net/hns3: refactor multi-process initialization
[dpdk.git] / drivers / baseband / acc100 / rte_acc100_pmd.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2020 Intel Corporation
3  */
4
5 #include <unistd.h>
6
7 #include <rte_common.h>
8 #include <rte_log.h>
9 #include <rte_dev.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12 #include <rte_byteorder.h>
13 #include <rte_errno.h>
14 #include <rte_branch_prediction.h>
15 #include <rte_hexdump.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #ifdef RTE_BBDEV_OFFLOAD_COST
19 #include <rte_cycles.h>
20 #endif
21
22 #include <rte_bbdev.h>
23 #include <rte_bbdev_pmd.h>
24 #include "rte_acc100_pmd.h"
25
26 #ifdef RTE_LIBRTE_BBDEV_DEBUG
27 RTE_LOG_REGISTER_DEFAULT(acc100_logtype, DEBUG);
28 #else
29 RTE_LOG_REGISTER_DEFAULT(acc100_logtype, NOTICE);
30 #endif
31
32 /* Write to MMIO register address */
33 static inline void
34 mmio_write(void *addr, uint32_t value)
35 {
36         *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
37 }
38
39 /* Write a register of a ACC100 device */
40 static inline void
41 acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t value)
42 {
43         void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
44         mmio_write(reg_addr, value);
45         usleep(ACC100_LONG_WAIT);
46 }
47
48 /* Read a register of a ACC100 device */
49 static inline uint32_t
50 acc100_reg_read(struct acc100_device *d, uint32_t offset)
51 {
52
53         void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
54         uint32_t ret = *((volatile uint32_t *)(reg_addr));
55         return rte_le_to_cpu_32(ret);
56 }
57
58 /* Basic Implementation of Log2 for exact 2^N */
59 static inline uint32_t
60 log2_basic(uint32_t value)
61 {
62         return (value == 0) ? 0 : rte_bsf32(value);
63 }
64
65 /* Calculate memory alignment offset assuming alignment is 2^N */
66 static inline uint32_t
67 calc_mem_alignment_offset(void *unaligned_virt_mem, uint32_t alignment)
68 {
69         rte_iova_t unaligned_phy_mem = rte_malloc_virt2iova(unaligned_virt_mem);
70         return (uint32_t)(alignment -
71                         (unaligned_phy_mem & (alignment-1)));
72 }
73
74 /* Calculate the offset of the enqueue register */
75 static inline uint32_t
76 queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
77 {
78         if (pf_device)
79                 return ((vf_id << 12) + (qgrp_id << 7) + (aq_id << 3) +
80                                 HWPfQmgrIngressAq);
81         else
82                 return ((qgrp_id << 7) + (aq_id << 3) +
83                                 HWVfQmgrIngressAq);
84 }
85
86 enum {UL_4G = 0, UL_5G, DL_4G, DL_5G, NUM_ACC};
87
88 /* Return the accelerator enum for a Queue Group Index */
89 static inline int
90 accFromQgid(int qg_idx, const struct rte_acc100_conf *acc100_conf)
91 {
92         int accQg[ACC100_NUM_QGRPS];
93         int NumQGroupsPerFn[NUM_ACC];
94         int acc, qgIdx, qgIndex = 0;
95         for (qgIdx = 0; qgIdx < ACC100_NUM_QGRPS; qgIdx++)
96                 accQg[qgIdx] = 0;
97         NumQGroupsPerFn[UL_4G] = acc100_conf->q_ul_4g.num_qgroups;
98         NumQGroupsPerFn[UL_5G] = acc100_conf->q_ul_5g.num_qgroups;
99         NumQGroupsPerFn[DL_4G] = acc100_conf->q_dl_4g.num_qgroups;
100         NumQGroupsPerFn[DL_5G] = acc100_conf->q_dl_5g.num_qgroups;
101         for (acc = UL_4G;  acc < NUM_ACC; acc++)
102                 for (qgIdx = 0; qgIdx < NumQGroupsPerFn[acc]; qgIdx++)
103                         accQg[qgIndex++] = acc;
104         acc = accQg[qg_idx];
105         return acc;
106 }
107
108 /* Return the queue topology for a Queue Group Index */
109 static inline void
110 qtopFromAcc(struct rte_acc100_queue_topology **qtop, int acc_enum,
111                 struct rte_acc100_conf *acc100_conf)
112 {
113         struct rte_acc100_queue_topology *p_qtop;
114         p_qtop = NULL;
115         switch (acc_enum) {
116         case UL_4G:
117                 p_qtop = &(acc100_conf->q_ul_4g);
118                 break;
119         case UL_5G:
120                 p_qtop = &(acc100_conf->q_ul_5g);
121                 break;
122         case DL_4G:
123                 p_qtop = &(acc100_conf->q_dl_4g);
124                 break;
125         case DL_5G:
126                 p_qtop = &(acc100_conf->q_dl_5g);
127                 break;
128         default:
129                 /* NOTREACHED */
130                 rte_bbdev_log(ERR, "Unexpected error evaluating qtopFromAcc");
131                 break;
132         }
133         *qtop = p_qtop;
134 }
135
136 /* Return the AQ depth for a Queue Group Index */
137 static inline int
138 aqDepth(int qg_idx, struct rte_acc100_conf *acc100_conf)
139 {
140         struct rte_acc100_queue_topology *q_top = NULL;
141         int acc_enum = accFromQgid(qg_idx, acc100_conf);
142         qtopFromAcc(&q_top, acc_enum, acc100_conf);
143         if (unlikely(q_top == NULL))
144                 return 0;
145         return q_top->aq_depth_log2;
146 }
147
148 /* Return the AQ depth for a Queue Group Index */
149 static inline int
150 aqNum(int qg_idx, struct rte_acc100_conf *acc100_conf)
151 {
152         struct rte_acc100_queue_topology *q_top = NULL;
153         int acc_enum = accFromQgid(qg_idx, acc100_conf);
154         qtopFromAcc(&q_top, acc_enum, acc100_conf);
155         if (unlikely(q_top == NULL))
156                 return 0;
157         return q_top->num_aqs_per_groups;
158 }
159
160 static void
161 initQTop(struct rte_acc100_conf *acc100_conf)
162 {
163         acc100_conf->q_ul_4g.num_aqs_per_groups = 0;
164         acc100_conf->q_ul_4g.num_qgroups = 0;
165         acc100_conf->q_ul_4g.first_qgroup_index = -1;
166         acc100_conf->q_ul_5g.num_aqs_per_groups = 0;
167         acc100_conf->q_ul_5g.num_qgroups = 0;
168         acc100_conf->q_ul_5g.first_qgroup_index = -1;
169         acc100_conf->q_dl_4g.num_aqs_per_groups = 0;
170         acc100_conf->q_dl_4g.num_qgroups = 0;
171         acc100_conf->q_dl_4g.first_qgroup_index = -1;
172         acc100_conf->q_dl_5g.num_aqs_per_groups = 0;
173         acc100_conf->q_dl_5g.num_qgroups = 0;
174         acc100_conf->q_dl_5g.first_qgroup_index = -1;
175 }
176
177 static inline void
178 updateQtop(uint8_t acc, uint8_t qg, struct rte_acc100_conf *acc100_conf,
179                 struct acc100_device *d) {
180         uint32_t reg;
181         struct rte_acc100_queue_topology *q_top = NULL;
182         qtopFromAcc(&q_top, acc, acc100_conf);
183         if (unlikely(q_top == NULL))
184                 return;
185         uint16_t aq;
186         q_top->num_qgroups++;
187         if (q_top->first_qgroup_index == -1) {
188                 q_top->first_qgroup_index = qg;
189                 /* Can be optimized to assume all are enabled by default */
190                 reg = acc100_reg_read(d, queue_offset(d->pf_device,
191                                 0, qg, ACC100_NUM_AQS - 1));
192                 if (reg & ACC100_QUEUE_ENABLE) {
193                         q_top->num_aqs_per_groups = ACC100_NUM_AQS;
194                         return;
195                 }
196                 q_top->num_aqs_per_groups = 0;
197                 for (aq = 0; aq < ACC100_NUM_AQS; aq++) {
198                         reg = acc100_reg_read(d, queue_offset(d->pf_device,
199                                         0, qg, aq));
200                         if (reg & ACC100_QUEUE_ENABLE)
201                                 q_top->num_aqs_per_groups++;
202                 }
203         }
204 }
205
206 /* Fetch configuration enabled for the PF/VF using MMIO Read (slow) */
207 static inline void
208 fetch_acc100_config(struct rte_bbdev *dev)
209 {
210         struct acc100_device *d = dev->data->dev_private;
211         struct rte_acc100_conf *acc100_conf = &d->acc100_conf;
212         const struct acc100_registry_addr *reg_addr;
213         uint8_t acc, qg;
214         uint32_t reg, reg_aq, reg_len0, reg_len1;
215         uint32_t reg_mode;
216
217         /* No need to retrieve the configuration is already done */
218         if (d->configured)
219                 return;
220
221         /* Choose correct registry addresses for the device type */
222         if (d->pf_device)
223                 reg_addr = &pf_reg_addr;
224         else
225                 reg_addr = &vf_reg_addr;
226
227         d->ddr_size = (1 + acc100_reg_read(d, reg_addr->ddr_range)) << 10;
228
229         /* Single VF Bundle by VF */
230         acc100_conf->num_vf_bundles = 1;
231         initQTop(acc100_conf);
232
233         struct rte_acc100_queue_topology *q_top = NULL;
234         int qman_func_id[ACC100_NUM_ACCS] = {ACC100_ACCMAP_0, ACC100_ACCMAP_1,
235                         ACC100_ACCMAP_2, ACC100_ACCMAP_3, ACC100_ACCMAP_4};
236         reg = acc100_reg_read(d, reg_addr->qman_group_func);
237         for (qg = 0; qg < ACC100_NUM_QGRPS_PER_WORD; qg++) {
238                 reg_aq = acc100_reg_read(d,
239                                 queue_offset(d->pf_device, 0, qg, 0));
240                 if (reg_aq & ACC100_QUEUE_ENABLE) {
241                         uint32_t idx = (reg >> (qg * 4)) & 0x7;
242                         if (idx < ACC100_NUM_ACCS) {
243                                 acc = qman_func_id[idx];
244                                 updateQtop(acc, qg, acc100_conf, d);
245                         }
246                 }
247         }
248
249         /* Check the depth of the AQs*/
250         reg_len0 = acc100_reg_read(d, reg_addr->depth_log0_offset);
251         reg_len1 = acc100_reg_read(d, reg_addr->depth_log1_offset);
252         for (acc = 0; acc < NUM_ACC; acc++) {
253                 qtopFromAcc(&q_top, acc, acc100_conf);
254                 if (q_top->first_qgroup_index < ACC100_NUM_QGRPS_PER_WORD)
255                         q_top->aq_depth_log2 = (reg_len0 >>
256                                         (q_top->first_qgroup_index * 4))
257                                         & 0xF;
258                 else
259                         q_top->aq_depth_log2 = (reg_len1 >>
260                                         ((q_top->first_qgroup_index -
261                                         ACC100_NUM_QGRPS_PER_WORD) * 4))
262                                         & 0xF;
263         }
264
265         /* Read PF mode */
266         if (d->pf_device) {
267                 reg_mode = acc100_reg_read(d, HWPfHiPfMode);
268                 acc100_conf->pf_mode_en = (reg_mode == ACC100_PF_VAL) ? 1 : 0;
269         }
270
271         rte_bbdev_log_debug(
272                         "%s Config LLR SIGN IN/OUT %s %s QG %u %u %u %u AQ %u %u %u %u Len %u %u %u %u\n",
273                         (d->pf_device) ? "PF" : "VF",
274                         (acc100_conf->input_pos_llr_1_bit) ? "POS" : "NEG",
275                         (acc100_conf->output_pos_llr_1_bit) ? "POS" : "NEG",
276                         acc100_conf->q_ul_4g.num_qgroups,
277                         acc100_conf->q_dl_4g.num_qgroups,
278                         acc100_conf->q_ul_5g.num_qgroups,
279                         acc100_conf->q_dl_5g.num_qgroups,
280                         acc100_conf->q_ul_4g.num_aqs_per_groups,
281                         acc100_conf->q_dl_4g.num_aqs_per_groups,
282                         acc100_conf->q_ul_5g.num_aqs_per_groups,
283                         acc100_conf->q_dl_5g.num_aqs_per_groups,
284                         acc100_conf->q_ul_4g.aq_depth_log2,
285                         acc100_conf->q_dl_4g.aq_depth_log2,
286                         acc100_conf->q_ul_5g.aq_depth_log2,
287                         acc100_conf->q_dl_5g.aq_depth_log2);
288 }
289
290 static void
291 free_base_addresses(void **base_addrs, int size)
292 {
293         int i;
294         for (i = 0; i < size; i++)
295                 rte_free(base_addrs[i]);
296 }
297
298 static inline uint32_t
299 get_desc_len(void)
300 {
301         return sizeof(union acc100_dma_desc);
302 }
303
304 /* Allocate the 2 * 64MB block for the sw rings */
305 static int
306 alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc100_device *d,
307                 int socket)
308 {
309         uint32_t sw_ring_size = ACC100_SIZE_64MBYTE;
310         d->sw_rings_base = rte_zmalloc_socket(dev->device->driver->name,
311                         2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
312         if (d->sw_rings_base == NULL) {
313                 rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
314                                 dev->device->driver->name,
315                                 dev->data->dev_id);
316                 return -ENOMEM;
317         }
318         uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
319                         d->sw_rings_base, ACC100_SIZE_64MBYTE);
320         d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, next_64mb_align_offset);
321         d->sw_rings_iova = rte_malloc_virt2iova(d->sw_rings_base) +
322                         next_64mb_align_offset;
323         d->sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
324         d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
325
326         return 0;
327 }
328
329 /* Attempt to allocate minimised memory space for sw rings */
330 static void
331 alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d,
332                 uint16_t num_queues, int socket)
333 {
334         rte_iova_t sw_rings_base_iova, next_64mb_align_addr_iova;
335         uint32_t next_64mb_align_offset;
336         rte_iova_t sw_ring_iova_end_addr;
337         void *base_addrs[ACC100_SW_RING_MEM_ALLOC_ATTEMPTS];
338         void *sw_rings_base;
339         int i = 0;
340         uint32_t q_sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
341         uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
342
343         /* Find an aligned block of memory to store sw rings */
344         while (i < ACC100_SW_RING_MEM_ALLOC_ATTEMPTS) {
345                 /*
346                  * sw_ring allocated memory is guaranteed to be aligned to
347                  * q_sw_ring_size at the condition that the requested size is
348                  * less than the page size
349                  */
350                 sw_rings_base = rte_zmalloc_socket(
351                                 dev->device->driver->name,
352                                 dev_sw_ring_size, q_sw_ring_size, socket);
353
354                 if (sw_rings_base == NULL) {
355                         rte_bbdev_log(ERR,
356                                         "Failed to allocate memory for %s:%u",
357                                         dev->device->driver->name,
358                                         dev->data->dev_id);
359                         break;
360                 }
361
362                 sw_rings_base_iova = rte_malloc_virt2iova(sw_rings_base);
363                 next_64mb_align_offset = calc_mem_alignment_offset(
364                                 sw_rings_base, ACC100_SIZE_64MBYTE);
365                 next_64mb_align_addr_iova = sw_rings_base_iova +
366                                 next_64mb_align_offset;
367                 sw_ring_iova_end_addr = sw_rings_base_iova + dev_sw_ring_size;
368
369                 /* Check if the end of the sw ring memory block is before the
370                  * start of next 64MB aligned mem address
371                  */
372                 if (sw_ring_iova_end_addr < next_64mb_align_addr_iova) {
373                         d->sw_rings_iova = sw_rings_base_iova;
374                         d->sw_rings = sw_rings_base;
375                         d->sw_rings_base = sw_rings_base;
376                         d->sw_ring_size = q_sw_ring_size;
377                         d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
378                         break;
379                 }
380                 /* Store the address of the unaligned mem block */
381                 base_addrs[i] = sw_rings_base;
382                 i++;
383         }
384
385         /* Free all unaligned blocks of mem allocated in the loop */
386         free_base_addresses(base_addrs, i);
387 }
388
389 /*
390  * Find queue_id of a device queue based on details from the Info Ring.
391  * If a queue isn't found UINT16_MAX is returned.
