mempool: fix slow allocation of large mempools
[dpdk.git] / doc / guides / sample_app_ug / vm_power_management.rst
1 ..  SPDX-License-Identifier: BSD-3-Clause
2     Copyright(c) 2010-2014 Intel Corporation.
3
4 VM Power Management Application
5 ===============================
6
7 Introduction
8 ------------
9
10 Applications running in Virtual Environments have an abstract view of
11 the underlying hardware on the Host, in particular applications cannot see
12 the binding of virtual to physical hardware.
13 When looking at CPU resourcing, the pinning of Virtual CPUs(vCPUs) to
14 Host Physical CPUs(pCPUS) is not apparent to an application
15 and this pinning may change over time.
16 Furthermore, Operating Systems on virtual machines do not have the ability
17 to govern their own power policy; the Machine Specific Registers (MSRs)
18 for enabling P-State transitions are not exposed to Operating Systems
19 running on Virtual Machines(VMs).
20
21 The Virtual Machine Power Management solution shows an example of
22 how a DPDK application can indicate its processing requirements using VM local
23 only information(vCPU/lcore, etc.) to a Host based Monitor which is responsible
24 for accepting requests for frequency changes for a vCPU, translating the vCPU
25 to a pCPU via libvirt and affecting the change in frequency.
26
27 The solution is comprised of two high-level components:
28
29 #. Example Host Application
30
31    Using a Command Line Interface(CLI) for VM->Host communication channel management
32    allows adding channels to the Monitor, setting and querying the vCPU to pCPU pinning,
33    inspecting and manually changing the frequency for each CPU.
34    The CLI runs on a single lcore while the thread responsible for managing
35    VM requests runs on a second lcore.
36
37    VM requests arriving on a channel for frequency changes are passed
38    to the librte_power ACPI cpufreq sysfs based library.
39    The Host Application relies on both qemu-kvm and libvirt to function.
40
41    This monitoring application is responsible for:
42
43    - Accepting requests from client applications: Client applications can
44      request frequency changes for a vCPU, translating
45      the vCPU to a pCPU via libvirt and affecting the change in frequency.
46
47    - Accepting policies from client applications: Client application can
48      send a policy to the host application. The
49      host application will then apply the rules of the policy independent
50      of the application. For example, the policy can contain time-of-day
51      information for busy/quiet periods, and the host application can scale
52      up/down the relevant cores when required. See the details of the guest
53      application below for more information on setting the policy values.
54
55    - Out-of-band monitoring of workloads via cores hardware event counters:
56      The host application can manage power for an application in a virtualised
57      OR non-virtualised environment by looking at the event counters of the
58      cores and taking action based on the branch hit/miss ratio. See the host
59      application '--core-list' command line parameter below.
60
61 #. librte_power for Virtual Machines
62
63    Using an alternate implementation for the librte_power API, requests for
64    frequency changes are forwarded to the host monitor rather than
65    the APCI cpufreq sysfs interface used on the host.
66
67    The l3fwd-power application will use this implementation when deployed on a VM
68    (see :doc:`l3_forward_power_man`).
69
70 .. _figure_vm_power_mgr_highlevel:
71
72 .. figure:: img/vm_power_mgr_highlevel.*
73
74    Highlevel Solution
75
76
77 Overview
78 --------
79
80 VM Power Management employs qemu-kvm to provide communications channels
81 between the host and VMs in the form of Virtio-Serial which appears as
82 a paravirtualized serial device on a VM and can be configured to use
83 various backends on the host. For this example each Virtio-Serial endpoint
84 on the host is configured as AF_UNIX file socket, supporting poll/select
85 and epoll for event notification.
86 In this example each channel endpoint on the host is monitored via
87 epoll for EPOLLIN events.
88 Each channel is specified as qemu-kvm arguments or as libvirt XML for each VM,
89 where each VM can have a number of channels up to a maximum of 64 per VM,
90 in this example each DPDK lcore on a VM has exclusive access to a channel.
