doc: use code snippets in sample app guides
[dpdk.git] / doc / guides / sample_app_ug / l3_forward_graph.rst
1 ..  SPDX-License-Identifier: BSD-3-Clause
2     Copyright(C) 2020 Marvell International Ltd.
3
4 L3 Forwarding Graph Sample Application
5 ======================================
6
7 The L3 Forwarding Graph application is a simple example of packet processing
8 using the DPDK Graph framework. The application performs L3 forwarding using
9 Graph framework and nodes written for graph framework.
10
11 Overview
12 --------
13
14 The application demonstrates the use of the graph framework and graph nodes
15 ``ethdev_rx``, ``ip4_lookup``, ``ip4_rewrite``, ``ethdev_tx`` and ``pkt_drop`` in DPDK to
16 implement packet forwarding.
17
18 The initialization is very similar to those of the :doc:`l3_forward`.
19 There is also additional initialization of graph for graph object creation
20 and configuration per lcore.
21 Run-time path is main thing that differs from L3 forwarding sample application.
22 Difference is that forwarding logic starting from Rx, followed by LPM lookup,
23 TTL update and finally Tx is implemented inside graph nodes. These nodes are
24 interconnected in graph framework. Application main loop needs to walk over
25 graph using ``rte_graph_walk()`` with graph objects created one per worker lcore.
26
27 The lookup method is as per implementation of ``ip4_lookup`` graph node.
28 The ID of the output interface for the input packet is the next hop returned by
29 the LPM lookup. The set of LPM rules used by the application is statically
30 configured and provided to ``ip4_lookup`` graph node and ``ip4_rewrite`` graph node
31 using node control API ``rte_node_ip4_route_add()`` and ``rte_node_ip4_rewrite_add()``.
32
33 In the sample application, only IPv4 forwarding is supported as of now.
34
35 Compiling the Application
36 -------------------------
37
38 To compile the sample application see :doc:`compiling`.
39
40 The application is located in the ``l3fwd-graph`` sub-directory.
41
42 Running the Application
43 -----------------------
44
45 The application has a number of command line options similar to l3fwd::
46
47     ./dpdk-l3fwd-graph [EAL options] -- -p PORTMASK
48                                    [-P]
49                                    --config(port,queue,lcore)[,(port,queue,lcore)]
50                                    [--eth-dest=X,MM:MM:MM:MM:MM:MM]
51                                    [--enable-jumbo [--max-pkt-len PKTLEN]]
52                                    [--no-numa]
53                                    [--per-port-pool]
54
55 Where,
56
57 * ``-p PORTMASK:`` Hexadecimal bitmask of ports to configure
58
59 * ``-P:`` Optional, sets all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address.
60   Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
61
62 * ``--config (port,queue,lcore)[,(port,queue,lcore)]:`` Determines which queues from which ports are mapped to which cores.
63
64 * ``--eth-dest=X,MM:MM:MM:MM:MM:MM:`` Optional, ethernet destination for port X.
65
66 * ``--enable-jumbo:`` Optional, enables jumbo frames.
67
68 * ``--max-pkt-len:`` Optional, under the premise of enabling jumbo, maximum packet length in decimal (64-9600).
69
70 * ``--no-numa:`` Optional, disables numa awareness.
71
72 * ``--per-port-pool:`` Optional, set to use independent buffer pools per port. Without this option, single buffer pool is used for all ports.
73
74 For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23 appear on socket 0,
75 while cores 8-15 and 24-31 appear on socket 1.
76
77 To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two cores, cores 1 and 2,
78 (which are in the same socket too), use the following command:
79
80 .. code-block:: console
81
82     ./<build_dir>/examples/dpdk-l3fwd-graph -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)"
83
84 In this command:
85
86 *   The -l option enables cores 1, 2
87
88 *   The -p option enables ports 0 and 1
89
90 *   The --config option enables one queue on each port and maps each (port,queue) pair to a specific core.
91     The following table shows the mapping in this example:
92
93 +----------+-----------+-----------+-------------------------------------+
94 | **Port** | **Queue** | **lcore** | **Description**                     |
95 |          |           |           |                                     |
96 +----------+-----------+-----------+-------------------------------------+
97 | 0        | 0         | 1         | Map queue 0 from port 0 to lcore 1. |
98 |          |           |           |                                     |
99 +----------+-----------+-----------+-------------------------------------+
100 | 1        | 0         | 2         | Map queue 0 from port 1 to lcore 2. |
101 |          |           |           |                                     |
102 +----------+-----------+-----------+-------------------------------------+
103
104 Refer to the *DPDK Getting Started Guide* for general information on running applications and
105 the Environment Abstraction Layer (EAL) options.