392  */
393 static inline uint16_t
394 get_queue_id_from_ring_info(struct rte_bbdev_data *data,
395                 const union acc100_info_ring_data ring_data)
396 {
397         uint16_t queue_id;
398
399         for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
400                 struct acc100_queue *acc100_q =
401                                 data->queues[queue_id].queue_private;
402                 if (acc100_q != NULL && acc100_q->aq_id == ring_data.aq_id &&
403                                 acc100_q->qgrp_id == ring_data.qg_id &&
404                                 acc100_q->vf_id == ring_data.vf_id)
405                         return queue_id;
406         }
407
408         return UINT16_MAX;
409 }
410
411 /* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
412 static inline void
413 acc100_check_ir(struct acc100_device *acc100_dev)
414 {
415         volatile union acc100_info_ring_data *ring_data;
416         uint16_t info_ring_head = acc100_dev->info_ring_head;
417         if (acc100_dev->info_ring == NULL)
418                 return;
419
420         ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
421                         ACC100_INFO_RING_MASK);
422
423         while (ring_data->valid) {
424                 if ((ring_data->int_nb < ACC100_PF_INT_DMA_DL_DESC_IRQ) || (
425                                 ring_data->int_nb >
426                                 ACC100_PF_INT_DMA_DL5G_DESC_IRQ))
427                         rte_bbdev_log(WARNING, "InfoRing: ITR:%d Info:0x%x",
428                                 ring_data->int_nb, ring_data->detailed_info);
429                 /* Initialize Info Ring entry and move forward */
430                 ring_data->val = 0;
431                 info_ring_head++;
432                 ring_data = acc100_dev->info_ring +
433                                 (info_ring_head & ACC100_INFO_RING_MASK);
434         }
435 }
436
437 /* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
438 static inline void
439 acc100_pf_interrupt_handler(struct rte_bbdev *dev)
440 {
441         struct acc100_device *acc100_dev = dev->data->dev_private;
442         volatile union acc100_info_ring_data *ring_data;
443         struct acc100_deq_intr_details deq_intr_det;
444
445         ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
446                         ACC100_INFO_RING_MASK);
447
448         while (ring_data->valid) {
449
450                 rte_bbdev_log_debug(
451                                 "ACC100 PF Interrupt received, Info Ring data: 0x%x",
452                                 ring_data->val);
453
454                 switch (ring_data->int_nb) {
455                 case ACC100_PF_INT_DMA_DL_DESC_IRQ:
456                 case ACC100_PF_INT_DMA_UL_DESC_IRQ:
457                 case ACC100_PF_INT_DMA_UL5G_DESC_IRQ:
458                 case ACC100_PF_INT_DMA_DL5G_DESC_IRQ:
459                         deq_intr_det.queue_id = get_queue_id_from_ring_info(
460                                         dev->data, *ring_data);
461                         if (deq_intr_det.queue_id == UINT16_MAX) {
462                                 rte_bbdev_log(ERR,
463                                                 "Couldn't find queue: aq_id: %u, qg_id: %u, vf_id: %u",
464                                                 ring_data->aq_id,
465                                                 ring_data->qg_id,
466                                                 ring_data->vf_id);
467                                 return;
468                         }
469                         rte_bbdev_pmd_callback_process(dev,
470                                         RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
471                         break;
472                 default:
473                         rte_bbdev_pmd_callback_process(dev,
474                                         RTE_BBDEV_EVENT_ERROR, NULL);
475                         break;
476                 }
477
478                 /* Initialize Info Ring entry and move forward */
479                 ring_data->val = 0;
480                 ++acc100_dev->info_ring_head;
481                 ring_data = acc100_dev->info_ring +
482                                 (acc100_dev->info_ring_head &
483                                 ACC100_INFO_RING_MASK);
484         }
485 }
486
487 /* Checks VF Info Ring to find the interrupt cause and handles it accordingly */
488 static inline void
489 acc100_vf_interrupt_handler(struct rte_bbdev *dev)
490 {
491         struct acc100_device *acc100_dev = dev->data->dev_private;
492         volatile union acc100_info_ring_data *ring_data;
493         struct acc100_deq_intr_details deq_intr_det;
494
495         ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
496                         ACC100_INFO_RING_MASK);
497
498         while (ring_data->valid) {
499
500                 rte_bbdev_log_debug(
501                                 "ACC100 VF Interrupt received, Info Ring data: 0x%x",
502                                 ring_data->val);
503
504                 switch (ring_data->int_nb) {
505                 case ACC100_VF_INT_DMA_DL_DESC_IRQ:
506                 case ACC100_VF_INT_DMA_UL_DESC_IRQ:
507                 case ACC100_VF_INT_DMA_UL5G_DESC_IRQ:
508                 case ACC100_VF_INT_DMA_DL5G_DESC_IRQ:
509                         /* VFs are not aware of their vf_id - it's set to 0 in
510                          * queue structures.
511                          */
512                         ring_data->vf_id = 0;
513                         deq_intr_det.queue_id = get_queue_id_from_ring_info(
514                                         dev->data, *ring_data);
515                         if (deq_intr_det.queue_id == UINT16_MAX) {
516                                 rte_bbdev_log(ERR,
517                                                 "Couldn't find queue: aq_id: %u, qg_id: %u",
518                                                 ring_data->aq_id,
519                                                 ring_data->qg_id);
520                                 return;
521                         }
522                         rte_bbdev_pmd_callback_process(dev,
523                                         RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
524                         break;
525                 default:
526                         rte_bbdev_pmd_callback_process(dev,
527                                         RTE_BBDEV_EVENT_ERROR, NULL);
528                         break;
529                 }
530
531                 /* Initialize Info Ring entry and move forward */
532                 ring_data->valid = 0;
533                 ++acc100_dev->info_ring_head;
534                 ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head
535                                 & ACC100_INFO_RING_MASK);
536         }
537 }
538
539 /* Interrupt handler triggered by ACC100 dev for handling specific interrupt */
540 static void
541 acc100_dev_interrupt_handler(void *cb_arg)
542 {
543         struct rte_bbdev *dev = cb_arg;
544         struct acc100_device *acc100_dev = dev->data->dev_private;
545
546         /* Read info ring */
547         if (acc100_dev->pf_device)
548                 acc100_pf_interrupt_handler(dev);
549         else
550                 acc100_vf_interrupt_handler(dev);
551 }
552
553 /* Allocate and setup inforing */
554 static int
555 allocate_info_ring(struct rte_bbdev *dev)
556 {
557         struct acc100_device *d = dev->data->dev_private;
558         const struct acc100_registry_addr *reg_addr;
559         rte_iova_t info_ring_iova;
560         uint32_t phys_low, phys_high;
561
562         if (d->info_ring != NULL)
563                 return 0; /* Already configured */
564
565         /* Choose correct registry addresses for the device type */
566         if (d->pf_device)
567                 reg_addr = &pf_reg_addr;
568         else
569                 reg_addr = &vf_reg_addr;
570         /* Allocate InfoRing */
571         d->info_ring = rte_zmalloc_socket("Info Ring",
572                         ACC100_INFO_RING_NUM_ENTRIES *
573                         sizeof(*d->info_ring), RTE_CACHE_LINE_SIZE,
574                         dev->data->socket_id);
575         if (d->info_ring == NULL) {
576                 rte_bbdev_log(ERR,
577                                 "Failed to allocate Info Ring for %s:%u",
578                                 dev->device->driver->name,
579                                 dev->data->dev_id);
580                 return -ENOMEM;
581         }
582         info_ring_iova = rte_malloc_virt2iova(d->info_ring);
583
584         /* Setup Info Ring */
585         phys_high = (uint32_t)(info_ring_iova >> 32);
586         phys_low  = (uint32_t)(info_ring_iova);
587         acc100_reg_write(d, reg_addr->info_ring_hi, phys_high);
588         acc100_reg_write(d, reg_addr->info_ring_lo, phys_low);
589         acc100_reg_write(d, reg_addr->info_ring_en, ACC100_REG_IRQ_EN_ALL);
590         d->info_ring_head = (acc100_reg_read(d, reg_addr->info_ring_ptr) &
591                         0xFFF) / sizeof(union acc100_info_ring_data);
592         return 0;
593 }
594
595
596 /* Allocate 64MB memory used for all software rings */
597 static int
598 acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
599 {
600         uint32_t phys_low, phys_high, value;
601         struct acc100_device *d = dev->data->dev_private;
602         const struct acc100_registry_addr *reg_addr;
603         int ret;
604
605         if (d->pf_device && !d->acc100_conf.pf_mode_en) {
606                 rte_bbdev_log(NOTICE,
607                                 "%s has PF mode disabled. This PF can't be used.",
608                                 dev->data->name);
609                 return -ENODEV;
610         }
611
612         alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
613
614         /* If minimal memory space approach failed, then allocate
615          * the 2 * 64MB block for the sw rings
616          */
617         if (d->sw_rings == NULL)
618                 alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
619
620         if (d->sw_rings == NULL) {
621                 rte_bbdev_log(NOTICE,
622                                 "Failure allocating sw_rings memory");
623                 return -ENODEV;
624         }
625
626         /* Configure ACC100 with the base address for DMA descriptor rings
627          * Same descriptor rings used for UL and DL DMA Engines
628          * Note : Assuming only VF0 bundle is used for PF mode
629          */
630         phys_high = (uint32_t)(d->sw_rings_iova >> 32);
631         phys_low  = (uint32_t)(d->sw_rings_iova & ~(ACC100_SIZE_64MBYTE-1));
632
633         /* Choose correct registry addresses for the device type */
634         if (d->pf_device)
635                 reg_addr = &pf_reg_addr;
636         else
637                 reg_addr = &vf_reg_addr;
638
639         /* Read the populated cfg from ACC100 registers */
640         fetch_acc100_config(dev);
641
642         /* Release AXI from PF */
643         if (d->pf_device)
644                 acc100_reg_write(d, HWPfDmaAxiControl, 1);
645
646         acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
647         acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
648         acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
649         acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
650         acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
651         acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
652         acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
653         acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
654
655         /*
656          * Configure Ring Size to the max queue ring size
657          * (used for wrapping purpose)
658          */
659         value = log2_basic(d->sw_ring_size / 64);
660         acc100_reg_write(d, reg_addr->ring_size, value);
661
662         /* Configure tail pointer for use when SDONE enabled */
663         d->tail_ptrs = rte_zmalloc_socket(
664                         dev->device->driver->name,
665                         ACC100_NUM_QGRPS * ACC100_NUM_AQS * sizeof(uint32_t),
666                         RTE_CACHE_LINE_SIZE, socket_id);
667         if (d->tail_ptrs == NULL) {
668                 rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
669                                 dev->device->driver->name,
670                                 dev->data->dev_id);
671                 rte_free(d->sw_rings);
672                 return -ENOMEM;
673         }
674         d->tail_ptr_iova = rte_malloc_virt2iova(d->tail_ptrs);
675
676         phys_high = (uint32_t)(d->tail_ptr_iova >> 32);
677         phys_low  = (uint32_t)(d->tail_ptr_iova);
678         acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
679         acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
680         acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
681         acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
682         acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
683         acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
684         acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
685         acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
686
687         ret = allocate_info_ring(dev);
688         if (ret < 0) {
689                 rte_bbdev_log(ERR, "Failed to allocate info_ring for %s:%u",
690                                 dev->device->driver->name,
691                                 dev->data->dev_id);
692                 /* Continue */
693         }
694
695         d->harq_layout = rte_zmalloc_socket("HARQ Layout",
696                         ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout),
697                         RTE_CACHE_LINE_SIZE, dev->data->socket_id);
698         if (d->harq_layout == NULL) {
699                 rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
700                                 dev->device->driver->name,
701                                 dev->data->dev_id);
702                 rte_free(d->sw_rings);
703                 return -ENOMEM;
704         }
705
706         /* Mark as configured properly */
707         d->configured = true;
708
709         rte_bbdev_log_debug(
710                         "ACC100 (%s) configured  sw_rings = %p, sw_rings_iova = %#"
711                         PRIx64, dev->data->name, d->sw_rings, d->sw_rings_iova);
712
713         return 0;
714 }
715
716 static int
717 acc100_intr_enable(struct rte_bbdev *dev)
718 {
719         int ret;
720         struct acc100_device *d = dev->data->dev_private;
721
722         /* Only MSI are currently supported */
723         if (rte_intr_type_get(dev->intr_handle) == RTE_INTR_HANDLE_VFIO_MSI ||
724                         rte_intr_type_get(dev->intr_handle) == RTE_INTR_HANDLE_UIO) {
725
726                 ret = allocate_info_ring(dev);
727                 if (ret < 0) {
728                         rte_bbdev_log(ERR,
729                                         "Couldn't allocate info ring for device: %s",
730                                         dev->data->name);
731                         return ret;
732                 }
733
734                 ret = rte_intr_enable(dev->intr_handle);
735                 if (ret < 0) {
736                         rte_bbdev_log(ERR,
737                                         "Couldn't enable interrupts for device: %s",
738                                         dev->data->name);
739                         rte_free(d->info_ring);
740                         return ret;
741                 }
742                 ret = rte_intr_callback_register(dev->intr_handle,
743                                 acc100_dev_interrupt_handler, dev);
744                 if (ret < 0) {
745                         rte_bbdev_log(ERR,
746                                         "Couldn't register interrupt callback for device: %s",
747                                         dev->data->name);
748                         rte_free(d->info_ring);
749                         return ret;
750                 }
751
752                 return 0;
753         }
754
755         rte_bbdev_log(ERR, "ACC100 (%s) supports only VFIO MSI interrupts",
756                         dev->data->name);
757         return -ENOTSUP;
758 }
759
760 /* Free memory used for software rings */
761 static int
762 acc100_dev_close(struct rte_bbdev *dev)
763 {
764         struct acc100_device *d = dev->data->dev_private;
765         acc100_check_ir(d);
766         if (d->sw_rings_base != NULL) {
767                 rte_free(d->tail_ptrs);
768                 rte_free(d->info_ring);
769                 rte_free(d->sw_rings_base);
770                 d->sw_rings_base = NULL;
771         }
772         /* Ensure all in flight HW transactions are completed */
773         usleep(ACC100_LONG_WAIT);
774         return 0;
775 }
776
777 /**
778  * Report a ACC100 queue index which is free
779  * Return 0 to 16k for a valid queue_idx or -1 when no queue is available
780  * Note : Only supporting VF0 Bundle for PF mode
781  */
782 static int
783 acc100_find_free_queue_idx(struct rte_bbdev *dev,
784                 const struct rte_bbdev_queue_conf *conf)
785 {
786         struct acc100_device *d = dev->data->dev_private;
787         int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
788         int acc = op_2_acc[conf->op_type];
789         struct rte_acc100_queue_topology *qtop = NULL;
790
791         qtopFromAcc(&qtop, acc, &(d->acc100_conf));
792         if (qtop == NULL)
793                 return -1;
794         /* Identify matching QGroup Index which are sorted in priority order */
795         uint16_t group_idx = qtop->first_qgroup_index;
796         group_idx += conf->priority;
797         if (group_idx >= ACC100_NUM_QGRPS ||
798                         conf->priority >= qtop->num_qgroups) {
799                 rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
800                                 dev->data->name, conf->priority);
801                 return -1;
802         }
803         /* Find a free AQ_idx  */
804         uint16_t aq_idx;
805         for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
806                 if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
807                         /* Mark the Queue as assigned */
808                         d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
809                         /* Report the AQ Index */
810                         return (group_idx << ACC100_GRP_ID_SHIFT) + aq_idx;
811                 }
812         }
813         rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
814                         dev->data->name, conf->priority);
815         return -1;
816 }
817
818 /* Setup ACC100 queue */
819 static int
820 acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
821                 const struct rte_bbdev_queue_conf *conf)
822 {
823         struct acc100_device *d = dev->data->dev_private;
824         struct acc100_queue *q;
825         int16_t q_idx;
826
827         /* Allocate the queue data structure. */
828         q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
829                         RTE_CACHE_LINE_SIZE, conf->socket);
830         if (q == NULL) {
831                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
832                 return -ENOMEM;
833         }
834         if (d == NULL) {
835                 rte_bbdev_log(ERR, "Undefined device");
836                 return -ENODEV;
837         }
838
839         q->d = d;
840         q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
841         q->ring_addr_iova = d->sw_rings_iova + (d->sw_ring_size * queue_id);
842
843         /* Prepare the Ring with default descriptor format */
844         union acc100_dma_desc *desc = NULL;
845         unsigned int desc_idx, b_idx;
846         int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
847                 ACC100_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
848                 ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN));
849
850         for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
851                 desc = q->ring_addr + desc_idx;
852                 desc->req.word0 = ACC100_DMA_DESC_TYPE;
853                 desc->req.word1 = 0; /**< Timestamp */
854                 desc->req.word2 = 0;
855                 desc->req.word3 = 0;
856                 uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
857                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
858                 desc->req.data_ptrs[0].blen = fcw_len;
859                 desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
860                 desc->req.data_ptrs[0].last = 0;
861                 desc->req.data_ptrs[0].dma_ext = 0;
862                 for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS - 1;
863                                 b_idx++) {
864                         desc->req.data_ptrs[b_idx].blkid = ACC100_DMA_BLKID_IN;
865                         desc->req.data_ptrs[b_idx].last = 1;
866                         desc->req.data_ptrs[b_idx].dma_ext = 0;
867                         b_idx++;
868                         desc->req.data_ptrs[b_idx].blkid =
869                                         ACC100_DMA_BLKID_OUT_ENC;
870                         desc->req.data_ptrs[b_idx].last = 1;
871                         desc->req.data_ptrs[b_idx].dma_ext = 0;
872                 }
873                 /* Preset some fields of LDPC FCW */
874                 desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
875                 desc->req.fcw_ld.gain_i = 1;
876                 desc->req.fcw_ld.gain_h = 1;
877         }
878
879         q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
880                         RTE_CACHE_LINE_SIZE,
881                         RTE_CACHE_LINE_SIZE, conf->socket);
882         if (q->lb_in == NULL) {
883                 rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
884                 rte_free(q);
885                 return -ENOMEM;
886         }
887         q->lb_in_addr_iova = rte_malloc_virt2iova(q->lb_in);
888         q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
889                         RTE_CACHE_LINE_SIZE,
890                         RTE_CACHE_LINE_SIZE, conf->socket);
891         if (q->lb_out == NULL) {
892                 rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
893                 rte_free(q->lb_in);
894                 rte_free(q);
895                 return -ENOMEM;
896         }
897         q->lb_out_addr_iova = rte_malloc_virt2iova(q->lb_out);
898
899         /*
900          * Software queue ring wraps synchronously with the HW when it reaches
901          * the boundary of the maximum allocated queue size, no matter what the
902          * sw queue size is. This wrapping is guarded by setting the wrap_mask
903          * to represent the maximum queue size as allocated at the time when
904          * the device has been setup (in configure()).
905          *
906          * The queue depth is set to the queue size value (conf->queue_size).
907          * This limits the occupancy of the queue at any point of time, so that
908          * the queue does not get swamped with enqueue requests.
909          */
910         q->sw_ring_depth = conf->queue_size;
911         q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
912
913         q->op_type = conf->op_type;
914
915         q_idx = acc100_find_free_queue_idx(dev, conf);
916         if (q_idx == -1) {
917                 rte_free(q->lb_in);
918                 rte_free(q->lb_out);
919                 rte_free(q);
920                 return -1;
921         }
922
923         q->qgrp_id = (q_idx >> ACC100_GRP_ID_SHIFT) & 0xF;
924         q->vf_id = (q_idx >> ACC100_VF_ID_SHIFT)  & 0x3F;
925         q->aq_id = q_idx & 0xF;
926         q->aq_depth = (conf->op_type ==  RTE_BBDEV_OP_TURBO_DEC) ?