91
92 To enable frequency changes from within a VM, a request via the librte_power interface
93 is forwarded via Virtio-Serial to the host, each request contains the vCPU
94 and power command(scale up/down/min/max).
95 The API for host and guest librte_power is consistent across environments,
96 with the selection of VM or Host Implementation determined at automatically
97 at runtime based on the environment.
98
99 Upon receiving a request, the host translates the vCPU to a pCPU via
100 the libvirt API before forwarding to the host librte_power.
101
102 .. _figure_vm_power_mgr_vm_request_seq:
103
104 .. figure:: img/vm_power_mgr_vm_request_seq.*
105
106    VM request to scale frequency
107
108
109 Performance Considerations
110 ~~~~~~~~~~~~~~~~~~~~~~~~~~
111
112 While Haswell Microarchitecture allows for independent power control for each core,
113 earlier Microarchtectures do not offer such fine grained control.
114 When deployed on pre-Haswell platforms greater care must be taken in selecting
115 which cores are assigned to a VM, for instance a core will not scale down
116 until its sibling is similarly scaled.
117
118 Configuration
119 -------------
120
121 BIOS
122 ~~~~
123
124 Enhanced Intel SpeedStepĀ® Technology must be enabled in the platform BIOS
125 if the power management feature of DPDK is to be used.
126 Otherwise, the sys file folder /sys/devices/system/cpu/cpu0/cpufreq will not exist,
127 and the CPU frequency-based power management cannot be used.
128 Consult the relevant BIOS documentation to determine how these settings
129 can be accessed.
130
131 Host Operating System
132 ~~~~~~~~~~~~~~~~~~~~~
133
134 The DPDK Power Library can use either the *acpi_cpufreq* or *intel_pstate*
135 kernel driver for the management of core frequencies. In many cases
136 the *intel_pstate* driver is the default Power Management environment.
137
138 Should the *acpi-cpufreq* driver be required, the *intel_pstate* module must
139 be disabled, and *apci_cpufreq* module loaded in its place.
140
141 To disable *intel_pstate* driver, add the following to the grub Linux
142 command line:
143
144 .. code-block:: console
145
146   intel_pstate=disable
147
148 Upon rebooting, load the *acpi_cpufreq* module:
149
150 .. code-block:: console
151
152   modprobe acpi_cpufreq
153
154 Hypervisor Channel Configuration
155 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
156
157 Virtio-Serial channels are configured via libvirt XML:
158
159
160 .. code-block:: xml
161
162   <name>{vm_name}</name>
163   <controller type='virtio-serial' index='0'>
164     <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
165   </controller>
166   <channel type='unix'>
167     <source mode='bind' path='/tmp/powermonitor/{vm_name}.{channel_num}'/>
168     <target type='virtio' name='virtio.serial.port.poweragent.{vm_channel_num}'/>
169     <address type='virtio-serial' controller='0' bus='0' port='{N}'/>
170   </channel>
171
172
173 Where a single controller of type *virtio-serial* is created and up to 32 channels
174 can be associated with a single controller and multiple controllers can be specified.
175 The convention is to use the name of the VM in the host path *{vm_name}* and
176 to increment *{channel_num}* for each channel, likewise the port value *{N}*
177 must be incremented for each channel.
178
179 Each channel on the host will appear in *path*, the directory */tmp/powermonitor/*
180 must first be created and given qemu permissions
181
182 .. code-block:: console
183
184   mkdir /tmp/powermonitor/
185   chown qemu:qemu /tmp/powermonitor
186
187 Note that files and directories within /tmp are generally removed upon
188 rebooting the host and the above steps may need to be carried out after each reboot.
189
190 The serial device as it appears on a VM is configured with the *target* element attribute *name*
191 and must be in the form of *virtio.serial.port.poweragent.{vm_channel_num}*,
192 where *vm_channel_num* is typically the lcore channel to be used in DPDK VM applications.
