packets from the port.
46 *  Classify packets between IPv4 and ESP.
47 *  Perform Inbound SA lookup for ESP packets based on their SPI.
48 *  Perform Verification/Decryption (Not needed in case of inline ipsec).
49 *  Remove ESP and outer IP header (Not needed in case of protocol offload).
50 *  Inbound SP check using ACL of decrypted packets and any other IPv4 packets.
51 *  Routing.
52 *  Write packet to port.
53
54 The Path for the IPsec Outbound traffic is:
55
56 *  Read packets from the port.
57 *  Perform Outbound SP check using ACL of all IPv4 traffic.
58 *  Perform Outbound SA lookup for packets that need IPsec protection.
59 *  Add ESP and outer IP header (Not needed in case protocol offload).
60 *  Perform Encryption/Digest (Not needed in case of inline ipsec).
61 *  Routing.
62 *  Write packet to port.
63
64
65 Constraints
66 -----------
67
68 *  No IPv6 options headers.
69 *  No AH mode.
70 *  Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1 and NULL.
71 *  Each SA must be handle by a unique lcore (*1 RX queue per port*).
72
73 Compiling the Application
74 -------------------------
75
76 To compile the sample application see :doc:`compiling`.
77
78 The application is located in the ``ipsec-secgw`` sub-directory.
79
80 #. [Optional] Build the application for debugging:
81    This option adds some extra flags, disables compiler optimizations and
82    is verbose::
83
84        make DEBUG=1
85
86
87 Running the Application
88 -----------------------
89
90 The application has a number of command line options::
91
92
93    ./build/ipsec-secgw [EAL options] --
94                         -p PORTMASK -P -u PORTMASK -j FRAMESIZE
95                         -l -w REPLAY_WINOW_SIZE -e -a
96                         --config (port,queue,lcore)[,(port,queue,lcore]
97                         --single-sa SAIDX
98                         --rxoffload MASK
99                         --txoffload MASK
100                         --mtu MTU
101                         --reassemble NUM
102                         -f CONFIG_FILE_PATH
103
104 Where:
105
106 *   ``-p PORTMASK``: Hexadecimal bitmask of ports to configure.
107
108 *   ``-P``: *optional*. Sets all ports to promiscuous mode so that packets are
109     accepted regardless of the packet's Ethernet MAC destination address.
110     Without this option, only packets with the Ethernet MAC destination address
111     set to the Ethernet address of the port are accepted (default is enabled).
112
113 *   ``-u PORTMASK``: hexadecimal bitmask of unprotected ports
114
115 *   ``-j FRAMESIZE``: *optional*. data buffer size (in bytes),
116     in other words maximum data size for one segment.
117     Packets with length bigger then FRAMESIZE still can be received,
118     but will be segmented.
119     Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
120     Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
121     Maximum value: UINT16_MAX (65535).
122
123 *   ``-l``: enables code-path that uses librte_ipsec.
124
125 *   ``-w REPLAY_WINOW_SIZE``: specifies the IPsec sequence number replay window
126     size for each Security Association (available only with librte_ipsec
127     code path).
128
129 *   ``-e``: enables Security Association extended sequence number processing
130     (available only with librte_ipsec code path).
131
132 *   ``-a``: enables Security Association sequence number atomic behavior
133     (available only with librte_ipsec code path).
134
135 *   ``--config (port,queue,lcore)[,(port,queue,lcore)]``: determines which queues
136     from which ports are mapped to which cores.
137
138 *   ``--single-sa SAIDX``: use a single SA for outbound traffic, bypassing the SP
139     on both Inbound and Outbound. This option is meant for debugging/performance
140     purposes.
141
142 *   ``--rxoffload MASK``: RX HW offload capabilities to enable/use on this port
143     (bitmask of DEV_RX_OFFLOAD_* values). It is an optional parameter and
144     allows user to disable some of the RX HW offload capabilities.
145     By default all HW RX offloads are enabled.
146
147 *   ``--txoffload MASK``: TX HW offload capabilities to enable/use on this port
148     (bitmask of DEV_TX_OFFLOAD_* values). It is an optional parameter and
149     allows user to disable some of the TX HW offload capabilities.
150     By default all HW TX offloads are enabled.
151
152 *   ``--mtu MTU``: MTU value (in bytes) on all attached ethernet ports.
153     Outgoing packets with length bigger then MTU will be fragmented.
154     Incoming packets with length bigger then MTU will be discarded.
155     Default value: 1500.
156
157 *   ``--reassemble NUM``: max number of entries in reassemble fragment table.