927                         (1 << d->acc100_conf.q_ul_4g.aq_depth_log2) :
928                         (1 << d->acc100_conf.q_dl_4g.aq_depth_log2);
929
930         q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
931                         queue_offset(d->pf_device,
932                                         q->vf_id, q->qgrp_id, q->aq_id));
933
934         rte_bbdev_log_debug(
935                         "Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p",
936                         dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
937                         q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
938
939         dev->data->queues[queue_id].queue_private = q;
940         return 0;
941 }
942
943 /* Release ACC100 queue */
944 static int
945 acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id)
946 {
947         struct acc100_device *d = dev->data->dev_private;
948         struct acc100_queue *q = dev->data->queues[q_id].queue_private;
949
950         if (q != NULL) {
951                 /* Mark the Queue as un-assigned */
952                 d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
953                                 (1 << q->aq_id));
954                 rte_free(q->lb_in);
955                 rte_free(q->lb_out);
956                 rte_free(q);
957                 dev->data->queues[q_id].queue_private = NULL;
958         }
959
960         return 0;
961 }
962
963 /* Get ACC100 device info */
964 static void
965 acc100_dev_info_get(struct rte_bbdev *dev,
966                 struct rte_bbdev_driver_info *dev_info)
967 {
968         struct acc100_device *d = dev->data->dev_private;
969
970         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
971                 {
972                         .type = RTE_BBDEV_OP_TURBO_DEC,
973                         .cap.turbo_dec = {
974                                 .capability_flags =
975                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
976                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
977                                         RTE_BBDEV_TURBO_HALF_ITERATION_EVEN |
978                                         RTE_BBDEV_TURBO_EARLY_TERMINATION |
979                                         RTE_BBDEV_TURBO_DEC_INTERRUPTS |
980                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
981                                         RTE_BBDEV_TURBO_MAP_DEC |
982                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
983                                         RTE_BBDEV_TURBO_DEC_CRC_24B_DROP |
984                                         RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,
985                                 .max_llr_modulus = INT8_MAX,
986                                 .num_buffers_src =
987                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
988                                 .num_buffers_hard_out =
989                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
990                                 .num_buffers_soft_out =
991                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
992                         }
993                 },
994                 {
995                         .type = RTE_BBDEV_OP_TURBO_ENC,
996                         .cap.turbo_enc = {
997                                 .capability_flags =
998                                         RTE_BBDEV_TURBO_CRC_24B_ATTACH |
999                                         RTE_BBDEV_TURBO_RV_INDEX_BYPASS |
1000                                         RTE_BBDEV_TURBO_RATE_MATCH |
1001                                         RTE_BBDEV_TURBO_ENC_INTERRUPTS |
1002                                         RTE_BBDEV_TURBO_ENC_SCATTER_GATHER,
1003                                 .num_buffers_src =
1004                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
1005                                 .num_buffers_dst =
1006                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
1007                         }
1008                 },
1009                 {
1010                         .type   = RTE_BBDEV_OP_LDPC_ENC,
1011                         .cap.ldpc_enc = {
1012                                 .capability_flags =
1013                                         RTE_BBDEV_LDPC_RATE_MATCH |
1014                                         RTE_BBDEV_LDPC_CRC_24B_ATTACH |
1015                                         RTE_BBDEV_LDPC_INTERLEAVER_BYPASS |
1016                                         RTE_BBDEV_LDPC_ENC_INTERRUPTS,
1017                                 .num_buffers_src =
1018                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1019                                 .num_buffers_dst =
1020                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1021                         }
1022                 },
1023                 {
1024                         .type   = RTE_BBDEV_OP_LDPC_DEC,
1025                         .cap.ldpc_dec = {
1026                         .capability_flags =
1027                                 RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
1028                                 RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
1029                                 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
1030                                 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
1031 #ifdef ACC100_EXT_MEM
1032                                 RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK |
1033                                 RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE |
1034                                 RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE |
1035 #endif
1036                                 RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
1037                                 RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS |
1038                                 RTE_BBDEV_LDPC_DECODE_BYPASS |
1039                                 RTE_BBDEV_LDPC_DEC_SCATTER_GATHER |
1040                                 RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION |
1041                                 RTE_BBDEV_LDPC_LLR_COMPRESSION |
1042                                 RTE_BBDEV_LDPC_DEC_INTERRUPTS,
1043                         .llr_size = 8,
1044                         .llr_decimals = 1,
1045                         .num_buffers_src =
1046                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1047                         .num_buffers_hard_out =
1048                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1049                         .num_buffers_soft_out = 0,
1050                         }
1051                 },
1052                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
1053         };
1054
1055         static struct rte_bbdev_queue_conf default_queue_conf;
1056         default_queue_conf.socket = dev->data->socket_id;
1057         default_queue_conf.queue_size = ACC100_MAX_QUEUE_DEPTH;
1058
1059         dev_info->driver_name = dev->device->driver->name;
1060
1061         /* Read and save the populated config from ACC100 registers */
1062         fetch_acc100_config(dev);
1063
1064         /* This isn't ideal because it reports the maximum number of queues but
1065          * does not provide info on how many can be uplink/downlink or different
1066          * priorities
1067          */
1068         dev_info->max_num_queues =
1069                         d->acc100_conf.q_dl_5g.num_aqs_per_groups *
1070                         d->acc100_conf.q_dl_5g.num_qgroups +
1071                         d->acc100_conf.q_ul_5g.num_aqs_per_groups *
1072                         d->acc100_conf.q_ul_5g.num_qgroups +
1073                         d->acc100_conf.q_dl_4g.num_aqs_per_groups *
1074                         d->acc100_conf.q_dl_4g.num_qgroups +
1075                         d->acc100_conf.q_ul_4g.num_aqs_per_groups *
1076                         d->acc100_conf.q_ul_4g.num_qgroups;
1077         dev_info->queue_size_lim = ACC100_MAX_QUEUE_DEPTH;
1078         dev_info->hardware_accelerated = true;
1079         dev_info->max_dl_queue_priority =
1080                         d->acc100_conf.q_dl_4g.num_qgroups - 1;
1081         dev_info->max_ul_queue_priority =
1082                         d->acc100_conf.q_ul_4g.num_qgroups - 1;
1083         dev_info->default_queue_conf = default_queue_conf;
1084         dev_info->cpu_flag_reqs = NULL;
1085         dev_info->min_alignment = 64;
1086         dev_info->capabilities = bbdev_capabilities;
1087 #ifdef ACC100_EXT_MEM
1088         dev_info->harq_buffer_size = d->ddr_size;
1089 #else
1090         dev_info->harq_buffer_size = 0;
1091 #endif
1092         dev_info->data_endianness = RTE_LITTLE_ENDIAN;
1093         acc100_check_ir(d);
1094 }
1095
1096 static int
1097 acc100_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
1098 {
1099         struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
1100
1101         if (rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_VFIO_MSI &&
1102                         rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_UIO)
1103                 return -ENOTSUP;
1104
1105         q->irq_enable = 1;
1106         return 0;
1107 }
1108
1109 static int
1110 acc100_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
1111 {
1112         struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
1113
1114         if (rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_VFIO_MSI &&
1115                         rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_UIO)
1116                 return -ENOTSUP;
1117
1118         q->irq_enable = 0;
1119         return 0;
1120 }
1121
1122 static const struct rte_bbdev_ops acc100_bbdev_ops = {
1123         .setup_queues = acc100_setup_queues,
1124         .intr_enable = acc100_intr_enable,
1125         .close = acc100_dev_close,
1126         .info_get = acc100_dev_info_get,
1127         .queue_setup = acc100_queue_setup,
1128         .queue_release = acc100_queue_release,
1129         .queue_intr_enable = acc100_queue_intr_enable,
1130         .queue_intr_disable = acc100_queue_intr_disable
1131 };
1132
1133 /* ACC100 PCI PF address map */
1134 static struct rte_pci_id pci_id_acc100_pf_map[] = {
1135         {
1136                 RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_PF_DEVICE_ID)
1137         },
1138         {.device_id = 0},
1139 };
1140
1141 /* ACC100 PCI VF address map */
1142 static struct rte_pci_id pci_id_acc100_vf_map[] = {
1143         {
1144                 RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_VF_DEVICE_ID)
1145         },
1146         {.device_id = 0},
1147 };
1148
1149 /* Read flag value 0/1 from bitmap */
1150 static inline bool
1151 check_bit(uint32_t bitmap, uint32_t bitmask)
1152 {
1153         return bitmap & bitmask;
1154 }
1155
1156 static inline char *
1157 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
1158 {
1159         if (unlikely(len > rte_pktmbuf_tailroom(m)))
1160                 return NULL;
1161
1162         char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
1163         m->data_len = (uint16_t)(m->data_len + len);
1164         m_head->pkt_len  = (m_head->pkt_len + len);
1165         return tail;
1166 }
1167
1168 /* Fill in a frame control word for turbo encoding. */
1169 static inline void
1170 acc100_fcw_te_fill(const struct rte_bbdev_enc_op *op, struct acc100_fcw_te *fcw)
1171 {
1172         fcw->code_block_mode = op->turbo_enc.code_block_mode;
1173         if (fcw->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1174                 fcw->k_neg = op->turbo_enc.tb_params.k_neg;
1175                 fcw->k_pos = op->turbo_enc.tb_params.k_pos;
1176                 fcw->c_neg = op->turbo_enc.tb_params.c_neg;
1177                 fcw->c = op->turbo_enc.tb_params.c;
1178                 fcw->ncb_neg = op->turbo_enc.tb_params.ncb_neg;
1179                 fcw->ncb_pos = op->turbo_enc.tb_params.ncb_pos;
1180
1181                 if (check_bit(op->turbo_enc.op_flags,
1182                                 RTE_BBDEV_TURBO_RATE_MATCH)) {
1183                         fcw->bypass_rm = 0;
1184                         fcw->cab = op->turbo_enc.tb_params.cab;
1185                         fcw->ea = op->turbo_enc.tb_params.ea;
1186                         fcw->eb = op->turbo_enc.tb_params.eb;
1187                 } else {
1188                         /* E is set to the encoding output size when RM is
1189                          * bypassed.
1190                          */
1191                         fcw->bypass_rm = 1;
1192                         fcw->cab = fcw->c_neg;
1193                         fcw->ea = 3 * fcw->k_neg + 12;
1194                         fcw->eb = 3 * fcw->k_pos + 12;
1195                 }
1196         } else { /* For CB mode */
1197                 fcw->k_pos = op->turbo_enc.cb_params.k;
1198                 fcw->ncb_pos = op->turbo_enc.cb_params.ncb;
1199
1200                 if (check_bit(op->turbo_enc.op_flags,
1201                                 RTE_BBDEV_TURBO_RATE_MATCH)) {
1202                         fcw->bypass_rm = 0;
1203                         fcw->eb = op->turbo_enc.cb_params.e;
1204                 } else {
1205                         /* E is set to the encoding output size when RM is
1206                          * bypassed.
1207                          */
1208                         fcw->bypass_rm = 1;
1209                         fcw->eb = 3 * fcw->k_pos + 12;
1210                 }
1211         }
1212
1213         fcw->bypass_rv_idx1 = check_bit(op->turbo_enc.op_flags,
1214                         RTE_BBDEV_TURBO_RV_INDEX_BYPASS);
1215         fcw->code_block_crc = check_bit(op->turbo_enc.op_flags,
1216                         RTE_BBDEV_TURBO_CRC_24B_ATTACH);
1217         fcw->rv_idx1 = op->turbo_enc.rv_index;
1218 }
1219
1220 /* Compute value of k0.
1221  * Based on 3GPP 38.212 Table 5.4.2.1-2
1222  * Starting position of different redundancy versions, k0
1223  */
1224 static inline uint16_t
1225 get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
1226 {
1227         if (rv_index == 0)
1228                 return 0;
1229         uint16_t n = (bg == 1 ? ACC100_N_ZC_1 : ACC100_N_ZC_2) * z_c;
1230         if (n_cb == n) {
1231                 if (rv_index == 1)
1232                         return (bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * z_c;
1233                 else if (rv_index == 2)
1234                         return (bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * z_c;
1235                 else
1236                         return (bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * z_c;
1237         }
1238         /* LBRM case - includes a division by N */
1239         if (rv_index == 1)
1240                 return (((bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * n_cb)
1241                                 / n) * z_c;
1242         else if (rv_index == 2)
1243                 return (((bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * n_cb)
1244                                 / n) * z_c;
1245         else
1246                 return (((bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * n_cb)
1247                                 / n) * z_c;
1248 }
1249
1250 /* Fill in a frame control word for LDPC encoding. */
1251 static inline void
1252 acc100_fcw_le_fill(const struct rte_bbdev_enc_op *op,
1253                 struct acc100_fcw_le *fcw, int num_cb)
1254 {
1255         fcw->qm = op->ldpc_enc.q_m;
1256         fcw->nfiller = op->ldpc_enc.n_filler;
1257         fcw->BG = (op->ldpc_enc.basegraph - 1);
1258         fcw->Zc = op->ldpc_enc.z_c;
1259         fcw->ncb = op->ldpc_enc.n_cb;
1260         fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_enc.basegraph,
1261                         op->ldpc_enc.rv_index);
1262         fcw->rm_e = op->ldpc_enc.cb_params.e;
1263         fcw->crc_select = check_bit(op->ldpc_enc.op_flags,
1264                         RTE_BBDEV_LDPC_CRC_24B_ATTACH);
1265         fcw->bypass_intlv = check_bit(op->ldpc_enc.op_flags,
1266                         RTE_BBDEV_LDPC_INTERLEAVER_BYPASS);
1267         fcw->mcb_count = num_cb;
1268 }
1269
1270 /* Fill in a frame control word for turbo decoding. */
1271 static inline void
1272 acc100_fcw_td_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_td *fcw)
1273 {
1274         /* Note : Early termination is always enabled for 4GUL */
1275         fcw->fcw_ver = 1;
1276         if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1277                 fcw->k_pos = op->turbo_dec.tb_params.k_pos;
1278         else
1279                 fcw->k_pos = op->turbo_dec.cb_params.k;
1280         fcw->turbo_crc_type = check_bit(op->turbo_dec.op_flags,
1281                         RTE_BBDEV_TURBO_CRC_TYPE_24B);
1282         fcw->bypass_sb_deint = 0;
1283         fcw->raw_decoder_input_on = 0;
1284         fcw->max_iter = op->turbo_dec.iter_max;
1285         fcw->half_iter_on = !check_bit(op->turbo_dec.op_flags,
1286                         RTE_BBDEV_TURBO_HALF_ITERATION_EVEN);
1287 }
1288
1289 /* Fill in a frame control word for LDPC decoding. */
1290 static inline void
1291 acc100_fcw_ld_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw,
1292                 union acc100_harq_layout_data *harq_layout)
1293 {
1294         uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset;
1295         uint16_t harq_index;
1296         uint32_t l;
1297         bool harq_prun = false;
1298
1299         fcw->qm = op->ldpc_dec.q_m;
1300         fcw->nfiller = op->ldpc_dec.n_filler;
1301         fcw->BG = (op->ldpc_dec.basegraph - 1);
1302         fcw->Zc = op->ldpc_dec.z_c;
1303         fcw->ncb = op->ldpc_dec.n_cb;
1304         fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_dec.basegraph,
1305                         op->ldpc_dec.rv_index);
1306         if (op->ldpc_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
1307                 fcw->rm_e = op->ldpc_dec.cb_params.e;
1308         else
1309                 fcw->rm_e = (op->ldpc_dec.tb_params.r <
1310                                 op->ldpc_dec.tb_params.cab) ?
1311                                                 op->ldpc_dec.tb_params.ea :
1312                                                 op->ldpc_dec.tb_params.eb;
1313
1314         fcw->hcin_en = check_bit(op->ldpc_dec.op_flags,
1315                         RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
1316         fcw->hcout_en = check_bit(op->ldpc_dec.op_flags,
1317                         RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
1318         fcw->crc_select = check_bit(op->ldpc_dec.op_flags,
1319                         RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
1320         fcw->bypass_dec = check_bit(op->ldpc_dec.op_flags,
1321                         RTE_BBDEV_LDPC_DECODE_BYPASS);
1322         fcw->bypass_intlv = check_bit(op->ldpc_dec.op_flags,
1323                         RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS);
1324         if (op->ldpc_dec.q_m == 1) {
1325                 fcw->bypass_intlv = 1;
1326                 fcw->qm = 2;
1327         }
1328         fcw->hcin_decomp_mode = check_bit(op->ldpc_dec.op_flags,
1329                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1330         fcw->hcout_comp_mode = check_bit(op->ldpc_dec.op_flags,
1331                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1332         fcw->llr_pack_mode = check_bit(op->ldpc_dec.op_flags,
1333                         RTE_BBDEV_LDPC_LLR_COMPRESSION);
1334         harq_index = op->ldpc_dec.harq_combined_output.offset /
1335                         ACC100_HARQ_OFFSET;
1336 #ifdef ACC100_EXT_MEM
1337         /* Limit cases when HARQ pruning is valid */
1338         harq_prun = ((op->ldpc_dec.harq_combined_output.offset %
1339                         ACC100_HARQ_OFFSET) == 0) &&
1340                         (op->ldpc_dec.harq_combined_output.offset <= UINT16_MAX
1341                         * ACC100_HARQ_OFFSET);
1342 #endif
1343         if (fcw->hcin_en > 0) {
1344                 harq_in_length = op->ldpc_dec.harq_combined_input.length;
1345                 if (fcw->hcin_decomp_mode > 0)
1346                         harq_in_length = harq_in_length * 8 / 6;
1347                 harq_in_length = RTE_ALIGN(harq_in_length, 64);
1348                 if ((harq_layout[harq_index].offset > 0) & harq_prun) {
1349                         rte_bbdev_log_debug("HARQ IN offset unexpected for now\n");
1350                         fcw->hcin_size0 = harq_layout[harq_index].size0;
1351                         fcw->hcin_offset = harq_layout[harq_index].offset;
1352                         fcw->hcin_size1 = harq_in_length -
1353                                         harq_layout[harq_index].offset;
1354                 } else {
1355                         fcw->hcin_size0 = harq_in_length;
1356                         fcw->hcin_offset = 0;
1357                         fcw->hcin_size1 = 0;
1358                 }
1359         } else {
1360                 fcw->hcin_size0 = 0;
1361                 fcw->hcin_offset = 0;
1362                 fcw->hcin_size1 = 0;
1363         }
1364
1365         fcw->itmax = op->ldpc_dec.iter_max;
1366         fcw->itstop = check_bit(op->ldpc_dec.op_flags,
1367                         RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
1368         fcw->synd_precoder = fcw->itstop;
1369         /*
1370          * These are all implicitly set
1371          * fcw->synd_post = 0;
1372          * fcw->so_en = 0;
1373          * fcw->so_bypass_rm = 0;
1374          * fcw->so_bypass_intlv = 0;
1375          * fcw->dec_convllr = 0;
1376          * fcw->hcout_convllr = 0;
1377          * fcw->hcout_size1 = 0;
1378          * fcw->so_it = 0;
1379          * fcw->hcout_offset = 0;
1380          * fcw->negstop_th = 0;
1381          * fcw->negstop_it = 0;
1382          * fcw->negstop_en = 0;
1383          * fcw->gain_i = 1;
1384          * fcw->gain_h = 1;
1385          */
1386         if (fcw->hcout_en > 0) {
1387                 parity_offset = (op->ldpc_dec.basegraph == 1 ? 20 : 8)
1388                         * op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
1389                 k0_p = (fcw->k0 > parity_offset) ?