193
194 Each channel on a VM will be present at */dev/virtio-ports/virtio.serial.port.poweragent.{vm_channel_num}*
195
196 Compiling and Running the Host Application
197 ------------------------------------------
198
199 Compiling
200 ~~~~~~~~~
201
202 For information on compiling DPDK and the sample applications
203 see :doc:`compiling`.
204
205 The application is located in the ``vm_power_manager`` sub-directory.
206
207 To build just the ``vm_power_manager`` application using ``make``:
208
209 .. code-block:: console
210
211   export RTE_SDK=/path/to/rte_sdk
212   export RTE_TARGET=build
213   cd ${RTE_SDK}/examples/vm_power_manager/
214   make
215
216 The resulting binary will be ${RTE_SDK}/build/examples/vm_power_manager
217
218 To build just the ``vm_power_manager`` application using ``meson/ninja``:
219
220 .. code-block:: console
221
222   export RTE_SDK=/path/to/rte_sdk
223   cd ${RTE_SDK}
224   meson build
225   cd build
226   ninja
227   meson configure -Dexamples=vm_power_manager
228   ninja
229
230 The resulting binary will be ${RTE_SDK}/build/examples/dpdk-vm_power_manager
231
232 Running
233 ~~~~~~~
234
235 The application does not have any specific command line options other than *EAL*:
236
237 .. code-block:: console
238
239  ./build/vm_power_mgr [EAL options]
240
241 The application requires exactly two cores to run, one core is dedicated to the CLI,
242 while the other is dedicated to the channel endpoint monitor, for example to run
243 on cores 0 & 1 on a system with 4 memory channels:
244
245 .. code-block:: console
246
247  ./build/vm_power_mgr -l 0-1 -n 4
248
249 After successful initialization the user is presented with VM Power Manager CLI:
250
251 .. code-block:: console
252
253   vm_power>
254
255 Virtual Machines can now be added to the VM Power Manager:
256
257 .. code-block:: console
258
259   vm_power> add_vm {vm_name}
260
261 When a {vm_name} is specified with the *add_vm* command a lookup is performed
262 with libvirt to ensure that the VM exists, {vm_name} is used as an unique identifier
263 to associate channels with a particular VM and for executing operations on a VM within the CLI.
264 VMs do not have to be running in order to add them.
265
266 A number of commands can be issued via the CLI in relation to VMs:
267
268   Remove a Virtual Machine identified by {vm_name} from the VM Power Manager.
269
270   .. code-block:: console
271
272     rm_vm {vm_name}
273
274   Add communication channels for the specified VM, the virtio channels must be enabled
275   in the VM configuration(qemu/libvirt) and the associated VM must be active.
276   {list} is a comma-separated list of channel numbers to add, using the keyword 'all'
277   will attempt to add all channels for the VM:
278
279   .. code-block:: console
280
281     add_channels {vm_name} {list}|all
282
283   Enable or disable the communication channels in {list}(comma-separated)
284   for the specified VM, alternatively list can be replaced with keyword 'all'.