158     Zero value disables reassembly functionality.
159     Default value: 0.
160
161 *   ``-f CONFIG_FILE_PATH``: the full path of text-based file containing all
162     configuration items for running the application (See Configuration file
163     syntax section below). ``-f CONFIG_FILE_PATH`` **must** be specified.
164     **ONLY** the UNIX format configuration file is accepted.
165
166
167 The mapping of lcores to port/queues is similar to other l3fwd applications.
168
169 For example, given the following command line::
170
171     ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048       \
172            --vdev "crypto_null" -- -p 0xf -P -u 0x3      \
173            --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)"       \
174            -f /path/to/config_file                              \
175
176 where each options means:
177
178 *   The ``-l`` option enables cores 20 and 21.
179
180 *   The ``-n`` option sets memory 4 channels.
181
182 *   The ``--socket-mem`` to use 2GB on socket 1.
183
184 *   The ``--vdev "crypto_null"`` option creates virtual NULL cryptodev PMD.
185
186 *   The ``-p`` option enables ports (detected) 0, 1, 2 and 3.
187
188 *   The ``-P`` option enables promiscuous mode.
189
190 *   The ``-u`` option sets ports 1 and 2 as unprotected, leaving 2 and 3 as protected.
191
192 *   The ``--config`` option enables one queue per port with the following mapping:
193
194     +----------+-----------+-----------+---------------------------------------+
195     | **Port** | **Queue** | **lcore** | **Description**                       |
196     |          |           |           |                                       |
197     +----------+-----------+-----------+---------------------------------------+
198     | 0        | 0         | 20        | Map queue 0 from port 0 to lcore 20.  |
199     |          |           |           |                                       |
200     +----------+-----------+-----------+---------------------------------------+
201     | 1        | 0         | 20        | Map queue 0 from port 1 to lcore 20.  |
202     |          |           |           |                                       |
203     +----------+-----------+-----------+---------------------------------------+
204     | 2        | 0         | 21        | Map queue 0 from port 2 to lcore 21.  |
205     |          |           |           |                                       |
206     +----------+-----------+-----------+---------------------------------------+
207     | 3        | 0         | 21        | Map queue 0 from port 3 to lcore 21.  |
208     |          |           |           |                                       |
209     +----------+-----------+-----------+---------------------------------------+
210
211 *   The ``-f /path/to/config_file`` option enables the application read and
212     parse the configuration file specified, and configures the application
213     with a given set of SP, SA and Routing entries accordingly. The syntax of
214     the configuration file will be explained below in more detail. Please
215     **note** the parser only accepts UNIX format text file. Other formats
216     such as DOS/MAC format will cause a parse error.
217
218 Refer to the *DPDK Getting Started Guide* for general information on running
219 applications and the Environment Abstraction Layer (EAL) options.
220
221 The application would do a best effort to "map" crypto devices to cores, with
222 hardware devices having priority. Basically, hardware devices if present would
223 be assigned to a core before software ones.
224 This means that if the application is using a single core and both hardware
225 and software crypto devices are detected, hardware devices will be used.
226
227 A way to achieve the case where you want to force the use of virtual crypto
228 devices is to whitelist the Ethernet devices needed and therefore implicitly
229 blacklisting all hardware crypto devices.
230
231 For example, something like the following command line:
232
233 .. code-block:: console
234
235     ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \
236             -w 81:00.0 -w 81:00.1 -w 81:00.2 -w 81:00.3 \
237             --vdev "crypto_aesni_mb" --vdev "crypto_null" \
238             -- \
239             -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \
240             -f sample.cfg
241
242
243 Configurations
244 --------------
245
246 The following sections provide the syntax of configurations to initialize
247 your SP, SA, Routing and Neighbour tables.
248 Configurations shall be specified in the configuration file to be passed to
249 the application. The file is then parsed by the application. The successful
250 parsing will result in the appropriate rules being applied to the tables
251 accordingly.
252
253
254 Configuration File Syntax
255 ~~~~~~~~~~~~~~~~~~~~~~~~~
256
257 As mention in the overview, the Security Policies are ACL rules.
258 The application parsers the rules specified in the configuration file and
259 passes them to the ACL table, and replicates them per socket in use.