1390                                 fcw->k0 - op->ldpc_dec.n_filler : fcw->k0;
1391                 ncb_p = fcw->ncb - op->ldpc_dec.n_filler;
1392                 l = k0_p + fcw->rm_e;
1393                 harq_out_length = (uint16_t) fcw->hcin_size0;
1394                 harq_out_length = RTE_MIN(RTE_MAX(harq_out_length, l), ncb_p);
1395                 harq_out_length = (harq_out_length + 0x3F) & 0xFFC0;
1396                 if ((k0_p > fcw->hcin_size0 + ACC100_HARQ_OFFSET_THRESHOLD) &&
1397                                 harq_prun) {
1398                         fcw->hcout_size0 = (uint16_t) fcw->hcin_size0;
1399                         fcw->hcout_offset = k0_p & 0xFFC0;
1400                         fcw->hcout_size1 = harq_out_length - fcw->hcout_offset;
1401                 } else {
1402                         fcw->hcout_size0 = harq_out_length;
1403                         fcw->hcout_size1 = 0;
1404                         fcw->hcout_offset = 0;
1405                 }
1406                 harq_layout[harq_index].offset = fcw->hcout_offset;
1407                 harq_layout[harq_index].size0 = fcw->hcout_size0;
1408         } else {
1409                 fcw->hcout_size0 = 0;
1410                 fcw->hcout_size1 = 0;
1411                 fcw->hcout_offset = 0;
1412         }
1413 }
1414
1415 /**
1416  * Fills descriptor with data pointers of one block type.
1417  *
1418  * @param desc
1419  *   Pointer to DMA descriptor.
1420  * @param input
1421  *   Pointer to pointer to input data which will be encoded. It can be changed
1422  *   and points to next segment in scatter-gather case.
1423  * @param offset
1424  *   Input offset in rte_mbuf structure. It is used for calculating the point
1425  *   where data is starting.
1426  * @param cb_len
1427  *   Length of currently processed Code Block
1428  * @param seg_total_left
1429  *   It indicates how many bytes still left in segment (mbuf) for further
1430  *   processing.
1431  * @param op_flags
1432  *   Store information about device capabilities
1433  * @param next_triplet
1434  *   Index for ACC100 DMA Descriptor triplet
1435  *
1436  * @return
1437  *   Returns index of next triplet on success, other value if lengths of
1438  *   pkt and processed cb do not match.
1439  *
1440  */
1441 static inline int
1442 acc100_dma_fill_blk_type_in(struct acc100_dma_req_desc *desc,
1443                 struct rte_mbuf **input, uint32_t *offset, uint32_t cb_len,
1444                 uint32_t *seg_total_left, int next_triplet)
1445 {
1446         uint32_t part_len;
1447         struct rte_mbuf *m = *input;
1448
1449         part_len = (*seg_total_left < cb_len) ? *seg_total_left : cb_len;
1450         cb_len -= part_len;
1451         *seg_total_left -= part_len;
1452
1453         desc->data_ptrs[next_triplet].address =
1454                         rte_pktmbuf_iova_offset(m, *offset);
1455         desc->data_ptrs[next_triplet].blen = part_len;
1456         desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
1457         desc->data_ptrs[next_triplet].last = 0;
1458         desc->data_ptrs[next_triplet].dma_ext = 0;
1459         *offset += part_len;
1460         next_triplet++;
1461
1462         while (cb_len > 0) {
1463                 if (next_triplet < ACC100_DMA_MAX_NUM_POINTERS &&
1464                                 m->next != NULL) {
1465
1466                         m = m->next;
1467                         *seg_total_left = rte_pktmbuf_data_len(m);
1468                         part_len = (*seg_total_left < cb_len) ?
1469                                         *seg_total_left :
1470                                         cb_len;
1471                         desc->data_ptrs[next_triplet].address =
1472                                         rte_pktmbuf_iova_offset(m, 0);
1473                         desc->data_ptrs[next_triplet].blen = part_len;
1474                         desc->data_ptrs[next_triplet].blkid =
1475                                         ACC100_DMA_BLKID_IN;
1476                         desc->data_ptrs[next_triplet].last = 0;
1477                         desc->data_ptrs[next_triplet].dma_ext = 0;
1478                         cb_len -= part_len;
1479                         *seg_total_left -= part_len;
1480                         /* Initializing offset for next segment (mbuf) */
1481                         *offset = part_len;
1482                         next_triplet++;
1483                 } else {
1484                         rte_bbdev_log(ERR,
1485                                 "Some data still left for processing: "
1486                                 "data_left: %u, next_triplet: %u, next_mbuf: %p",
1487                                 cb_len, next_triplet, m->next);
1488                         return -EINVAL;
1489                 }
1490         }
1491         /* Storing new mbuf as it could be changed in scatter-gather case*/
1492         *input = m;
1493
1494         return next_triplet;
1495 }
1496
1497 /* Fills descriptor with data pointers of one block type.
1498  * Returns index of next triplet on success, other value if lengths of
1499  * output data and processed mbuf do not match.
1500  */
1501 static inline int
1502 acc100_dma_fill_blk_type_out(struct acc100_dma_req_desc *desc,
1503                 struct rte_mbuf *output, uint32_t out_offset,
1504                 uint32_t output_len, int next_triplet, int blk_id)
1505 {
1506         desc->data_ptrs[next_triplet].address =
1507                         rte_pktmbuf_iova_offset(output, out_offset);
1508         desc->data_ptrs[next_triplet].blen = output_len;
1509         desc->data_ptrs[next_triplet].blkid = blk_id;
1510         desc->data_ptrs[next_triplet].last = 0;
1511         desc->data_ptrs[next_triplet].dma_ext = 0;
1512         next_triplet++;
1513
1514         return next_triplet;
1515 }
1516
1517 static inline void
1518 acc100_header_init(struct acc100_dma_req_desc *desc)
1519 {
1520         desc->word0 = ACC100_DMA_DESC_TYPE;
1521         desc->word1 = 0; /**< Timestamp could be disabled */
1522         desc->word2 = 0;
1523         desc->word3 = 0;
1524         desc->numCBs = 1;
1525 }
1526
1527 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1528 /* Check if any input data is unexpectedly left for processing */
1529 static inline int
1530 check_mbuf_total_left(uint32_t mbuf_total_left)
1531 {
1532         if (mbuf_total_left == 0)
1533                 return 0;
1534         rte_bbdev_log(ERR,
1535                 "Some date still left for processing: mbuf_total_left = %u",
1536                 mbuf_total_left);
1537         return -EINVAL;
1538 }
1539 #endif
1540
1541 static inline int
1542 acc100_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
1543                 struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1544                 struct rte_mbuf *output, uint32_t *in_offset,
1545                 uint32_t *out_offset, uint32_t *out_length,
1546                 uint32_t *mbuf_total_left, uint32_t *seg_total_left, uint8_t r)
1547 {
1548         int next_triplet = 1; /* FCW already done */
1549         uint32_t e, ea, eb, length;
1550         uint16_t k, k_neg, k_pos;
1551         uint8_t cab, c_neg;
1552
1553         desc->word0 = ACC100_DMA_DESC_TYPE;
1554         desc->word1 = 0; /**< Timestamp could be disabled */
1555         desc->word2 = 0;
1556         desc->word3 = 0;
1557         desc->numCBs = 1;
1558
1559         if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1560                 ea = op->turbo_enc.tb_params.ea;
1561                 eb = op->turbo_enc.tb_params.eb;
1562                 cab = op->turbo_enc.tb_params.cab;
1563                 k_neg = op->turbo_enc.tb_params.k_neg;
1564                 k_pos = op->turbo_enc.tb_params.k_pos;
1565                 c_neg = op->turbo_enc.tb_params.c_neg;
1566                 e = (r < cab) ? ea : eb;
1567                 k = (r < c_neg) ? k_neg : k_pos;
1568         } else {
1569                 e = op->turbo_enc.cb_params.e;
1570                 k = op->turbo_enc.cb_params.k;
1571         }
1572
1573         if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1574                 length = (k - 24) >> 3;
1575         else
1576                 length = k >> 3;
1577
1578         if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < length))) {
1579                 rte_bbdev_log(ERR,
1580                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1581                                 *mbuf_total_left, length);
1582                 return -1;
1583         }
1584
1585         next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
1586                         length, seg_total_left, next_triplet);
1587         if (unlikely(next_triplet < 0)) {
1588                 rte_bbdev_log(ERR,
1589                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1590                                 op);
1591                 return -1;
1592         }
1593         desc->data_ptrs[next_triplet - 1].last = 1;
1594         desc->m2dlen = next_triplet;
1595         *mbuf_total_left -= length;
1596
1597         /* Set output length */
1598         if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
1599                 /* Integer round up division by 8 */
1600                 *out_length = (e + 7) >> 3;
1601         else
1602                 *out_length = (k >> 3) * 3 + 2;
1603
1604         next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
1605                         *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
1606         if (unlikely(next_triplet < 0)) {
1607                 rte_bbdev_log(ERR,
1608                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1609                                 op);
1610                 return -1;
1611         }
1612         op->turbo_enc.output.length += *out_length;
1613         *out_offset += *out_length;
1614         desc->data_ptrs[next_triplet - 1].last = 1;
1615         desc->d2mlen = next_triplet - desc->m2dlen;
1616
1617         desc->op_addr = op;
1618
1619         return 0;
1620 }
1621
1622 static inline int
1623 acc100_dma_desc_le_fill(struct rte_bbdev_enc_op *op,
1624                 struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1625                 struct rte_mbuf *output, uint32_t *in_offset,
1626                 uint32_t *out_offset, uint32_t *out_length,
1627                 uint32_t *mbuf_total_left, uint32_t *seg_total_left)
1628 {
1629         int next_triplet = 1; /* FCW already done */
1630         uint16_t K, in_length_in_bits, in_length_in_bytes;
1631         struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
1632
1633         acc100_header_init(desc);
1634
1635         K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
1636         in_length_in_bits = K - enc->n_filler;
1637         if ((enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) ||
1638                         (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH))
1639                 in_length_in_bits -= 24;
1640         in_length_in_bytes = in_length_in_bits >> 3;
1641
1642         if (unlikely((*mbuf_total_left == 0) ||
1643                         (*mbuf_total_left < in_length_in_bytes))) {
1644                 rte_bbdev_log(ERR,
1645                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1646                                 *mbuf_total_left, in_length_in_bytes);
1647                 return -1;
1648         }
1649
1650         next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
1651                         in_length_in_bytes,
1652                         seg_total_left, next_triplet);
1653         if (unlikely(next_triplet < 0)) {
1654                 rte_bbdev_log(ERR,
1655                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1656                                 op);
1657                 return -1;
1658         }
1659         desc->data_ptrs[next_triplet - 1].last = 1;
1660         desc->m2dlen = next_triplet;
1661         *mbuf_total_left -= in_length_in_bytes;
1662
1663         /* Set output length */
1664         /* Integer round up division by 8 */
1665         *out_length = (enc->cb_params.e + 7) >> 3;
1666
1667         next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
1668                         *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
1669         op->ldpc_enc.output.length += *out_length;
1670         *out_offset += *out_length;
1671         desc->data_ptrs[next_triplet - 1].last = 1;
1672         desc->data_ptrs[next_triplet - 1].dma_ext = 0;
1673         desc->d2mlen = next_triplet - desc->m2dlen;
1674
1675         desc->op_addr = op;
1676
1677         return 0;
1678 }
1679
1680 static inline int
1681 acc100_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
1682                 struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1683                 struct rte_mbuf *h_output, struct rte_mbuf *s_output,
1684                 uint32_t *in_offset, uint32_t *h_out_offset,
1685                 uint32_t *s_out_offset, uint32_t *h_out_length,
1686                 uint32_t *s_out_length, uint32_t *mbuf_total_left,
1687                 uint32_t *seg_total_left, uint8_t r)
1688 {
1689         int next_triplet = 1; /* FCW already done */
1690         uint16_t k;
1691         uint16_t crc24_overlap = 0;
1692         uint32_t e, kw;
1693
1694         desc->word0 = ACC100_DMA_DESC_TYPE;
1695         desc->word1 = 0; /**< Timestamp could be disabled */
1696         desc->word2 = 0;
1697         desc->word3 = 0;
1698         desc->numCBs = 1;
1699
1700         if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1701                 k = (r < op->turbo_dec.tb_params.c_neg)
1702                         ? op->turbo_dec.tb_params.k_neg
1703                         : op->turbo_dec.tb_params.k_pos;
1704                 e = (r < op->turbo_dec.tb_params.cab)
1705                         ? op->turbo_dec.tb_params.ea
1706                         : op->turbo_dec.tb_params.eb;
1707         } else {
1708                 k = op->turbo_dec.cb_params.k;
1709                 e = op->turbo_dec.cb_params.e;
1710         }
1711
1712         if ((op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1713                         && !check_bit(op->turbo_dec.op_flags,
1714                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1715                 crc24_overlap = 24;
1716         if ((op->turbo_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
1717                         && check_bit(op->turbo_dec.op_flags,
1718                         RTE_BBDEV_TURBO_DEC_CRC_24B_DROP))
1719                 crc24_overlap = 24;
1720
1721         /* Calculates circular buffer size.
1722          * According to 3gpp 36.212 section 5.1.4.2
1723          *   Kw = 3 * Kpi,
1724          * where:
1725          *   Kpi = nCol * nRow
1726          * where nCol is 32 and nRow can be calculated from:
1727          *   D =< nCol * nRow
1728          * where D is the size of each output from turbo encoder block (k + 4).
1729          */
1730         kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1731
1732         if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < kw))) {
1733                 rte_bbdev_log(ERR,
1734                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1735                                 *mbuf_total_left, kw);
1736                 return -1;
1737         }
1738
1739         next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset, kw,
1740                         seg_total_left, next_triplet);
1741         if (unlikely(next_triplet < 0)) {
1742                 rte_bbdev_log(ERR,
1743                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1744                                 op);
1745                 return -1;
1746         }
1747         desc->data_ptrs[next_triplet - 1].last = 1;
1748         desc->m2dlen = next_triplet;
1749         *mbuf_total_left -= kw;
1750
1751         next_triplet = acc100_dma_fill_blk_type_out(
1752                         desc, h_output, *h_out_offset,
1753                         (k - crc24_overlap) >> 3, next_triplet,
1754                         ACC100_DMA_BLKID_OUT_HARD);
1755         if (unlikely(next_triplet < 0)) {
1756                 rte_bbdev_log(ERR,
1757                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1758                                 op);
1759                 return -1;
1760         }
1761
1762         *h_out_length = ((k - crc24_overlap) >> 3);
1763         op->turbo_dec.hard_output.length += *h_out_length;
1764         *h_out_offset += *h_out_length;
1765
1766         /* Soft output */
1767         if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
1768                 if (check_bit(op->turbo_dec.op_flags,
1769                                 RTE_BBDEV_TURBO_EQUALIZER))
1770                         *s_out_length = e;
1771                 else
1772                         *s_out_length = (k * 3) + 12;
1773
1774                 next_triplet = acc100_dma_fill_blk_type_out(desc, s_output,
1775                                 *s_out_offset, *s_out_length, next_triplet,
1776                                 ACC100_DMA_BLKID_OUT_SOFT);
1777                 if (unlikely(next_triplet < 0)) {
1778                         rte_bbdev_log(ERR,
1779                                         "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1780                                         op);
1781                         return -1;
1782                 }
1783
1784                 op->turbo_dec.soft_output.length += *s_out_length;
1785                 *s_out_offset += *s_out_length;
1786         }
1787
1788         desc->data_ptrs[next_triplet - 1].last = 1;
1789         desc->d2mlen = next_triplet - desc->m2dlen;
1790
1791         desc->op_addr = op;
1792
1793         return 0;
1794 }
1795
1796 static inline int
1797 acc100_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
1798                 struct acc100_dma_req_desc *desc,
1799                 struct rte_mbuf **input, struct rte_mbuf *h_output,
1800                 uint32_t *in_offset, uint32_t *h_out_offset,
1801                 uint32_t *h_out_length, uint32_t *mbuf_total_left,
1802                 uint32_t *seg_total_left,
1803                 struct acc100_fcw_ld *fcw)
1804 {
1805         struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1806         int next_triplet = 1; /* FCW already done */
1807         uint32_t input_length;
1808         uint16_t output_length, crc24_overlap = 0;
1809         uint16_t sys_cols, K, h_p_size, h_np_size;
1810         bool h_comp = check_bit(dec->op_flags,
1811                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1812
1813         acc100_header_init(desc);
1814
1815         if (check_bit(op->ldpc_dec.op_flags,
1816                         RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
1817                 crc24_overlap = 24;
1818
1819         /* Compute some LDPC BG lengths */
1820         input_length = dec->cb_params.e;
1821         if (check_bit(op->ldpc_dec.op_flags,
1822                         RTE_BBDEV_LDPC_LLR_COMPRESSION))
1823                 input_length = (input_length * 3 + 3) / 4;
1824         sys_cols = (dec->basegraph == 1) ? 22 : 10;
1825         K = sys_cols * dec->z_c;
1826         output_length = K - dec->n_filler - crc24_overlap;
1827
1828         if (unlikely((*mbuf_total_left == 0) ||
1829                         (*mbuf_total_left < input_length))) {
1830                 rte_bbdev_log(ERR,
1831                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1832                                 *mbuf_total_left, input_length);
1833                 return -1;
1834         }
1835
1836         next_triplet = acc100_dma_fill_blk_type_in(desc, input,
1837                         in_offset, input_length,
1838                         seg_total_left, next_triplet);
1839
1840         if (unlikely(next_triplet < 0)) {
1841                 rte_bbdev_log(ERR,
1842                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1843                                 op);
1844                 return -1;
1845         }
1846
1847         if (check_bit(op->ldpc_dec.op_flags,
1848                                 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1849                 h_p_size = fcw->hcin_size0 + fcw->hcin_size1;
1850                 if (h_comp)
1851                         h_p_size = (h_p_size * 3 + 3) / 4;
1852                 desc->data_ptrs[next_triplet].address =
1853                                 dec->harq_combined_input.offset;
1854                 desc->data_ptrs[next_triplet].blen = h_p_size;
1855                 desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN_HARQ;
1856                 desc->data_ptrs[next_triplet].dma_ext = 1;
1857 #ifndef ACC100_EXT_MEM
1858                 acc100_dma_fill_blk_type_out(
1859                                 desc,
1860                                 op->ldpc_dec.harq_combined_input.data,
1861                                 op->ldpc_dec.harq_combined_input.offset,
1862                                 h_p_size,
1863                                 next_triplet,
1864                                 ACC100_DMA_BLKID_IN_HARQ);
1865 #endif
1866                 next_triplet++;
1867         }
1868
1869         desc->data_ptrs[next_triplet - 1].last = 1;
1870         desc->m2dlen = next_triplet;
1871         *mbuf_total_left -= input_length;
1872
1873         next_triplet = acc100_dma_fill_blk_type_out(desc, h_output,
1874                         *h_out_offset, output_length >> 3, next_triplet,
1875                         ACC100_DMA_BLKID_OUT_HARD);
1876
1877         if (check_bit(op->ldpc_dec.op_flags,
1878                                 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1879                 /* Pruned size of the HARQ */
1880                 h_p_size = fcw->hcout_size0 + fcw->hcout_size1;
1881                 /* Non-Pruned size of the HARQ */
1882                 h_np_size = fcw->hcout_offset > 0 ?