285   Disabled channels will still receive packets on the host, however the commands
286   they specify will be ignored. Set status to 'enabled' to begin processing requests again:
287
288   .. code-block:: console
289
290     set_channel_status {vm_name} {list}|all enabled|disabled
291
292   Print to the CLI the information on the specified VM, the information
293   lists the number of vCPUS, the pinning to pCPU(s) as a bit mask, along with
294   any communication channels associated with each VM, along with the status of each channel:
295
296   .. code-block:: console
297
298     show_vm {vm_name}
299
300   Set the binding of Virtual CPU on VM with name {vm_name}  to the Physical CPU mask:
301
302   .. code-block:: console
303
304     set_pcpu_mask {vm_name} {vcpu} {pcpu}
305
306   Set the binding of Virtual CPU on VM to the Physical CPU:
307
308   .. code-block:: console
309
310     set_pcpu {vm_name} {vcpu} {pcpu}
311
312   Enable query of physical core information from a VM:
313
314   .. code-block:: console
315
316     set_query {vm_name} enable|disable
317
318 Manual control and inspection can also be carried in relation CPU frequency scaling:
319
320   Get the current frequency for each core specified in the mask:
321
322   .. code-block:: console
323
324     show_cpu_freq_mask {mask}
325
326   Set the current frequency for the cores specified in {core_mask} by scaling each up/down/min/max:
327
328   .. code-block:: console
329
330     set_cpu_freq {core_mask} up|down|min|max
331
332   Get the current frequency for the specified core:
333
334   .. code-block:: console
335
336     show_cpu_freq {core_num}
337
338   Set the current frequency for the specified core by scaling up/down/min/max:
339
340   .. code-block:: console
341
342     set_cpu_freq {core_num} up|down|min|max
343
344 There are also some command line parameters for enabling the out-of-band
345 monitoring of branch ratio on cores doing busy polling via PMDs.
346
347   .. code-block:: console
348
349     --core-list {list of cores}
350
351   When this parameter is used, the list of cores specified will monitor the ratio
352   between branch hits and branch misses. A tightly polling PMD thread will have a
353   very low branch ratio, so the core frequency will be scaled down to the minimum
354   allowed value. When packets are received, the code path will alter, causing the
355   branch ratio to increase. When the ratio goes above the ratio threshold, the
356   core frequency will be scaled up to the maximum allowed value.
357
358   .. code-block:: console
359
360     --branch-ratio {ratio}
361
362   The branch ratio is a floating point number that specifies the threshold at which
363   to scale up or down for the given workload. The default branch ratio is 0.01,
364   and will need to be adjusted for different workloads.
365
366
367
368 JSON API
369 ~~~~~~~~
370
371 In addition to the command line interface for host command and a virtio-serial
372 interface for VM power policies, there is also a JSON interface through which
373 power commands and policies can be sent. This functionality adds a dependency
374 on the Jansson library, and the Jansson development package must be installed
375 on the system before the JSON parsing functionality is included in the app.
376 This is achieved by:
377
378   .. code-block:: javascript
379
380     apt-get install libjansson-dev
381
382 The command and package name may be different depending on your operating
383 system. It's worth noting that the app will successfully build without this
384 package present, but a warning is shown during compilation, and the JSON
385 parsing functionality will not be present in the app.
386
387 Sending a command or policy to the power manager application is achieved by
388 simply opening a fifo file, writing a JSON string to that fifo, and closing
389 the file. In actual implementation every core has own dedicated fifo[0..n],
390 where n is number of the last available core.
391 Having a dedicated fifo file per core allows using standard filesystem permissions
392 to ensure a given container can only write JSON commands into fifos it is allowed
393 to use.
394
395 The fifo is at /tmp/powermonitor/fifo[0..n]
396
397 For example all cmds put to the /tmp/powermonitor/fifo7, will have
398 effect only on CPU[7].
399
400 The JSON string can be a policy or instruction, and takes the following
401 format:
402
403   .. code-block:: javascript
404
405     {"packet_type": {
406       "pair_1": value,
407       "pair_2": value
408     }}
409
410 The 'packet_type' header can contain one of two values, depending on
411 whether a policy or power command is being sent. The two possible values are
412 "policy" and "instruction", and the expected name-value pairs is different
413 depending on which type is being sent.
414
415 The pairs are the format of standard JSON name-value pairs. The value type
416 varies between the different name/value pairs, and may be integers, strings,
417 arrays, etc. Examples of policies follow later in this document. The allowed
418 names and value types are as follows:
419
420
421 :Pair Name: "command"
422 :Description: The type of packet we're sending to the power manager. We can be
423   creating or destroying a policy, or sending a direct command to adjust
424   the frequency of a core, similar to the command line interface.
425 :Type: string
426 :Values:
427
428   :CREATE: used when creating a new policy,
429   :DESTROY: used when removing a policy,
430   :POWER: used when sending an immediate command, max, min, etc.