106
107 .. _l3_fwd_graph_explanation:
108
109 Explanation
110 -----------
111
112 The following sections provide some explanation of the sample application code.
113 As mentioned in the overview section, the initialization is similar to that of
114 the :doc:`l3_forward`. Run-time path though similar in functionality to that of
115 :doc:`l3_forward`, major part of the implementation is in graph nodes via used
116 via ``librte_node`` library.
117 The following sections describe aspects that are specific to the L3 Forwarding
118 Graph sample application.
119
120 Graph Node Pre-Init Configuration
121 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
122
123 After device configuration and device Rx, Tx queue setup is complete,
124 a minimal config of port id, num_rx_queues, num_tx_queues, mempools etc will
125 be passed to *ethdev_** node ctrl API ``rte_node_eth_config()``. This will be
126 lead to the clone of ``ethdev_rx`` and ``ethdev_tx`` nodes as ``ethdev_rx-X-Y`` and
127 ``ethdev_tx-X`` where X, Y represent port id and queue id associated with them.
128 In case of ``ethdev_tx-X`` nodes, tx queue id assigned per instance of the node
129 is same as graph id.
130
131 These cloned nodes along with existing static nodes such as ``ip4_lookup`` and
132 ``ip4_rewrite`` will be used in graph creation to associate node's to lcore
133 specific graph object.
134
135 .. literalinclude:: ../../../examples/l3fwd-graph/main.c
136     :language: c
137     :start-after: Initialize all ports. 8<
138     :end-before: >8 End of graph creation.
139     :dedent: 1
140
141 Graph Initialization
142 ~~~~~~~~~~~~~~~~~~~~
143
144 Now a graph needs to be created with a specific set of nodes for every lcore.
145 A graph object returned after graph creation is a per lcore object and
146 cannot be shared between lcores. Since ``ethdev_tx-X`` node is per port node,
147 it can be associated with all the graphs created as all the lcores should have
148 Tx capability for every port. But ``ethdev_rx-X-Y`` node is created per
149 (port, rx_queue_id), so they should be associated with a graph based on
150 the application argument ``--config`` specifying rx queue mapping to lcore.
151
152 .. note::
153
154     The Graph creation will fail if the passed set of shell node pattern's
155     are not sufficient to meet their inter-dependency or even one node is not
156     found with a given regex node pattern.
157
158 .. literalinclude:: ../../../examples/l3fwd-graph/main.c
159     :language: c
160     :start-after: Graph initialization. 8<
161     :end-before: >8 End of graph initialization.
162     :dedent: 1
163
164 Forwarding data(Route, Next-Hop) addition
165 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
166
167 Once graph objects are created, node specific info like routes and rewrite
168 headers will be provided run-time using ``rte_node_ip4_route_add()`` and
169 ``rte_node_ip4_rewrite_add()`` API.
170
171 .. note::
172
173     Since currently ``ip4_lookup`` and ``ip4_rewrite`` nodes don't support
174     lock-less mechanisms(RCU, etc) to add run-time forwarding data like route and
175     rewrite data, forwarding data is added before packet processing loop is
176     launched on worker lcore.
177
178 .. literalinclude:: ../../../examples/l3fwd-graph/main.c
179     :language: c
180     :start-after: Add route to ip4 graph infra. 8<
181     :end-before: >8 End of adding route to ip4 graph infa.
182     :dedent: 1
183
184 Packet Forwarding using Graph Walk
185 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
186
187 Now that all the device configurations are done, graph creations are done and
188 forwarding data is updated with nodes, worker lcores will be launched with graph
189 main loop. Graph main loop is very simple in the sense that it needs to
190 continuously call a non-blocking API ``rte_graph_walk()`` with it's lcore
191 specific graph object that was already created.
192
193 .. note::
194
195     rte_graph_walk() will walk over all the sources nodes i.e ``ethdev_rx-X-Y``
196     associated with a given graph and Rx the available packets and enqueue them
197     to the following node ``ip4_lookup`` which then will enqueue them to ``ip4_rewrite``
198     node if LPM lookup succeeds. ``ip4_rewrite`` node then will update Ethernet header
199     as per next-hop data and transmit the packet via port 'Z' by enqueuing
200     to ``ethdev_tx-Z`` node instance in its graph object.
201
202 .. literalinclude:: ../../../examples/l3fwd-graph/main.c
203     :language: c
204     :start-after: Main processing loop. 8<
205     :end-before: >8 End of main processing loop.