1883                                 fcw->hcout_offset + fcw->hcout_size1 :
1884                                 h_p_size;
1885                 if (h_comp) {
1886                         h_np_size = (h_np_size * 3 + 3) / 4;
1887                         h_p_size = (h_p_size * 3 + 3) / 4;
1888                 }
1889                 dec->harq_combined_output.length = h_np_size;
1890                 desc->data_ptrs[next_triplet].address =
1891                                 dec->harq_combined_output.offset;
1892                 desc->data_ptrs[next_triplet].blen = h_p_size;
1893                 desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARQ;
1894                 desc->data_ptrs[next_triplet].dma_ext = 1;
1895 #ifndef ACC100_EXT_MEM
1896                 acc100_dma_fill_blk_type_out(
1897                                 desc,
1898                                 dec->harq_combined_output.data,
1899                                 dec->harq_combined_output.offset,
1900                                 h_p_size,
1901                                 next_triplet,
1902                                 ACC100_DMA_BLKID_OUT_HARQ);
1903 #endif
1904                 next_triplet++;
1905         }
1906
1907         *h_out_length = output_length >> 3;
1908         dec->hard_output.length += *h_out_length;
1909         *h_out_offset += *h_out_length;
1910         desc->data_ptrs[next_triplet - 1].last = 1;
1911         desc->d2mlen = next_triplet - desc->m2dlen;
1912
1913         desc->op_addr = op;
1914
1915         return 0;
1916 }
1917
1918 static inline void
1919 acc100_dma_desc_ld_update(struct rte_bbdev_dec_op *op,
1920                 struct acc100_dma_req_desc *desc,
1921                 struct rte_mbuf *input, struct rte_mbuf *h_output,
1922                 uint32_t *in_offset, uint32_t *h_out_offset,
1923                 uint32_t *h_out_length,
1924                 union acc100_harq_layout_data *harq_layout)
1925 {
1926         int next_triplet = 1; /* FCW already done */
1927         desc->data_ptrs[next_triplet].address =
1928                         rte_pktmbuf_iova_offset(input, *in_offset);
1929         next_triplet++;
1930
1931         if (check_bit(op->ldpc_dec.op_flags,
1932                                 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1933                 struct rte_bbdev_op_data hi = op->ldpc_dec.harq_combined_input;
1934                 desc->data_ptrs[next_triplet].address = hi.offset;
1935 #ifndef ACC100_EXT_MEM
1936                 desc->data_ptrs[next_triplet].address =
1937                                 rte_pktmbuf_iova_offset(hi.data, hi.offset);
1938 #endif
1939                 next_triplet++;
1940         }
1941
1942         desc->data_ptrs[next_triplet].address =
1943                         rte_pktmbuf_iova_offset(h_output, *h_out_offset);
1944         *h_out_length = desc->data_ptrs[next_triplet].blen;
1945         next_triplet++;
1946
1947         if (check_bit(op->ldpc_dec.op_flags,
1948                                 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1949                 desc->data_ptrs[next_triplet].address =
1950                                 op->ldpc_dec.harq_combined_output.offset;
1951                 /* Adjust based on previous operation */
1952                 struct rte_bbdev_dec_op *prev_op = desc->op_addr;
1953                 op->ldpc_dec.harq_combined_output.length =
1954                                 prev_op->ldpc_dec.harq_combined_output.length;
1955                 int16_t hq_idx = op->ldpc_dec.harq_combined_output.offset /
1956                                 ACC100_HARQ_OFFSET;
1957                 int16_t prev_hq_idx =
1958                                 prev_op->ldpc_dec.harq_combined_output.offset
1959                                 / ACC100_HARQ_OFFSET;
1960                 harq_layout[hq_idx].val = harq_layout[prev_hq_idx].val;
1961 #ifndef ACC100_EXT_MEM
1962                 struct rte_bbdev_op_data ho =
1963                                 op->ldpc_dec.harq_combined_output;
1964                 desc->data_ptrs[next_triplet].address =
1965                                 rte_pktmbuf_iova_offset(ho.data, ho.offset);
1966 #endif
1967                 next_triplet++;
1968         }
1969
1970         op->ldpc_dec.hard_output.length += *h_out_length;
1971         desc->op_addr = op;
1972 }
1973
1974
1975 /* Enqueue a number of operations to HW and update software rings */
1976 static inline void
1977 acc100_dma_enqueue(struct acc100_queue *q, uint16_t n,
1978                 struct rte_bbdev_stats *queue_stats)
1979 {
1980         union acc100_enqueue_reg_fmt enq_req;
1981 #ifdef RTE_BBDEV_OFFLOAD_COST
1982         uint64_t start_time = 0;
1983         queue_stats->acc_offload_cycles = 0;
1984 #else
1985         RTE_SET_USED(queue_stats);
1986 #endif
1987
1988         enq_req.val = 0;
1989         /* Setting offset, 100b for 256 DMA Desc */
1990         enq_req.addr_offset = ACC100_DESC_OFFSET;
1991
1992         /* Split ops into batches */
1993         do {
1994                 union acc100_dma_desc *desc;
1995                 uint16_t enq_batch_size;
1996                 uint64_t offset;
1997                 rte_iova_t req_elem_addr;
1998
1999                 enq_batch_size = RTE_MIN(n, MAX_ENQ_BATCH_SIZE);
2000
2001                 /* Set flag on last descriptor in a batch */
2002                 desc = q->ring_addr + ((q->sw_ring_head + enq_batch_size - 1) &
2003                                 q->sw_ring_wrap_mask);
2004                 desc->req.last_desc_in_batch = 1;
2005
2006                 /* Calculate the 1st descriptor's address */
2007                 offset = ((q->sw_ring_head & q->sw_ring_wrap_mask) *
2008                                 sizeof(union acc100_dma_desc));
2009                 req_elem_addr = q->ring_addr_iova + offset;
2010
2011                 /* Fill enqueue struct */
2012                 enq_req.num_elem = enq_batch_size;
2013                 /* low 6 bits are not needed */
2014                 enq_req.req_elem_addr = (uint32_t)(req_elem_addr >> 6);
2015
2016 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2017                 rte_memdump(stderr, "Req sdone", desc, sizeof(*desc));
2018 #endif
2019                 rte_bbdev_log_debug(
2020                                 "Enqueue %u reqs (phys %#"PRIx64") to reg %p",
2021                                 enq_batch_size,
2022                                 req_elem_addr,
2023                                 (void *)q->mmio_reg_enqueue);
2024
2025                 rte_wmb();
2026
2027 #ifdef RTE_BBDEV_OFFLOAD_COST
2028                 /* Start time measurement for enqueue function offload. */
2029                 start_time = rte_rdtsc_precise();
2030 #endif
2031                 rte_bbdev_log(DEBUG, "Debug : MMIO Enqueue");
2032                 mmio_write(q->mmio_reg_enqueue, enq_req.val);
2033
2034 #ifdef RTE_BBDEV_OFFLOAD_COST
2035                 queue_stats->acc_offload_cycles +=
2036                                 rte_rdtsc_precise() - start_time;
2037 #endif
2038
2039                 q->aq_enqueued++;
2040                 q->sw_ring_head += enq_batch_size;
2041                 n -= enq_batch_size;
2042
2043         } while (n);
2044
2045
2046 }
2047
2048 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2049 /* Validates turbo encoder parameters */
2050 static inline int
2051 validate_enc_op(struct rte_bbdev_enc_op *op)
2052 {
2053         struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
2054         struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
2055         struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
2056         uint16_t kw, kw_neg, kw_pos;
2057
2058         if (op->mempool == NULL) {
2059                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2060                 return -1;
2061         }
2062         if (turbo_enc->input.data == NULL) {
2063                 rte_bbdev_log(ERR, "Invalid input pointer");
2064                 return -1;
2065         }
2066         if (turbo_enc->output.data == NULL) {
2067                 rte_bbdev_log(ERR, "Invalid output pointer");
2068                 return -1;
2069         }
2070         if (turbo_enc->rv_index > 3) {
2071                 rte_bbdev_log(ERR,
2072                                 "rv_index (%u) is out of range 0 <= value <= 3",
2073                                 turbo_enc->rv_index);
2074                 return -1;
2075         }
2076         if (turbo_enc->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
2077                         turbo_enc->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
2078                 rte_bbdev_log(ERR,
2079                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2080                                 turbo_enc->code_block_mode);
2081                 return -1;
2082         }
2083
2084         if (turbo_enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
2085                 tb = &turbo_enc->tb_params;
2086                 if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
2087                                 || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2088                                 && tb->c_neg > 0) {
2089                         rte_bbdev_log(ERR,
2090                                         "k_neg (%u) is out of range %u <= value <= %u",
2091                                         tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2092                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2093                         return -1;
2094                 }
2095                 if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
2096                                 || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2097                         rte_bbdev_log(ERR,
2098                                         "k_pos (%u) is out of range %u <= value <= %u",
2099                                         tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2100                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2101                         return -1;
2102                 }
2103                 if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
2104                         rte_bbdev_log(ERR,
2105                                         "c_neg (%u) is out of range 0 <= value <= %u",
2106                                         tb->c_neg,
2107                                         RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
2108                 if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
2109                         rte_bbdev_log(ERR,
2110                                         "c (%u) is out of range 1 <= value <= %u",
2111                                         tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
2112                         return -1;
2113                 }
2114                 if (tb->cab > tb->c) {
2115                         rte_bbdev_log(ERR,
2116                                         "cab (%u) is greater than c (%u)",
2117                                         tb->cab, tb->c);
2118                         return -1;
2119                 }
2120                 if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
2121                                 && tb->r < tb->cab) {
2122                         rte_bbdev_log(ERR,
2123                                         "ea (%u) is less than %u or it is not even",
2124                                         tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2125                         return -1;
2126                 }
2127                 if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
2128                                 && tb->c > tb->cab) {
2129                         rte_bbdev_log(ERR,
2130                                         "eb (%u) is less than %u or it is not even",
2131                                         tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2132                         return -1;
2133                 }
2134
2135                 kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
2136                                         RTE_BBDEV_TURBO_C_SUBBLOCK);
2137                 if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
2138                         rte_bbdev_log(ERR,
2139                                         "ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
2140                                         tb->ncb_neg, tb->k_neg, kw_neg);
2141                         return -1;
2142                 }
2143
2144                 kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
2145                                         RTE_BBDEV_TURBO_C_SUBBLOCK);
2146                 if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
2147                         rte_bbdev_log(ERR,
2148                                         "ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
2149                                         tb->ncb_pos, tb->k_pos, kw_pos);
2150                         return -1;
2151                 }
2152                 if (tb->r > (tb->c - 1)) {
2153                         rte_bbdev_log(ERR,
2154                                         "r (%u) is greater than c - 1 (%u)",
2155                                         tb->r, tb->c - 1);
2156                         return -1;
2157                 }
2158         } else {
2159                 cb = &turbo_enc->cb_params;
2160                 if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
2161                                 || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2162                         rte_bbdev_log(ERR,
2163                                         "k (%u) is out of range %u <= value <= %u",
2164                                         cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2165                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2166                         return -1;
2167                 }
2168
2169                 if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
2170                         rte_bbdev_log(ERR,
2171                                         "e (%u) is less than %u or it is not even",
2172                                         cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2173                         return -1;
2174                 }
2175
2176                 kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
2177                 if (cb->ncb < cb->k || cb->ncb > kw) {
2178                         rte_bbdev_log(ERR,
2179                                         "ncb (%u) is out of range (%u) k <= value <= (%u) kw",
2180                                         cb->ncb, cb->k, kw);
2181                         return -1;
2182                 }
2183         }
2184
2185         return 0;
2186 }
2187 /* Validates LDPC encoder parameters */
2188 static inline int
2189 validate_ldpc_enc_op(struct rte_bbdev_enc_op *op)
2190 {
2191         struct rte_bbdev_op_ldpc_enc *ldpc_enc = &op->ldpc_enc;
2192
2193         if (op->mempool == NULL) {
2194                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2195                 return -1;
2196         }
2197         if (ldpc_enc->input.data == NULL) {
2198                 rte_bbdev_log(ERR, "Invalid input pointer");
2199                 return -1;
2200         }
2201         if (ldpc_enc->output.data == NULL) {
2202                 rte_bbdev_log(ERR, "Invalid output pointer");
2203                 return -1;
2204         }
2205         if (ldpc_enc->input.length >
2206                         RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) {
2207                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
2208                                 ldpc_enc->input.length,
2209                                 RTE_BBDEV_LDPC_MAX_CB_SIZE);
2210                 return -1;
2211         }
2212         if ((ldpc_enc->basegraph > 2) || (ldpc_enc->basegraph == 0)) {
2213                 rte_bbdev_log(ERR,
2214                                 "BG (%u) is out of range 1 <= value <= 2",
2215                                 ldpc_enc->basegraph);
2216                 return -1;
2217         }
2218         if (ldpc_enc->rv_index > 3) {
2219                 rte_bbdev_log(ERR,
2220                                 "rv_index (%u) is out of range 0 <= value <= 3",
2221                                 ldpc_enc->rv_index);
2222                 return -1;
2223         }
2224         if (ldpc_enc->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
2225                 rte_bbdev_log(ERR,
2226                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2227                                 ldpc_enc->code_block_mode);
2228                 return -1;
2229         }
2230         int K = (ldpc_enc->basegraph == 1 ? 22 : 10) * ldpc_enc->z_c;
2231         if (ldpc_enc->n_filler >= K) {
2232                 rte_bbdev_log(ERR,
2233                                 "K and F are not compatible %u %u",
2234                                 K, ldpc_enc->n_filler);
2235                 return -1;
2236         }
2237         return 0;
2238 }
2239
2240 /* Validates LDPC decoder parameters */
2241 static inline int
2242 validate_ldpc_dec_op(struct rte_bbdev_dec_op *op)
2243 {
2244         struct rte_bbdev_op_ldpc_dec *ldpc_dec = &op->ldpc_dec;
2245
2246         if (op->mempool == NULL) {
2247                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2248                 return -1;
2249         }
2250         if ((ldpc_dec->basegraph > 2) || (ldpc_dec->basegraph == 0)) {
2251                 rte_bbdev_log(ERR,
2252                                 "BG (%u) is out of range 1 <= value <= 2",
2253                                 ldpc_dec->basegraph);
2254                 return -1;
2255         }
2256         if (ldpc_dec->iter_max == 0) {
2257                 rte_bbdev_log(ERR,
2258                                 "iter_max (%u) is equal to 0",
2259                                 ldpc_dec->iter_max);
2260                 return -1;
2261         }
2262         if (ldpc_dec->rv_index > 3) {
2263                 rte_bbdev_log(ERR,
2264                                 "rv_index (%u) is out of range 0 <= value <= 3",
2265                                 ldpc_dec->rv_index);
2266                 return -1;
2267         }
2268         if (ldpc_dec->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
2269                 rte_bbdev_log(ERR,
2270                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2271                                 ldpc_dec->code_block_mode);
2272                 return -1;
2273         }
2274         int K = (ldpc_dec->basegraph == 1 ? 22 : 10) * ldpc_dec->z_c;
2275         if (ldpc_dec->n_filler >= K) {
2276                 rte_bbdev_log(ERR,
2277                                 "K and F are not compatible %u %u",
2278                                 K, ldpc_dec->n_filler);
2279                 return -1;
2280         }
2281         return 0;
2282 }
2283 #endif
2284
2285 /* Enqueue one encode operations for ACC100 device in CB mode */
2286 static inline int
2287 enqueue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2288                 uint16_t total_enqueued_cbs)
2289 {
2290         union acc100_dma_desc *desc = NULL;
2291         int ret;
2292         uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2293                 seg_total_left;
2294         struct rte_mbuf *input, *output_head, *output;
2295
2296 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2297         /* Validate op structure */
2298         if (validate_enc_op(op) == -1) {
2299                 rte_bbdev_log(ERR, "Turbo encoder validation failed");
2300                 return -EINVAL;
2301         }
2302 #endif
2303
2304         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2305                         & q->sw_ring_wrap_mask);
2306         desc = q->ring_addr + desc_idx;
2307         acc100_fcw_te_fill(op, &desc->req.fcw_te);
2308
2309         input = op->turbo_enc.input.data;
2310         output_head = output = op->turbo_enc.output.data;
2311         in_offset = op->turbo_enc.input.offset;
2312         out_offset = op->turbo_enc.output.offset;
2313         out_length = 0;
2314         mbuf_total_left = op->turbo_enc.input.length;
2315         seg_total_left = rte_pktmbuf_data_len(op->turbo_enc.input.data)
2316                         - in_offset;
2317
2318         ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
2319                         &in_offset, &out_offset, &out_length, &mbuf_total_left,
2320                         &seg_total_left, 0);
2321
2322         if (unlikely(ret < 0))
2323                 return ret;
2324
2325         mbuf_append(output_head, output, out_length);
2326
2327 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2328         rte_memdump(stderr, "FCW", &desc->req.fcw_te,
2329                         sizeof(desc->req.fcw_te) - 8);