431 :Required: yes
432 :Example:
433
434     .. code-block:: javascript
435
436       "command", "CREATE"
437
438
439 :Pair Name: "policy_type"
440 :Description: Type of policy to apply. Please see vm_power_manager documentation
441   for more information on the types of policies that may be used.
442 :Type: string
443 :Values:
444
445   :TIME: Time-of-day policy. Frequencies of the relevant cores are
446     scaled up/down depending on busy and quiet hours.
447   :TRAFFIC: This policy takes statistics from the NIC and scales up
448     and down accordingly.
449   :WORKLOAD: This policy looks at how heavily loaded the cores are,
450     and scales up and down accordingly.
451   :BRANCH_RATIO: This out-of-band policy can look at the ratio between
452     branch hits and misses on a core, and is useful for detecting
453     how much packet processing a core is doing.
454 :Required: only for CREATE/DESTROY command
455 :Example:
456
457   .. code-block:: javascript
458
459     "policy_type", "TIME"
460
461 :Pair Name: "busy_hours"
462 :Description: The hours of the day in which we scale up the cores for busy
463   times.
464 :Type: array of integers
465 :Values: array with list of hour numbers, (0-23)
466 :Required: only for TIME policy
467 :Example:
468
469   .. code-block:: javascript
470
471     "busy_hours":[ 17, 18, 19, 20, 21, 22, 23 ]
472
473 :Pair Name: "quiet_hours"
474 :Description: The hours of the day in which we scale down the cores for quiet
475   times.
476 :Type: array of integers
477 :Values: array with list of hour numbers, (0-23)
478 :Required: only for TIME policy
479 :Example:
480
481   .. code-block:: javascript
482
483     "quiet_hours":[ 2, 3, 4, 5, 6 ]
484
485 :Pair Name: "avg_packet_thresh"
486 :Description: Threshold below which the frequency will be set to min for
487   the TRAFFIC policy. If the traffic rate is above this and below max, the
488   frequency will be set to medium.
489 :Type: integer
490 :Values: The number of packets below which the TRAFFIC policy applies the
491   minimum frequency, or medium frequency if between avg and max thresholds.
492 :Required: only for TRAFFIC policy
493 :Example:
494
495   .. code-block:: javascript
496
497     "avg_packet_thresh": 100000
498
499 :Pair Name: "max_packet_thresh"
500 :Description: Threshold above which the frequency will be set to max for
501   the TRAFFIC policy
502 :Type: integer
503 :Values: The number of packets per interval above which the TRAFFIC policy
504   applies the maximum frequency
505 :Required: only for TRAFFIC policy
506 :Example:
507
508   .. code-block:: javascript
509
510     "max_packet_thresh": 500000
511
512 :Pair Name: "workload"
513 :Description: When our policy is of type WORKLOAD, we need to specify how
514   heavy our workload is.
515 :Type: string
516 :Values:
517
518   :HIGH: For cores running workloads that require high frequencies
519   :MEDIUM: For cores running workloads that require medium frequencies
520   :LOW: For cores running workloads that require low frequencies
521 :Required: only for WORKLOAD policy types
522 :Example:
523
524   .. code-block:: javascript
525
526     "workload", "MEDIUM"
527
528 :Pair Name: "mac_list"
529 :Description: When our policy is of type TRAFFIC, we need to specify the
530   MAC addresses that the host needs to monitor
531 :Type: string
532 :Values: array with a list of mac address strings.