260
261 Following are the configuration file syntax.
262
263 General rule syntax
264 ^^^^^^^^^^^^^^^^^^^
265
266 The parse treats one line in the configuration file as one configuration
267 item (unless the line concatenation symbol exists). Every configuration
268 item shall follow the syntax of either SP, SA, Routing or Neighbour
269 rules specified below.
270
271 The configuration parser supports the following special symbols:
272
273  * Comment symbol **#**. Any character from this symbol to the end of
274    line is treated as comment and will not be parsed.
275
276  * Line concatenation symbol **\\**. This symbol shall be placed in the end
277    of the line to be concatenated to the line below. Multiple lines'
278    concatenation is supported.
279
280
281 SP rule syntax
282 ^^^^^^^^^^^^^^
283
284 The SP rule syntax is shown as follows:
285
286 .. code-block:: console
287
288     sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip>
289     <proto> <sport> <dport>
290
291
292 where each options means:
293
294 ``<ip_ver>``
295
296  * IP protocol version
297
298  * Optional: No
299
300  * Available options:
301
302    * *ipv4*: IP protocol version 4
303    * *ipv6*: IP protocol version 6
304
305 ``<dir>``
306
307  * The traffic direction
308
309  * Optional: No
310
311  * Available options:
312
313    * *in*: inbound traffic
314    * *out*: outbound traffic
315
316 ``<action>``
317
318  * IPsec action
319
320  * Optional: No
321
322  * Available options:
323
324    * *protect <SA_idx>*: the specified traffic is protected by SA rule
325      with id SA_idx
326    * *bypass*: the specified traffic traffic is bypassed
327    * *discard*: the specified traffic is discarded
328
329 ``<priority>``
330
331  * Rule priority
332
333  * Optional: Yes, default priority 0 will be used
334
335  * Syntax: *pri <id>*
336
337 ``<src_ip>``
338
339  * The source IP address and mask
340
341  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
342
343  * Syntax:
344
345    * *src X.X.X.X/Y* for IPv4
346    * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
347
348 ``<dst_ip>``
349
350  * The destination IP address and mask
351
352  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
353
354  * Syntax:
355
356    * *dst X.X.X.X/Y* for IPv4
357    * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
358
359 ``<proto>``
360
361  * The protocol start and end range
362
363  * Optional: yes, default range of 0 to 0 will be used
364
365  * Syntax: *proto X:Y*
366
367 ``<sport>``
368
369  * The source port start and end range
370
371  * Optional: yes, default range of 0 to 0 will be used
372
373  * Syntax: *sport X:Y*
374
375 ``<dport>``
376
377  * The destination port start and end range
378
379  * Optional: yes, default range of 0 to 0 will be used
380
381  * Syntax: *dport X:Y*
382
383 Example SP rules:
384
385 .. code-block:: console
386
387     sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \
388     dport 0:65535
389
390     sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\
391     0000:0000/96 sport 0:65535 dport 0:65535
392
393
394 SA rule syntax
395 ^^^^^^^^^^^^^^
396
397 The successfully parsed SA rules will be stored in an array table.
398
399 The SA rule syntax is shown as follows:
400
401 .. code-block:: console
402
403     sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key>
404     <mode> <src_ip> <dst_ip> <action_type> <port_id>
405
406 where each options means:
407
408 ``<dir>``
409
410  * The traffic direction
411
412  * Optional: No
413
414  * Available options:
415
416    * *in*: inbound traffic
417    * *out*: outbound traffic
418
419 ``<spi>``
420
421  * The SPI number
422
423  * Optional: No
424
425  * Syntax: unsigned integer number
426
427 ``<cipher_algo>``
428
429  * Cipher algorithm
430
431  * Optional: Yes, unless <aead_algo> is not used
432
433  * Available options:
434
435    * *null*: NULL algorithm
436    * *aes-128-cbc*: AES-CBC 128-bit algorithm
437    * *aes-256-cbc*: AES-CBC 256-bit algorithm
438    * *aes-128-ctr*: AES-CTR 128-bit algorithm
439    * *3des-cbc*: 3DES-CBC 192-bit algorithm
440
441  * Syntax: *cipher_algo <your algorithm>*
442
443 ``<cipher_key>``
444
445  * Cipher key, NOT available when 'null' algorithm is used
446
447  * Optional: Yes, unless <aead_algo> is not used.
448    Must be followed by <cipher_algo> option
449
450  * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
451    The number of bytes should be as same as the specified cipher algorithm
452    key size.