2330         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2331         if (check_mbuf_total_left(mbuf_total_left) != 0)
2332                 return -EINVAL;
2333 #endif
2334         /* One CB (one op) was successfully prepared to enqueue */
2335         return 1;
2336 }
2337
2338 /* Enqueue one encode operations for ACC100 device in CB mode */
2339 static inline int
2340 enqueue_ldpc_enc_n_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ops,
2341                 uint16_t total_enqueued_cbs, int16_t num)
2342 {
2343         union acc100_dma_desc *desc = NULL;
2344         uint32_t out_length;
2345         struct rte_mbuf *output_head, *output;
2346         int i, next_triplet;
2347         uint16_t  in_length_in_bytes;
2348         struct rte_bbdev_op_ldpc_enc *enc = &ops[0]->ldpc_enc;
2349
2350 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2351         /* Validate op structure */
2352         if (validate_ldpc_enc_op(ops[0]) == -1) {
2353                 rte_bbdev_log(ERR, "LDPC encoder validation failed");
2354                 return -EINVAL;
2355         }
2356 #endif
2357
2358         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2359                         & q->sw_ring_wrap_mask);
2360         desc = q->ring_addr + desc_idx;
2361         acc100_fcw_le_fill(ops[0], &desc->req.fcw_le, num);
2362
2363         /** This could be done at polling */
2364         acc100_header_init(&desc->req);
2365         desc->req.numCBs = num;
2366
2367         in_length_in_bytes = ops[0]->ldpc_enc.input.data->data_len;
2368         out_length = (enc->cb_params.e + 7) >> 3;
2369         desc->req.m2dlen = 1 + num;
2370         desc->req.d2mlen = num;
2371         next_triplet = 1;
2372
2373         for (i = 0; i < num; i++) {
2374                 desc->req.data_ptrs[next_triplet].address =
2375                         rte_pktmbuf_iova_offset(ops[i]->ldpc_enc.input.data, 0);
2376                 desc->req.data_ptrs[next_triplet].blen = in_length_in_bytes;
2377                 next_triplet++;
2378                 desc->req.data_ptrs[next_triplet].address =
2379                                 rte_pktmbuf_iova_offset(
2380                                 ops[i]->ldpc_enc.output.data, 0);
2381                 desc->req.data_ptrs[next_triplet].blen = out_length;
2382                 next_triplet++;
2383                 ops[i]->ldpc_enc.output.length = out_length;
2384                 output_head = output = ops[i]->ldpc_enc.output.data;
2385                 mbuf_append(output_head, output, out_length);
2386                 output->data_len = out_length;
2387         }
2388
2389         desc->req.op_addr = ops[0];
2390
2391 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2392         rte_memdump(stderr, "FCW", &desc->req.fcw_le,
2393                         sizeof(desc->req.fcw_le) - 8);
2394         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2395 #endif
2396
2397         /* One CB (one op) was successfully prepared to enqueue */
2398         return num;
2399 }
2400
2401 /* Enqueue one encode operations for ACC100 device in CB mode */
2402 static inline int
2403 enqueue_ldpc_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2404                 uint16_t total_enqueued_cbs)
2405 {
2406         union acc100_dma_desc *desc = NULL;
2407         int ret;
2408         uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2409                 seg_total_left;
2410         struct rte_mbuf *input, *output_head, *output;
2411
2412 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2413         /* Validate op structure */
2414         if (validate_ldpc_enc_op(op) == -1) {
2415                 rte_bbdev_log(ERR, "LDPC encoder validation failed");
2416                 return -EINVAL;
2417         }
2418 #endif
2419
2420         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2421                         & q->sw_ring_wrap_mask);
2422         desc = q->ring_addr + desc_idx;
2423         acc100_fcw_le_fill(op, &desc->req.fcw_le, 1);
2424
2425         input = op->ldpc_enc.input.data;
2426         output_head = output = op->ldpc_enc.output.data;
2427         in_offset = op->ldpc_enc.input.offset;
2428         out_offset = op->ldpc_enc.output.offset;
2429         out_length = 0;
2430         mbuf_total_left = op->ldpc_enc.input.length;
2431         seg_total_left = rte_pktmbuf_data_len(op->ldpc_enc.input.data)
2432                         - in_offset;
2433
2434         ret = acc100_dma_desc_le_fill(op, &desc->req, &input, output,
2435                         &in_offset, &out_offset, &out_length, &mbuf_total_left,
2436                         &seg_total_left);
2437
2438         if (unlikely(ret < 0))
2439                 return ret;
2440
2441         mbuf_append(output_head, output, out_length);
2442
2443 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2444         rte_memdump(stderr, "FCW", &desc->req.fcw_le,
2445                         sizeof(desc->req.fcw_le) - 8);
2446         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2447
2448         if (check_mbuf_total_left(mbuf_total_left) != 0)
2449                 return -EINVAL;
2450 #endif
2451         /* One CB (one op) was successfully prepared to enqueue */
2452         return 1;
2453 }
2454
2455
2456 /* Enqueue one encode operations for ACC100 device in TB mode. */
2457 static inline int
2458 enqueue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2459                 uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
2460 {
2461         union acc100_dma_desc *desc = NULL;
2462         int ret;
2463         uint8_t r, c;
2464         uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2465                 seg_total_left;
2466         struct rte_mbuf *input, *output_head, *output;
2467         uint16_t current_enqueued_cbs = 0;
2468
2469 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2470         /* Validate op structure */
2471         if (validate_enc_op(op) == -1) {
2472                 rte_bbdev_log(ERR, "Turbo encoder validation failed");
2473                 return -EINVAL;
2474         }
2475 #endif
2476
2477         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2478                         & q->sw_ring_wrap_mask);
2479         desc = q->ring_addr + desc_idx;
2480         uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
2481         acc100_fcw_te_fill(op, &desc->req.fcw_te);
2482
2483         input = op->turbo_enc.input.data;
2484         output_head = output = op->turbo_enc.output.data;
2485         in_offset = op->turbo_enc.input.offset;
2486         out_offset = op->turbo_enc.output.offset;
2487         out_length = 0;
2488         mbuf_total_left = op->turbo_enc.input.length;
2489
2490         c = op->turbo_enc.tb_params.c;
2491         r = op->turbo_enc.tb_params.r;
2492
2493         while (mbuf_total_left > 0 && r < c) {
2494                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
2495                 /* Set up DMA descriptor */
2496                 desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
2497                                 & q->sw_ring_wrap_mask);
2498                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
2499                 desc->req.data_ptrs[0].blen = ACC100_FCW_TE_BLEN;
2500
2501                 ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
2502                                 &in_offset, &out_offset, &out_length,
2503                                 &mbuf_total_left, &seg_total_left, r);
2504                 if (unlikely(ret < 0))
2505                         return ret;
2506                 mbuf_append(output_head, output, out_length);
2507
2508                 /* Set total number of CBs in TB */
2509                 desc->req.cbs_in_tb = cbs_in_tb;
2510 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2511                 rte_memdump(stderr, "FCW", &desc->req.fcw_te,
2512                                 sizeof(desc->req.fcw_te) - 8);
2513                 rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2514 #endif
2515
2516                 if (seg_total_left == 0) {
2517                         /* Go to the next mbuf */
2518                         input = input->next;
2519                         in_offset = 0;
2520                         output = output->next;
2521                         out_offset = 0;
2522                 }
2523
2524                 total_enqueued_cbs++;
2525                 current_enqueued_cbs++;
2526                 r++;
2527         }
2528
2529 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2530         if (check_mbuf_total_left(mbuf_total_left) != 0)
2531                 return -EINVAL;
2532 #endif
2533
2534         /* Set SDone on last CB descriptor for TB mode. */
2535         desc->req.sdone_enable = 1;
2536         desc->req.irq_enable = q->irq_enable;
2537
2538         return current_enqueued_cbs;
2539 }
2540
2541 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2542 /* Validates turbo decoder parameters */
2543 static inline int
2544 validate_dec_op(struct rte_bbdev_dec_op *op)
2545 {
2546         struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
2547         struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
2548         struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
2549
2550         if (op->mempool == NULL) {
2551                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2552                 return -1;
2553         }
2554         if (turbo_dec->input.data == NULL) {
2555                 rte_bbdev_log(ERR, "Invalid input pointer");
2556                 return -1;
2557         }
2558         if (turbo_dec->hard_output.data == NULL) {
2559                 rte_bbdev_log(ERR, "Invalid hard_output pointer");
2560                 return -1;
2561         }
2562         if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT) &&
2563                         turbo_dec->soft_output.data == NULL) {
2564                 rte_bbdev_log(ERR, "Invalid soft_output pointer");
2565                 return -1;
2566         }
2567         if (turbo_dec->rv_index > 3) {
2568                 rte_bbdev_log(ERR,
2569                                 "rv_index (%u) is out of range 0 <= value <= 3",
2570                                 turbo_dec->rv_index);
2571                 return -1;
2572         }
2573         if (turbo_dec->iter_min < 1) {
2574                 rte_bbdev_log(ERR,
2575                                 "iter_min (%u) is less than 1",
2576                                 turbo_dec->iter_min);
2577                 return -1;
2578         }
2579         if (turbo_dec->iter_max <= 2) {
2580                 rte_bbdev_log(ERR,
2581                                 "iter_max (%u) is less than or equal to 2",
2582                                 turbo_dec->iter_max);
2583                 return -1;
2584         }
2585         if (turbo_dec->iter_min > turbo_dec->iter_max) {
2586                 rte_bbdev_log(ERR,
2587                                 "iter_min (%u) is greater than iter_max (%u)",
2588                                 turbo_dec->iter_min, turbo_dec->iter_max);
2589                 return -1;
2590         }
2591         if (turbo_dec->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
2592                         turbo_dec->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
2593                 rte_bbdev_log(ERR,
2594                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2595                                 turbo_dec->code_block_mode);
2596                 return -1;
2597         }
2598
2599         if (turbo_dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
2600                 tb = &turbo_dec->tb_params;
2601                 if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
2602                                 || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2603                                 && tb->c_neg > 0) {
2604                         rte_bbdev_log(ERR,
2605                                         "k_neg (%u) is out of range %u <= value <= %u",
2606                                         tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2607                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2608                         return -1;
2609                 }
2610                 if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
2611                                 || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2612                                 && tb->c > tb->c_neg) {
2613                         rte_bbdev_log(ERR,
2614                                         "k_pos (%u) is out of range %u <= value <= %u",
2615                                         tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2616                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2617                         return -1;
2618                 }
2619                 if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
2620                         rte_bbdev_log(ERR,
2621                                         "c_neg (%u) is out of range 0 <= value <= %u",
2622                                         tb->c_neg,
2623                                         RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
2624                 if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
2625                         rte_bbdev_log(ERR,
2626                                         "c (%u) is out of range 1 <= value <= %u",
2627                                         tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
2628                         return -1;
2629                 }
2630                 if (tb->cab > tb->c) {
2631                         rte_bbdev_log(ERR,
2632                                         "cab (%u) is greater than c (%u)",
2633                                         tb->cab, tb->c);
2634                         return -1;
2635                 }
2636                 if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2637                                 (tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE
2638                                                 || (tb->ea % 2))
2639                                 && tb->cab > 0) {
2640                         rte_bbdev_log(ERR,
2641                                         "ea (%u) is less than %u or it is not even",
2642                                         tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2643                         return -1;
2644                 }
2645                 if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2646                                 (tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE
2647                                                 || (tb->eb % 2))
2648                                 && tb->c > tb->cab) {
2649                         rte_bbdev_log(ERR,
2650                                         "eb (%u) is less than %u or it is not even",
2651                                         tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2652                 }
2653         } else {
2654                 cb = &turbo_dec->cb_params;
2655                 if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
2656                                 || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2657                         rte_bbdev_log(ERR,
2658                                         "k (%u) is out of range %u <= value <= %u",
2659                                         cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2660                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2661                         return -1;
2662                 }
2663                 if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2664                                 (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE ||
2665                                 (cb->e % 2))) {
2666                         rte_bbdev_log(ERR,
2667                                         "e (%u) is less than %u or it is not even",
2668                                         cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2669                         return -1;
2670                 }
2671         }
2672
2673         return 0;
2674 }
2675 #endif
2676
2677 /** Enqueue one decode operations for ACC100 device in CB mode */
2678 static inline int
2679 enqueue_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2680                 uint16_t total_enqueued_cbs)
2681 {
2682         union acc100_dma_desc *desc = NULL;
2683         int ret;
2684         uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
2685                 h_out_length, mbuf_total_left, seg_total_left;
2686         struct rte_mbuf *input, *h_output_head, *h_output,
2687                 *s_output_head, *s_output;
2688
2689 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2690         /* Validate op structure */
2691         if (validate_dec_op(op) == -1) {
2692                 rte_bbdev_log(ERR, "Turbo decoder validation failed");
2693                 return -EINVAL;
2694         }
2695 #endif
2696
2697         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2698                         & q->sw_ring_wrap_mask);
2699         desc = q->ring_addr + desc_idx;
2700         acc100_fcw_td_fill(op, &desc->req.fcw_td);
2701
2702         input = op->turbo_dec.input.data;
2703         h_output_head = h_output = op->turbo_dec.hard_output.data;
2704         s_output_head = s_output = op->turbo_dec.soft_output.data;
2705         in_offset = op->turbo_dec.input.offset;
2706         h_out_offset = op->turbo_dec.hard_output.offset;
2707         s_out_offset = op->turbo_dec.soft_output.offset;
2708         h_out_length = s_out_length = 0;
2709         mbuf_total_left = op->turbo_dec.input.length;
2710         seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
2711
2712 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2713         if (unlikely(input == NULL)) {
2714                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
2715                 return -EFAULT;
2716         }
2717 #endif
2718
2719         /* Set up DMA descriptor */
2720         desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
2721                         & q->sw_ring_wrap_mask);
2722
2723         ret = acc100_dma_desc_td_fill(op, &desc->req, &input, h_output,
2724                         s_output, &in_offset, &h_out_offset, &s_out_offset,
2725                         &h_out_length, &s_out_length, &mbuf_total_left,
2726                         &seg_total_left, 0);
2727
2728         if (unlikely(ret < 0))
2729                 return ret;
2730
2731         /* Hard output */
2732         mbuf_append(h_output_head, h_output, h_out_length);
2733
2734         /* Soft output */
2735         if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT))
2736                 mbuf_append(s_output_head, s_output, s_out_length);
2737
2738 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2739         rte_memdump(stderr, "FCW", &desc->req.fcw_td,
2740                         sizeof(desc->req.fcw_td) - 8);
2741         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2742         if (check_mbuf_total_left(mbuf_total_left) != 0)
2743                 return -EINVAL;
2744 #endif
2745
2746         /* One CB (one op) was successfully prepared to enqueue */
2747         return 1;
2748 }
2749
2750 static inline int
2751 harq_loopback(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2752                 uint16_t total_enqueued_cbs) {
2753         struct acc100_fcw_ld *fcw;
2754         union acc100_dma_desc *desc;
2755         int next_triplet = 1;
2756         struct rte_mbuf *hq_output_head, *hq_output;
2757         uint16_t harq_dma_length_in, harq_dma_length_out;
2758         uint16_t harq_in_length = op->ldpc_dec.harq_combined_input.length;
2759         if (harq_in_length == 0) {
2760                 rte_bbdev_log(ERR, "Loopback of invalid null size\n");
2761                 return -EINVAL;
2762         }
2763
2764         int h_comp = check_bit(op->ldpc_dec.op_flags,
2765                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION
2766                         ) ? 1 : 0;
2767         if (h_comp == 1) {
2768                 harq_in_length = harq_in_length * 8 / 6;
2769                 harq_in_length = RTE_ALIGN(harq_in_length, 64);
2770                 harq_dma_length_in = harq_in_length * 6 / 8;
2771         } else {
2772                 harq_in_length = RTE_ALIGN(harq_in_length, 64);
2773                 harq_dma_length_in = harq_in_length;
2774         }
2775         harq_dma_length_out = harq_dma_length_in;
2776
2777         bool ddr_mem_in = check_bit(op->ldpc_dec.op_flags,
2778                         RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE);
2779         union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
2780         uint16_t harq_index = (ddr_mem_in ?