533 :Required: only for TRAFFIC policy types
534 :Example:
535
536   .. code-block:: javascript
537
538     "mac_list":[ "de:ad:be:ef:01:01", "de:ad:be:ef:01:02" ]
539
540 :Pair Name: "unit"
541 :Description: the type of power operation to apply in the command
542 :Type: string
543 :Values:
544
545   :SCALE_MAX: Scale frequency of this core to maximum
546   :SCALE_MIN: Scale frequency of this core to minimum
547   :SCALE_UP: Scale up frequency of this core
548   :SCALE_DOWN: Scale down frequency of this core
549   :ENABLE_TURBO: Enable Turbo Boost for this core
550   :DISABLE_TURBO: Disable Turbo Boost for this core
551 :Required: only for POWER instruction
552 :Example:
553
554   .. code-block:: javascript
555
556     "unit", "SCALE_MAX"
557
558 JSON API Examples
559 ~~~~~~~~~~~~~~~~~
560
561 Profile create example:
562
563   .. code-block:: javascript
564
565     {"policy": {
566       "command": "create",
567       "policy_type": "TIME",
568       "busy_hours":[ 17, 18, 19, 20, 21, 22, 23 ],
569       "quiet_hours":[ 2, 3, 4, 5, 6 ]
570     }}
571
572 Profile destroy example:
573
574   .. code-block:: javascript
575
576     {"policy": {
577       "command": "destroy"
578     }}
579
580 Power command example:
581
582   .. code-block:: javascript
583
584     {"instruction": {
585       "command": "power",
586       "unit": "SCALE_MAX"
587     }}
588
589 To send a JSON string to the Power Manager application, simply paste the
590 example JSON string into a text file and cat it into the proper fifo:
591
592   .. code-block:: console
593
594     cat file.json >/tmp/powermonitor/fifo[0..n]
595
596 The console of the Power Manager application should indicate the command that
597 was just received via the fifo.
598
599 Compiling and Running the Guest Applications
600 --------------------------------------------
601
602 l3fwd-power is one sample application that can be used with vm_power_manager.
603
604 A guest CLI is also provided for validating the setup.
605
606 For both l3fwd-power and guest CLI, the channels for the VM must be monitored by the
607 host application using the *add_channels* command on the host. This typically uses
608 the following commands in the host application:
609
610 .. code-block:: console
611
612   vm_power> add_vm vmname
613   vm_power> add_channels vmname all
614   vm_power> set_channel_status vmname all enabled
615   vm_power> show_vm vmname
616
617
618 Compiling
619 ~~~~~~~~~
620
621 For information on compiling DPDK and the sample applications
622 see :doc:`compiling`.
623
624 For compiling and running l3fwd-power, see :doc:`l3_forward_power_man`.
625
626 The application is located in the ``guest_cli`` sub-directory under ``vm_power_manager``.
627
628 To build just the ``guest_vm_power_manager`` application using ``make``:
629
630 .. code-block:: console
631
632   export RTE_SDK=/path/to/rte_sdk
633   export RTE_TARGET=build
634   cd ${RTE_SDK}/examples/vm_power_manager/guest_cli/
635   make
636
637 The resulting binary will be ${RTE_SDK}/build/examples/guest_cli
638
639 .. Note::
640   This sample application conditionally links in the Jansson JSON
641   library, so if you are using a multilib or cross compile environment you
642   may need to set the ``PKG_CONFIG_LIBDIR`` environmental variable to point to
643   the relevant pkgconfig folder so that the correct library is linked in.
644
645   For example, if you are building for a 32-bit target, you could find the
646   correct directory using the following ``find`` command:
647
648   .. code-block:: console
649
650       # find /usr -type d -name pkgconfig
651       /usr/lib/i386-linux-gnu/pkgconfig
652       /usr/lib/x86_64-linux-gnu/pkgconfig
653
654   Then use:
655
656   .. code-block:: console
657
658       export PKG_CONFIG_LIBDIR=/usr/lib/i386-linux-gnu/pkgconfig
659
660   You then use the make command as normal, which should find the 32-bit
661   version of the library, if it installed. If not, the application will
662   be built without the JSON interface functionality.