453
454    For example: *cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
455    A1:B2:C3:D4*
456
457 ``<auth_algo>``
458
459  * Authentication algorithm
460
461  * Optional: Yes, unless <aead_algo> is not used
462
463  * Available options:
464
465     * *null*: NULL algorithm
466     * *sha1-hmac*: HMAC SHA1 algorithm
467
468 ``<auth_key>``
469
470  * Authentication key, NOT available when 'null' or 'aes-128-gcm' algorithm
471    is used.
472
473  * Optional: Yes, unless <aead_algo> is not used.
474    Must be followed by <auth_algo> option
475
476  * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
477    The number of bytes should be as same as the specified authentication
478    algorithm key size.
479
480    For example: *auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
481    A1:B2:C3:D4*
482
483 ``<aead_algo>``
484
485  * AEAD algorithm
486
487  * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used
488
489  * Available options:
490
491    * *aes-128-gcm*: AES-GCM 128-bit algorithm
492
493  * Syntax: *cipher_algo <your algorithm>*
494
495 ``<aead_key>``
496
497  * Cipher key, NOT available when 'null' algorithm is used
498
499  * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used.
500    Must be followed by <aead_algo> option
501
502  * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
503    The number of bytes should be as same as the specified AEAD algorithm
504    key size.
505
506    For example: *aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
507    A1:B2:C3:D4*
508
509 ``<mode>``
510
511  * The operation mode
512
513  * Optional: No
514
515  * Available options:
516
517    * *ipv4-tunnel*: Tunnel mode for IPv4 packets
518    * *ipv6-tunnel*: Tunnel mode for IPv6 packets
519    * *transport*: transport mode
520
521  * Syntax: mode XXX
522
523 ``<src_ip>``
524
525  * The source IP address. This option is not available when
526    transport mode is used
527
528  * Optional: Yes, default address 0.0.0.0 will be used
529
530  * Syntax:
531
532    * *src X.X.X.X* for IPv4
533    * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6
534
535 ``<dst_ip>``
536
537  * The destination IP address. This option is not available when
538    transport mode is used
539
540  * Optional: Yes, default address 0.0.0.0 will be used
541
542  * Syntax:
543
544    * *dst X.X.X.X* for IPv4
545    * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6
546
547 ``<type>``
548
549  * Action type to specify the security action. This option specify
550    the SA to be performed with look aside protocol offload to HW
551    accelerator or protocol offload on ethernet device or inline
552    crypto processing on the ethernet device during transmission.
553
554  * Optional: Yes, default type *no-offload*
555
556  * Available options:
557
558    * *lookaside-protocol-offload*: look aside protocol offload to HW accelerator
559    * *inline-protocol-offload*: inline protocol offload on ethernet device
560    * *inline-crypto-offload*: inline crypto processing on ethernet device
561    * *no-offload*: no offloading to hardware
562
563  ``<port_id>``
564
565  * Port/device ID of the ethernet/crypto accelerator for which the SA is
566    configured. For *inline-crypto-offload* and *inline-protocol-offload*, this
567    port will be used for routing. The routing table will not be referred in
568    this case.
569
570  * Optional: No, if *type* is not *no-offload*
571
572  * Syntax:
573
574    * *port_id X* X is a valid device number in decimal
575
576
577 Example SA rules:
578
579 .. code-block:: console
580
581     sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \
582     src 172.16.1.5 dst 172.16.2.5
583
584     sa out 25 cipher_algo aes-128-cbc \
585     cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
586     auth_algo sha1-hmac \
587     auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
588     mode ipv6-tunnel \
589     src 1111:1111:1111:1111:1111:1111:1111:5555 \
590     dst 2222:2222:2222:2222:2222:2222:2222:5555
591
592     sa in 105 aead_algo aes-128-gcm \
593     aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
594     mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5
595
596     sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
597     auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
598     mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \
599     type lookaside-protocol-offload port_id 4
600
601     sa in 35 aead_algo aes-128-gcm \
602     aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
603     mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \
604     type inline-crypto-offload port_id 0
605
606 Routing rule syntax
607 ^^^^^^^^^^^^^^^^^^^
608
609 The Routing rule syntax is shown as follows:
610
611 .. code-block:: console
612
613     rt <ip_ver> <src_ip> <dst_ip> <port>
614
615
616 where each options means:
617
618 ``<ip_ver>``
619
620  * IP protocol version
621
622  * Optional: No
623
624  * Available options:
625
626    * *ipv4*: IP protocol version 4
627    * *ipv6*: IP protocol version 6
628
629 ``<src_ip>``
630
631  * The source IP address and mask
632
633  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
634
635  * Syntax:
636
637    * *src X.X.X.X/Y* for IPv4
638    * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
639
640 ``<dst_ip>``
641
642  * The destination IP address and mask
643
644  * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
645
646  * Syntax:
647
648    * *dst X.X.X.X/Y* for IPv4
649    * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
650
651 ``<port>``
652
653  * The traffic output port id
654
655  * Optional: yes, default output port 0 will be used
656
657  * Syntax: *port X*
658
659 Example SP rules:
660
661 .. code-block:: console
662
663     rt ipv4 dst 172.16.1.5/32 port 0
664
665     rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0
666
667 Neighbour rule syntax
668 ^^^^^^^^^^^^^^^^^^^^^
669
670 The Neighbour rule syntax is shown as follows:
671
672 .. code-block:: console
673
674     neigh <port> <dst_mac>
675
676
677 where each options means:
678
679 ``<port>``
680
681  * The output port id
682
683  * Optional: No
684
685  * Syntax: *port X*
686
687 ``<dst_mac>``
688
689  * The destination ethernet address to use for that port
690
691  * Optional: No
692
693  * Syntax:
694
695    * XX:XX:XX:XX:XX:XX
696
697 Example Neighbour rules:
698
699 .. code-block:: console
700
701     neigh port 0 DE:AD:BE:EF:01:02
702
703 Test directory
704 --------------
705
706 The test directory contains scripts for testing the various encryption
707 algorithms.
708
709 The purpose of the scripts is to automate ipsec-secgw testing
710 using another system running linux as a DUT.
711
712 The user must setup the following environment variables:
713
714 *   ``SGW_PATH``: path to the ipsec-secgw binary to test.
715
716 *   ``REMOTE_HOST``: IP address/hostname of the DUT.
717
718 *   ``REMOTE_IFACE``: interface name for the test-port on the DUT.
719
720 *   ``ETH_DEV``: ethernet device to be used on the SUT by DPDK ('-w <pci-id>')
721
722 Also the user can optionally setup:
723
724 *   ``SGW_LCORE``: lcore to run ipsec-secgw on (default value is 0)
725
726 *   ``CRYPTO_DEV``: crypto device to be used ('-w <pci-id>'). If none specified
727     appropriate vdevs will be created by the script
728
729 Note that most of the tests require the appropriate crypto PMD/device to be
730 available.
731
732 Server configuration
733 ~~~~~~~~~~~~~~~~~~~~
734
735 Two servers are required for the tests, SUT and DUT.
736
737 Make sure the user from the SUT can ssh to the DUT without entering the password.
738 To enable this feature keys must be setup on the DUT.
739
740 ``ssh-keygen`` will make a private & public key pair on the SUT.
741
742 ``ssh-copy-id`` <user name>@<target host name> on the SUT will copy the public
743 key to the DUT. It will ask for credentials so that it can upload the public key.
744
745 The SUT and DUT are connected through at least 2 NIC ports.
746
747 One NIC port is expected to be managed by linux on both machines and will be
748 used as a control path.
749
750 The second NIC port (test-port) should be bound to DPDK on the SUT, and should
751 be managed by linux on the DUT.
752
753 The script starts ``ipsec-secgw`` with 2 NIC devices: ``test-port`` and
754 ``tap vdev``.
755
756 It then configures the local tap interface and the remote interface and IPsec
757 policies in the following way:
758
759 Traffic going over the test-port in both directions has to be protected by IPsec.
760
761 Traffic going over the TAP port in both directions does not have to be protected.
762
763 i.e:
764
765 DUT OS(NIC1)--(IPsec)-->(NIC1)ipsec-secgw(TAP)--(plain)-->(TAP)SUT OS
766
767 SUT OS(TAP)--(plain)-->(TAP)psec-secgw(NIC1)--(IPsec)-->(NIC1)DUT OS
768
769 It then tries to perform some data transfer using the scheme described above.
770
771 usage
772 ~~~~~
773
774 In the ipsec-secgw/test directory
775
776 to run one test for IPv4 or IPv6
777
778 /bin/bash linux_test(4|6).sh <ipsec_mode>
779
780 to run all tests for IPv4 or IPv6
781
782 /bin/bash run_test.sh -4|-6
783
784 For the list of available modes please refer to run_test.sh.