2781                         op->ldpc_dec.harq_combined_input.offset :
2782                         op->ldpc_dec.harq_combined_output.offset)
2783                         / ACC100_HARQ_OFFSET;
2784
2785         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2786                         & q->sw_ring_wrap_mask);
2787         desc = q->ring_addr + desc_idx;
2788         fcw = &desc->req.fcw_ld;
2789         /* Set the FCW from loopback into DDR */
2790         memset(fcw, 0, sizeof(struct acc100_fcw_ld));
2791         fcw->FCWversion = ACC100_FCW_VER;
2792         fcw->qm = 2;
2793         fcw->Zc = 384;
2794         if (harq_in_length < 16 * ACC100_N_ZC_1)
2795                 fcw->Zc = 16;
2796         fcw->ncb = fcw->Zc * ACC100_N_ZC_1;
2797         fcw->rm_e = 2;
2798         fcw->hcin_en = 1;
2799         fcw->hcout_en = 1;
2800
2801         rte_bbdev_log(DEBUG, "Loopback IN %d Index %d offset %d length %d %d\n",
2802                         ddr_mem_in, harq_index,
2803                         harq_layout[harq_index].offset, harq_in_length,
2804                         harq_dma_length_in);
2805
2806         if (ddr_mem_in && (harq_layout[harq_index].offset > 0)) {
2807                 fcw->hcin_size0 = harq_layout[harq_index].size0;
2808                 fcw->hcin_offset = harq_layout[harq_index].offset;
2809                 fcw->hcin_size1 = harq_in_length - fcw->hcin_offset;
2810                 harq_dma_length_in = (fcw->hcin_size0 + fcw->hcin_size1);
2811                 if (h_comp == 1)
2812                         harq_dma_length_in = harq_dma_length_in * 6 / 8;
2813         } else {
2814                 fcw->hcin_size0 = harq_in_length;
2815         }
2816         harq_layout[harq_index].val = 0;
2817         rte_bbdev_log(DEBUG, "Loopback FCW Config %d %d %d\n",
2818                         fcw->hcin_size0, fcw->hcin_offset, fcw->hcin_size1);
2819         fcw->hcout_size0 = harq_in_length;
2820         fcw->hcin_decomp_mode = h_comp;
2821         fcw->hcout_comp_mode = h_comp;
2822         fcw->gain_i = 1;
2823         fcw->gain_h = 1;
2824
2825         /* Set the prefix of descriptor. This could be done at polling */
2826         acc100_header_init(&desc->req);
2827
2828         /* Null LLR input for Decoder */
2829         desc->req.data_ptrs[next_triplet].address =
2830                         q->lb_in_addr_iova;
2831         desc->req.data_ptrs[next_triplet].blen = 2;
2832         desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
2833         desc->req.data_ptrs[next_triplet].last = 0;
2834         desc->req.data_ptrs[next_triplet].dma_ext = 0;
2835         next_triplet++;
2836
2837         /* HARQ Combine input from either Memory interface */
2838         if (!ddr_mem_in) {
2839                 next_triplet = acc100_dma_fill_blk_type_out(&desc->req,
2840                                 op->ldpc_dec.harq_combined_input.data,
2841                                 op->ldpc_dec.harq_combined_input.offset,
2842                                 harq_dma_length_in,
2843                                 next_triplet,
2844                                 ACC100_DMA_BLKID_IN_HARQ);
2845         } else {
2846                 desc->req.data_ptrs[next_triplet].address =
2847                                 op->ldpc_dec.harq_combined_input.offset;
2848                 desc->req.data_ptrs[next_triplet].blen =
2849                                 harq_dma_length_in;
2850                 desc->req.data_ptrs[next_triplet].blkid =
2851                                 ACC100_DMA_BLKID_IN_HARQ;
2852                 desc->req.data_ptrs[next_triplet].dma_ext = 1;
2853                 next_triplet++;
2854         }
2855         desc->req.data_ptrs[next_triplet - 1].last = 1;
2856         desc->req.m2dlen = next_triplet;
2857
2858         /* Dropped decoder hard output */
2859         desc->req.data_ptrs[next_triplet].address =
2860                         q->lb_out_addr_iova;
2861         desc->req.data_ptrs[next_triplet].blen = ACC100_BYTES_IN_WORD;
2862         desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARD;
2863         desc->req.data_ptrs[next_triplet].last = 0;
2864         desc->req.data_ptrs[next_triplet].dma_ext = 0;
2865         next_triplet++;
2866
2867         /* HARQ Combine output to either Memory interface */
2868         if (check_bit(op->ldpc_dec.op_flags,
2869                         RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE
2870                         )) {
2871                 desc->req.data_ptrs[next_triplet].address =
2872                                 op->ldpc_dec.harq_combined_output.offset;
2873                 desc->req.data_ptrs[next_triplet].blen =
2874                                 harq_dma_length_out;
2875                 desc->req.data_ptrs[next_triplet].blkid =
2876                                 ACC100_DMA_BLKID_OUT_HARQ;
2877                 desc->req.data_ptrs[next_triplet].dma_ext = 1;
2878                 next_triplet++;
2879         } else {
2880                 hq_output_head = op->ldpc_dec.harq_combined_output.data;
2881                 hq_output = op->ldpc_dec.harq_combined_output.data;
2882                 next_triplet = acc100_dma_fill_blk_type_out(
2883                                 &desc->req,
2884                                 op->ldpc_dec.harq_combined_output.data,
2885                                 op->ldpc_dec.harq_combined_output.offset,
2886                                 harq_dma_length_out,
2887                                 next_triplet,
2888                                 ACC100_DMA_BLKID_OUT_HARQ);
2889                 /* HARQ output */
2890                 mbuf_append(hq_output_head, hq_output, harq_dma_length_out);
2891                 op->ldpc_dec.harq_combined_output.length =
2892                                 harq_dma_length_out;
2893         }
2894         desc->req.data_ptrs[next_triplet - 1].last = 1;
2895         desc->req.d2mlen = next_triplet - desc->req.m2dlen;
2896         desc->req.op_addr = op;
2897
2898         /* One CB (one op) was successfully prepared to enqueue */
2899         return 1;
2900 }
2901
2902 /** Enqueue one decode operations for ACC100 device in CB mode */
2903 static inline int
2904 enqueue_ldpc_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2905                 uint16_t total_enqueued_cbs, bool same_op)
2906 {
2907         int ret;
2908         if (unlikely(check_bit(op->ldpc_dec.op_flags,
2909                         RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK))) {
2910                 ret = harq_loopback(q, op, total_enqueued_cbs);
2911                 return ret;
2912         }
2913
2914 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2915         /* Validate op structure */
2916         if (validate_ldpc_dec_op(op) == -1) {
2917                 rte_bbdev_log(ERR, "LDPC decoder validation failed");
2918                 return -EINVAL;
2919         }
2920 #endif
2921         union acc100_dma_desc *desc;
2922         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2923                         & q->sw_ring_wrap_mask);
2924         desc = q->ring_addr + desc_idx;
2925         struct rte_mbuf *input, *h_output_head, *h_output;
2926         uint32_t in_offset, h_out_offset, mbuf_total_left, h_out_length = 0;
2927         input = op->ldpc_dec.input.data;
2928         h_output_head = h_output = op->ldpc_dec.hard_output.data;
2929         in_offset = op->ldpc_dec.input.offset;
2930         h_out_offset = op->ldpc_dec.hard_output.offset;
2931         mbuf_total_left = op->ldpc_dec.input.length;
2932 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2933         if (unlikely(input == NULL)) {
2934                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
2935                 return -EFAULT;
2936         }
2937 #endif
2938         union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
2939
2940         if (same_op) {
2941                 union acc100_dma_desc *prev_desc;
2942                 desc_idx = ((q->sw_ring_head + total_enqueued_cbs - 1)
2943                                 & q->sw_ring_wrap_mask);
2944                 prev_desc = q->ring_addr + desc_idx;
2945                 uint8_t *prev_ptr = (uint8_t *) prev_desc;
2946                 uint8_t *new_ptr = (uint8_t *) desc;
2947                 /* Copy first 4 words and BDESCs */
2948                 rte_memcpy(new_ptr, prev_ptr, ACC100_5GUL_SIZE_0);
2949                 rte_memcpy(new_ptr + ACC100_5GUL_OFFSET_0,
2950                                 prev_ptr + ACC100_5GUL_OFFSET_0,
2951                                 ACC100_5GUL_SIZE_1);
2952                 desc->req.op_addr = prev_desc->req.op_addr;
2953                 /* Copy FCW */
2954                 rte_memcpy(new_ptr + ACC100_DESC_FCW_OFFSET,
2955                                 prev_ptr + ACC100_DESC_FCW_OFFSET,
2956                                 ACC100_FCW_LD_BLEN);
2957                 acc100_dma_desc_ld_update(op, &desc->req, input, h_output,
2958                                 &in_offset, &h_out_offset,
2959                                 &h_out_length, harq_layout);
2960         } else {
2961                 struct acc100_fcw_ld *fcw;
2962                 uint32_t seg_total_left;
2963                 fcw = &desc->req.fcw_ld;
2964                 acc100_fcw_ld_fill(op, fcw, harq_layout);
2965
2966                 /* Special handling when overusing mbuf */
2967                 if (fcw->rm_e < ACC100_MAX_E_MBUF)
2968                         seg_total_left = rte_pktmbuf_data_len(input)
2969                                         - in_offset;
2970                 else
2971                         seg_total_left = fcw->rm_e;
2972
2973                 ret = acc100_dma_desc_ld_fill(op, &desc->req, &input, h_output,
2974                                 &in_offset, &h_out_offset,
2975                                 &h_out_length, &mbuf_total_left,
2976                                 &seg_total_left, fcw);
2977                 if (unlikely(ret < 0))
2978                         return ret;
2979         }
2980
2981         /* Hard output */
2982         mbuf_append(h_output_head, h_output, h_out_length);
2983 #ifndef ACC100_EXT_MEM
2984         if (op->ldpc_dec.harq_combined_output.length > 0) {
2985                 /* Push the HARQ output into host memory */
2986                 struct rte_mbuf *hq_output_head, *hq_output;
2987                 hq_output_head = op->ldpc_dec.harq_combined_output.data;
2988                 hq_output = op->ldpc_dec.harq_combined_output.data;
2989                 mbuf_append(hq_output_head, hq_output,
2990                                 op->ldpc_dec.harq_combined_output.length);
2991         }
2992 #endif
2993
2994 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2995         rte_memdump(stderr, "FCW", &desc->req.fcw_ld,
2996                         sizeof(desc->req.fcw_ld) - 8);
2997         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2998 #endif
2999
3000         /* One CB (one op) was successfully prepared to enqueue */
3001         return 1;
3002 }
3003
3004
3005 /* Enqueue one decode operations for ACC100 device in TB mode */
3006 static inline int
3007 enqueue_ldpc_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
3008                 uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
3009 {
3010         union acc100_dma_desc *desc = NULL;
3011         int ret;
3012         uint8_t r, c;
3013         uint32_t in_offset, h_out_offset,
3014                 h_out_length, mbuf_total_left, seg_total_left;
3015         struct rte_mbuf *input, *h_output_head, *h_output;
3016         uint16_t current_enqueued_cbs = 0;
3017
3018 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3019         /* Validate op structure */
3020         if (validate_ldpc_dec_op(op) == -1) {
3021                 rte_bbdev_log(ERR, "LDPC decoder validation failed");
3022                 return -EINVAL;
3023         }
3024 #endif
3025
3026         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
3027                         & q->sw_ring_wrap_mask);
3028         desc = q->ring_addr + desc_idx;
3029         uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
3030         union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
3031         acc100_fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout);
3032
3033         input = op->ldpc_dec.input.data;
3034         h_output_head = h_output = op->ldpc_dec.hard_output.data;
3035         in_offset = op->ldpc_dec.input.offset;
3036         h_out_offset = op->ldpc_dec.hard_output.offset;
3037         h_out_length = 0;
3038         mbuf_total_left = op->ldpc_dec.input.length;
3039         c = op->ldpc_dec.tb_params.c;
3040         r = op->ldpc_dec.tb_params.r;
3041
3042         while (mbuf_total_left > 0 && r < c) {
3043
3044                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
3045
3046                 /* Set up DMA descriptor */
3047                 desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
3048                                 & q->sw_ring_wrap_mask);
3049                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
3050                 desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
3051                 ret = acc100_dma_desc_ld_fill(op, &desc->req, &input,
3052                                 h_output, &in_offset, &h_out_offset,
3053                                 &h_out_length,
3054                                 &mbuf_total_left, &seg_total_left,
3055                                 &desc->req.fcw_ld);
3056
3057                 if (unlikely(ret < 0))
3058                         return ret;
3059
3060                 /* Hard output */
3061                 mbuf_append(h_output_head, h_output, h_out_length);
3062
3063                 /* Set total number of CBs in TB */
3064                 desc->req.cbs_in_tb = cbs_in_tb;
3065 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3066                 rte_memdump(stderr, "FCW", &desc->req.fcw_td,
3067                                 sizeof(desc->req.fcw_td) - 8);
3068                 rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
3069 #endif
3070
3071                 if (seg_total_left == 0) {
3072                         /* Go to the next mbuf */
3073                         input = input->next;
3074                         in_offset = 0;
3075                         h_output = h_output->next;
3076                         h_out_offset = 0;
3077                 }
3078                 total_enqueued_cbs++;
3079                 current_enqueued_cbs++;
3080                 r++;
3081         }
3082
3083 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3084         if (check_mbuf_total_left(mbuf_total_left) != 0)
3085                 return -EINVAL;
3086 #endif
3087         /* Set SDone on last CB descriptor for TB mode */
3088         desc->req.sdone_enable = 1;
3089         desc->req.irq_enable = q->irq_enable;
3090
3091         return current_enqueued_cbs;
3092 }
3093
3094 /* Enqueue one decode operations for ACC100 device in TB mode */
3095 static inline int
3096 enqueue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
3097                 uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
3098 {
3099         union acc100_dma_desc *desc = NULL;
3100         int ret;
3101         uint8_t r, c;
3102         uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
3103                 h_out_length, mbuf_total_left, seg_total_left;
3104         struct rte_mbuf *input, *h_output_head, *h_output,
3105                 *s_output_head, *s_output;
3106         uint16_t current_enqueued_cbs = 0;
3107
3108 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3109         /* Validate op structure */
3110         if (validate_dec_op(op) == -1) {
3111                 rte_bbdev_log(ERR, "Turbo decoder validation failed");
3112                 return -EINVAL;
3113         }
3114 #endif
3115
3116         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
3117                         & q->sw_ring_wrap_mask);
3118         desc = q->ring_addr + desc_idx;
3119         uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
3120         acc100_fcw_td_fill(op, &desc->req.fcw_td);
3121
3122         input = op->turbo_dec.input.data;
3123         h_output_head = h_output = op->turbo_dec.hard_output.data;
3124         s_output_head = s_output = op->turbo_dec.soft_output.data;
3125         in_offset = op->turbo_dec.input.offset;
3126         h_out_offset = op->turbo_dec.hard_output.offset;
3127         s_out_offset = op->turbo_dec.soft_output.offset;
3128         h_out_length = s_out_length = 0;
3129         mbuf_total_left = op->turbo_dec.input.length;
3130         c = op->turbo_dec.tb_params.c;
3131         r = op->turbo_dec.tb_params.r;
3132
3133         while (mbuf_total_left > 0 && r < c) {
3134
3135                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
3136
3137                 /* Set up DMA descriptor */
3138                 desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
3139                                 & q->sw_ring_wrap_mask);
3140                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
3141                 desc->req.data_ptrs[0].blen = ACC100_FCW_TD_BLEN;
3142                 ret = acc100_dma_desc_td_fill(op, &desc->req, &input,
3143                                 h_output, s_output, &in_offset, &h_out_offset,
3144                                 &s_out_offset, &h_out_length, &s_out_length,
3145                                 &mbuf_total_left, &seg_total_left, r);
3146
3147                 if (unlikely(ret < 0))
3148                         return ret;
3149
3150                 /* Hard output */
3151                 mbuf_append(h_output_head, h_output, h_out_length);
3152
3153                 /* Soft output */
3154                 if (check_bit(op->turbo_dec.op_flags,
3155                                 RTE_BBDEV_TURBO_SOFT_OUTPUT))
3156                         mbuf_append(s_output_head, s_output, s_out_length);
3157
3158                 /* Set total number of CBs in TB */
3159                 desc->req.cbs_in_tb = cbs_in_tb;
3160 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3161                 rte_memdump(stderr, "FCW", &desc->req.fcw_td,
3162                                 sizeof(desc->req.fcw_td) - 8);
3163                 rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
3164 #endif
3165
3166                 if (seg_total_left == 0) {
3167                         /* Go to the next mbuf */
3168                         input = input->next;
3169                         in_offset = 0;
3170                         h_output = h_output->next;
3171                         h_out_offset = 0;
3172
3173                         if (check_bit(op->turbo_dec.op_flags,
3174                                         RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
3175                                 s_output = s_output->next;
3176                                 s_out_offset = 0;
3177                         }
3178                 }
3179
3180                 total_enqueued_cbs++;
3181                 current_enqueued_cbs++;
3182                 r++;
3183         }
3184
3185 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3186         if (check_mbuf_total_left(mbuf_total_left) != 0)
3187                 return -EINVAL;
3188 #endif
3189         /* Set SDone on last CB descriptor for TB mode */
3190         desc->req.sdone_enable = 1;
3191         desc->req.irq_enable = q->irq_enable;
3192
3193         return current_enqueued_cbs;
3194 }
3195
3196 /* Calculates number of CBs in processed encoder TB based on 'r' and input
3197  * length.
3198  */
3199 static inline uint8_t
3200 get_num_cbs_in_tb_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
3201 {
3202         uint8_t c, c_neg, r, crc24_bits = 0;
3203         uint16_t k, k_neg, k_pos;
3204         uint8_t cbs_in_tb = 0;
3205         int32_t length;
3206
3207         length = turbo_enc->input.length;
3208         r = turbo_enc->tb_params.r;
3209         c = turbo_enc->tb_params.c;
3210         c_neg = turbo_enc->tb_params.c_neg;
3211         k_neg = turbo_enc->tb_params.k_neg;
3212         k_pos = turbo_enc->tb_params.k_pos;
3213         crc24_bits = 0;
3214         if (check_bit(turbo_enc->op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
3215                 crc24_bits = 24;
3216         while (length > 0 && r < c) {
3217                 k = (r < c_neg) ? k_neg : k_pos;
3218                 length -= (k - crc24_bits) >> 3;
3219                 r++;
3220                 cbs_in_tb++;
3221         }
3222
3223         return cbs_in_tb;
3224 }
3225
3226 /* Calculates number of CBs in processed decoder TB based on 'r' and input
3227  * length.