663
664 To build just the ``vm_power_manager`` application using ``meson/ninja``:
665
666 .. code-block:: console
667
668   export RTE_SDK=/path/to/rte_sdk
669   cd ${RTE_SDK}
670   meson build
671   cd build
672   ninja
673   meson configure -Dexamples=vm_power_manager/guest_cli
674   ninja
675
676 The resulting binary will be ${RTE_SDK}/build/examples/guest_cli
677
678 Running
679 ~~~~~~~
680
681 The standard *EAL* command line parameters are required:
682
683 .. code-block:: console
684
685  ./build/guest_vm_power_mgr [EAL options] -- [guest options]
686
687 The guest example uses a channel for each lcore enabled. For example,
688 to run on cores 0,1,2,3:
689
690 .. code-block:: console
691
692  ./build/guest_vm_power_mgr -l 0-3
693
694 Optionally, there is a list of command line parameter should the user wish to send a power
695 policy down to the host application. These parameters are as follows:
696
697   .. code-block:: console
698
699     --vm-name {name of guest vm}
700
701   This parameter allows the user to change the Virtual Machine name passed down to the
702   host application via the power policy. The default is "ubuntu2"
703
704   .. code-block:: console
705
706     --vcpu-list {list vm cores}
707
708   A comma-separated list of cores in the VM that the user wants the host application to
709   monitor. The list of cores in any vm starts at zero, and these are mapped to the
710   physical cores by the host application once the policy is passed down.
711   Valid syntax includes individual cores '2,3,4', or a range of cores '2-4', or a
712   combination of both '1,3,5-7'
713
714   .. code-block:: console
715
716     --busy-hours {list of busy hours}
717
718   A comma-separated list of hours within which to set the core frequency to maximum.
719   Valid syntax includes individual hours '2,3,4', or a range of hours '2-4', or a
720   combination of both '1,3,5-7'. Valid hours are 0 to 23.
721
722   .. code-block:: console
723
724     --quiet-hours {list of quiet hours}
725
726   A comma-separated list of hours within which to set the core frequency to minimum.
727   Valid syntax includes individual hours '2,3,4', or a range of hours '2-4', or a
728   combination of both '1,3,5-7'. Valid hours are 0 to 23.
729
730   .. code-block:: console
731
732     --policy {policy type}
733
734   The type of policy. This can be one of the following values:
735   TRAFFIC - based on incoming traffic rates on the NIC.
736   TIME - busy/quiet hours policy.
737   BRANCH_RATIO - uses branch ratio counters to determine core busyness.
738   Not all parameters are needed for all policy types. For example, BRANCH_RATIO
739   only needs the vcpu-list parameter, not any of the hours.
740
741
742 After successful initialization the user is presented with VM Power Manager Guest CLI:
743
744 .. code-block:: console
745
746   vm_power(guest)>
747
748 To change the frequency of a lcore, use the set_cpu_freq command.
749 Where {core_num} is the lcore and channel to change frequency by scaling up/down/min/max.
750
751 .. code-block:: console
752
753   set_cpu_freq {core_num} up|down|min|max
754
755 To query the available frequences of an lcore, use the query_cpu_freq command.
756 Where {core_num} is the lcore to query.
757 Before using this command, please enable responses via the set_query command on the host.
758
759 .. code-block:: console
760
761   query_cpu_freq {core_num}|all
762
763 To query the capabilities of an lcore, use the query_cpu_caps command.
764 Where {core_num} is the lcore to query.
765 Before using this command, please enable responses via the set_query command on the host.
766
767 .. code-block:: console
768
769   query_cpu_caps {core_num}|all
770
771 To start the application and configure the power policy, and send it to the host:
772
773 .. code-block:: console
774
775  ./build/guest_vm_power_mgr -l 0-3 -n 4 -- --vm-name=ubuntu --policy=BRANCH_RATIO --vcpu-list=2-4
776
777 Once the VM Power Manager Guest CLI appears, issuing the 'send_policy now' command
778 will send the policy to the host:
779
780 .. code-block:: console
781
782   send_policy now
783
784 Once the policy is sent to the host, the host application takes over the power monitoring
785 of the specified cores in the policy.