3228  */
3229 static inline uint16_t
3230 get_num_cbs_in_tb_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
3231 {
3232         uint8_t c, c_neg, r = 0;
3233         uint16_t kw, k, k_neg, k_pos, cbs_in_tb = 0;
3234         int32_t length;
3235
3236         length = turbo_dec->input.length;
3237         r = turbo_dec->tb_params.r;
3238         c = turbo_dec->tb_params.c;
3239         c_neg = turbo_dec->tb_params.c_neg;
3240         k_neg = turbo_dec->tb_params.k_neg;
3241         k_pos = turbo_dec->tb_params.k_pos;
3242         while (length > 0 && r < c) {
3243                 k = (r < c_neg) ? k_neg : k_pos;
3244                 kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
3245                 length -= kw;
3246                 r++;
3247                 cbs_in_tb++;
3248         }
3249
3250         return cbs_in_tb;
3251 }
3252
3253 /* Calculates number of CBs in processed decoder TB based on 'r' and input
3254  * length.
3255  */
3256 static inline uint16_t
3257 get_num_cbs_in_tb_ldpc_dec(struct rte_bbdev_op_ldpc_dec *ldpc_dec)
3258 {
3259         uint16_t r, cbs_in_tb = 0;
3260         int32_t length = ldpc_dec->input.length;
3261         r = ldpc_dec->tb_params.r;
3262         while (length > 0 && r < ldpc_dec->tb_params.c) {
3263                 length -=  (r < ldpc_dec->tb_params.cab) ?
3264                                 ldpc_dec->tb_params.ea :
3265                                 ldpc_dec->tb_params.eb;
3266                 r++;
3267                 cbs_in_tb++;
3268         }
3269         return cbs_in_tb;
3270 }
3271
3272 /* Enqueue encode operations for ACC100 device in CB mode. */
3273 static uint16_t
3274 acc100_enqueue_enc_cb(struct rte_bbdev_queue_data *q_data,
3275                 struct rte_bbdev_enc_op **ops, uint16_t num)
3276 {
3277         struct acc100_queue *q = q_data->queue_private;
3278         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3279         uint16_t i;
3280         union acc100_dma_desc *desc;
3281         int ret;
3282
3283         for (i = 0; i < num; ++i) {
3284                 /* Check if there are available space for further processing */
3285                 if (unlikely(avail - 1 < 0))
3286                         break;
3287                 avail -= 1;
3288
3289                 ret = enqueue_enc_one_op_cb(q, ops[i], i);
3290                 if (ret < 0)
3291                         break;
3292         }
3293
3294         if (unlikely(i == 0))
3295                 return 0; /* Nothing to enqueue */
3296
3297         /* Set SDone in last CB in enqueued ops for CB mode*/
3298         desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3299                         & q->sw_ring_wrap_mask);
3300         desc->req.sdone_enable = 1;
3301         desc->req.irq_enable = q->irq_enable;
3302
3303         acc100_dma_enqueue(q, i, &q_data->queue_stats);
3304
3305         /* Update stats */
3306         q_data->queue_stats.enqueued_count += i;
3307         q_data->queue_stats.enqueue_err_count += num - i;
3308         return i;
3309 }
3310
3311 /* Check we can mux encode operations with common FCW */
3312 static inline bool
3313 check_mux(struct rte_bbdev_enc_op **ops, uint16_t num) {
3314         uint16_t i;
3315         if (num <= 1)
3316                 return false;
3317         for (i = 1; i < num; ++i) {
3318                 /* Only mux compatible code blocks */
3319                 if (memcmp((uint8_t *)(&ops[i]->ldpc_enc) + ACC100_ENC_OFFSET,
3320                                 (uint8_t *)(&ops[0]->ldpc_enc) +
3321                                 ACC100_ENC_OFFSET,
3322                                 ACC100_CMP_ENC_SIZE) != 0)
3323                         return false;
3324         }
3325         return true;
3326 }
3327
3328 /** Enqueue encode operations for ACC100 device in CB mode. */
3329 static inline uint16_t
3330 acc100_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
3331                 struct rte_bbdev_enc_op **ops, uint16_t num)
3332 {
3333         struct acc100_queue *q = q_data->queue_private;
3334         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3335         uint16_t i = 0;
3336         union acc100_dma_desc *desc;
3337         int ret, desc_idx = 0;
3338         int16_t enq, left = num;
3339
3340         while (left > 0) {
3341                 if (unlikely(avail < 1))
3342                         break;
3343                 avail--;
3344                 enq = RTE_MIN(left, ACC100_MUX_5GDL_DESC);
3345                 if (check_mux(&ops[i], enq)) {
3346                         ret = enqueue_ldpc_enc_n_op_cb(q, &ops[i],
3347                                         desc_idx, enq);
3348                         if (ret < 0)
3349                                 break;
3350                         i += enq;
3351                 } else {
3352                         ret = enqueue_ldpc_enc_one_op_cb(q, ops[i], desc_idx);
3353                         if (ret < 0)
3354                                 break;
3355                         i++;
3356                 }
3357                 desc_idx++;
3358                 left = num - i;
3359         }
3360
3361         if (unlikely(i == 0))
3362                 return 0; /* Nothing to enqueue */
3363
3364         /* Set SDone in last CB in enqueued ops for CB mode*/
3365         desc = q->ring_addr + ((q->sw_ring_head + desc_idx - 1)
3366                         & q->sw_ring_wrap_mask);
3367         desc->req.sdone_enable = 1;
3368         desc->req.irq_enable = q->irq_enable;
3369
3370         acc100_dma_enqueue(q, desc_idx, &q_data->queue_stats);
3371
3372         /* Update stats */
3373         q_data->queue_stats.enqueued_count += i;
3374         q_data->queue_stats.enqueue_err_count += num - i;
3375
3376         return i;
3377 }
3378
3379 /* Enqueue encode operations for ACC100 device in TB mode. */
3380 static uint16_t
3381 acc100_enqueue_enc_tb(struct rte_bbdev_queue_data *q_data,
3382                 struct rte_bbdev_enc_op **ops, uint16_t num)
3383 {
3384         struct acc100_queue *q = q_data->queue_private;
3385         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3386         uint16_t i, enqueued_cbs = 0;
3387         uint8_t cbs_in_tb;
3388         int ret;
3389
3390         for (i = 0; i < num; ++i) {
3391                 cbs_in_tb = get_num_cbs_in_tb_enc(&ops[i]->turbo_enc);
3392                 /* Check if there are available space for further processing */
3393                 if (unlikely(avail - cbs_in_tb < 0))
3394                         break;
3395                 avail -= cbs_in_tb;
3396
3397                 ret = enqueue_enc_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
3398                 if (ret < 0)
3399                         break;
3400                 enqueued_cbs += ret;
3401         }
3402         if (unlikely(enqueued_cbs == 0))
3403                 return 0; /* Nothing to enqueue */
3404
3405         acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3406
3407         /* Update stats */
3408         q_data->queue_stats.enqueued_count += i;
3409         q_data->queue_stats.enqueue_err_count += num - i;
3410
3411         return i;
3412 }
3413
3414 /* Enqueue encode operations for ACC100 device. */
3415 static uint16_t
3416 acc100_enqueue_enc(struct rte_bbdev_queue_data *q_data,
3417                 struct rte_bbdev_enc_op **ops, uint16_t num)
3418 {
3419         if (unlikely(num == 0))
3420                 return 0;
3421         if (ops[0]->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3422                 return acc100_enqueue_enc_tb(q_data, ops, num);
3423         else
3424                 return acc100_enqueue_enc_cb(q_data, ops, num);
3425 }
3426
3427 /* Enqueue encode operations for ACC100 device. */
3428 static uint16_t
3429 acc100_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
3430                 struct rte_bbdev_enc_op **ops, uint16_t num)
3431 {
3432         if (unlikely(num == 0))
3433                 return 0;
3434         if (ops[0]->ldpc_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3435                 return acc100_enqueue_enc_tb(q_data, ops, num);
3436         else
3437                 return acc100_enqueue_ldpc_enc_cb(q_data, ops, num);
3438 }
3439
3440
3441 /* Enqueue decode operations for ACC100 device in CB mode */
3442 static uint16_t
3443 acc100_enqueue_dec_cb(struct rte_bbdev_queue_data *q_data,
3444                 struct rte_bbdev_dec_op **ops, uint16_t num)
3445 {
3446         struct acc100_queue *q = q_data->queue_private;
3447         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3448         uint16_t i;
3449         union acc100_dma_desc *desc;
3450         int ret;
3451
3452         for (i = 0; i < num; ++i) {
3453                 /* Check if there are available space for further processing */
3454                 if (unlikely(avail - 1 < 0))
3455                         break;
3456                 avail -= 1;
3457
3458                 ret = enqueue_dec_one_op_cb(q, ops[i], i);
3459                 if (ret < 0)
3460                         break;
3461         }
3462
3463         if (unlikely(i == 0))
3464                 return 0; /* Nothing to enqueue */
3465
3466         /* Set SDone in last CB in enqueued ops for CB mode*/
3467         desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3468                         & q->sw_ring_wrap_mask);
3469         desc->req.sdone_enable = 1;
3470         desc->req.irq_enable = q->irq_enable;
3471
3472         acc100_dma_enqueue(q, i, &q_data->queue_stats);
3473
3474         /* Update stats */
3475         q_data->queue_stats.enqueued_count += i;
3476         q_data->queue_stats.enqueue_err_count += num - i;
3477
3478         return i;
3479 }
3480
3481 /* Check we can mux encode operations with common FCW */
3482 static inline bool
3483 cmp_ldpc_dec_op(struct rte_bbdev_dec_op **ops) {
3484         /* Only mux compatible code blocks */
3485         if (memcmp((uint8_t *)(&ops[0]->ldpc_dec) + ACC100_DEC_OFFSET,
3486                         (uint8_t *)(&ops[1]->ldpc_dec) +
3487                         ACC100_DEC_OFFSET, ACC100_CMP_DEC_SIZE) != 0) {
3488                 return false;
3489         } else
3490                 return true;
3491 }
3492
3493
3494 /* Enqueue decode operations for ACC100 device in TB mode */
3495 static uint16_t
3496 acc100_enqueue_ldpc_dec_tb(struct rte_bbdev_queue_data *q_data,
3497                 struct rte_bbdev_dec_op **ops, uint16_t num)
3498 {
3499         struct acc100_queue *q = q_data->queue_private;
3500         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3501         uint16_t i, enqueued_cbs = 0;
3502         uint8_t cbs_in_tb;
3503         int ret;
3504
3505         for (i = 0; i < num; ++i) {
3506                 cbs_in_tb = get_num_cbs_in_tb_ldpc_dec(&ops[i]->ldpc_dec);
3507                 /* Check if there are available space for further processing */
3508                 if (unlikely(avail - cbs_in_tb < 0))
3509                         break;
3510                 avail -= cbs_in_tb;
3511
3512                 ret = enqueue_ldpc_dec_one_op_tb(q, ops[i],
3513                                 enqueued_cbs, cbs_in_tb);
3514                 if (ret < 0)
3515                         break;
3516                 enqueued_cbs += ret;
3517         }
3518
3519         acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3520
3521         /* Update stats */
3522         q_data->queue_stats.enqueued_count += i;
3523         q_data->queue_stats.enqueue_err_count += num - i;
3524         return i;
3525 }
3526
3527 /* Enqueue decode operations for ACC100 device in CB mode */
3528 static uint16_t
3529 acc100_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data,
3530                 struct rte_bbdev_dec_op **ops, uint16_t num)
3531 {
3532         struct acc100_queue *q = q_data->queue_private;
3533         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3534         uint16_t i;
3535         union acc100_dma_desc *desc;
3536         int ret;
3537         bool same_op = false;
3538         for (i = 0; i < num; ++i) {
3539                 /* Check if there are available space for further processing */
3540                 if (unlikely(avail < 1))
3541                         break;
3542                 avail -= 1;
3543
3544                 if (i > 0)
3545                         same_op = cmp_ldpc_dec_op(&ops[i-1]);
3546                 rte_bbdev_log(INFO, "Op %d %d %d %d %d %d %d %d %d %d %d %d\n",
3547                         i, ops[i]->ldpc_dec.op_flags, ops[i]->ldpc_dec.rv_index,
3548                         ops[i]->ldpc_dec.iter_max, ops[i]->ldpc_dec.iter_count,
3549                         ops[i]->ldpc_dec.basegraph, ops[i]->ldpc_dec.z_c,
3550                         ops[i]->ldpc_dec.n_cb, ops[i]->ldpc_dec.q_m,
3551                         ops[i]->ldpc_dec.n_filler, ops[i]->ldpc_dec.cb_params.e,
3552                         same_op);
3553                 ret = enqueue_ldpc_dec_one_op_cb(q, ops[i], i, same_op);
3554                 if (ret < 0)
3555                         break;
3556         }
3557
3558         if (unlikely(i == 0))
3559                 return 0; /* Nothing to enqueue */
3560
3561         /* Set SDone in last CB in enqueued ops for CB mode*/
3562         desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3563                         & q->sw_ring_wrap_mask);
3564
3565         desc->req.sdone_enable = 1;
3566         desc->req.irq_enable = q->irq_enable;
3567
3568         acc100_dma_enqueue(q, i, &q_data->queue_stats);
3569
3570         /* Update stats */
3571         q_data->queue_stats.enqueued_count += i;
3572         q_data->queue_stats.enqueue_err_count += num - i;
3573         return i;
3574 }
3575
3576
3577 /* Enqueue decode operations for ACC100 device in TB mode */
3578 static uint16_t
3579 acc100_enqueue_dec_tb(struct rte_bbdev_queue_data *q_data,
3580                 struct rte_bbdev_dec_op **ops, uint16_t num)
3581 {
3582         struct acc100_queue *q = q_data->queue_private;
3583         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3584         uint16_t i, enqueued_cbs = 0;
3585         uint8_t cbs_in_tb;
3586         int ret;
3587
3588         for (i = 0; i < num; ++i) {
3589                 cbs_in_tb = get_num_cbs_in_tb_dec(&ops[i]->turbo_dec);
3590                 /* Check if there are available space for further processing */
3591                 if (unlikely(avail - cbs_in_tb < 0))
3592                         break;
3593                 avail -= cbs_in_tb;
3594
3595                 ret = enqueue_dec_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
3596                 if (ret < 0)
3597                         break;
3598                 enqueued_cbs += ret;
3599         }
3600
3601         acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3602
3603         /* Update stats */
3604         q_data->queue_stats.enqueued_count += i;
3605         q_data->queue_stats.enqueue_err_count += num - i;
3606
3607         return i;
3608 }
3609
3610 /* Enqueue decode operations for ACC100 device. */
3611 static uint16_t
3612 acc100_enqueue_dec(struct rte_bbdev_queue_data *q_data,
3613                 struct rte_bbdev_dec_op **ops, uint16_t num)
3614 {
3615         if (unlikely(num == 0))
3616                 return 0;
3617         if (ops[0]->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3618                 return acc100_enqueue_dec_tb(q_data, ops, num);
3619         else
3620                 return acc100_enqueue_dec_cb(q_data, ops, num);
3621 }
3622
3623 /* Enqueue decode operations for ACC100 device. */
3624 static uint16_t
3625 acc100_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
3626                 struct rte_bbdev_dec_op **ops, uint16_t num)
3627 {
3628         struct acc100_queue *q = q_data->queue_private;
3629         int32_t aq_avail = q->aq_depth +
3630                         (q->aq_dequeued - q->aq_enqueued) / 128;
3631
3632         if (unlikely((aq_avail == 0) || (num == 0)))
3633                 return 0;
3634
3635         if (ops[0]->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3636                 return acc100_enqueue_ldpc_dec_tb(q_data, ops, num);
3637         else
3638                 return acc100_enqueue_ldpc_dec_cb(q_data, ops, num);
3639 }
3640
3641
3642 /* Dequeue one encode operations from ACC100 device in CB mode */
3643 static inline int
3644 dequeue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
3645                 uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
3646 {
3647         union acc100_dma_desc *desc, atom_desc;
3648         union acc100_dma_rsp_desc rsp;
3649         struct rte_bbdev_enc_op *op;
3650         int i;
3651
3652         desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
3653                         & q->sw_ring_wrap_mask);
3654         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3655                         __ATOMIC_RELAXED);
3656
3657         /* Check fdone bit */
3658         if (!(atom_desc.rsp.val & ACC100_FDONE))
3659                 return -1;
3660
3661         rsp.val = atom_desc.rsp.val;
3662         rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
3663
3664         /* Dequeue */
3665         op = desc->req.op_addr;
3666
3667         /* Clearing status, it will be set based on response */
3668         op->status = 0;
3669
3670         op->status |= ((rsp.input_err)
3671                         ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3672         op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3673         op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3674
3675         if (desc->req.last_desc_in_batch) {
3676                 (*aq_dequeued)++;
3677                 desc->req.last_desc_in_batch = 0;
3678         }
3679         desc->rsp.val = ACC100_DMA_DESC_TYPE;
3680         desc->rsp.add_info_0 = 0; /*Reserved bits */
3681         desc->rsp.add_info_1 = 0; /*Reserved bits */
3682
3683         /* Flag that the muxing cause loss of opaque data */
3684         op->opaque_data = (void *)-1;
3685         for (i = 0 ; i < desc->req.numCBs; i++)
3686                 ref_op[i] = op;
3687
3688         /* One CB (op) was successfully dequeued */
3689         return desc->req.numCBs;
3690 }
3691
3692 /* Dequeue one encode operations from ACC100 device in TB mode */
3693 static inline int
3694 dequeue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
3695                 uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
3696 {
3697         union acc100_dma_desc *desc, *last_desc, atom_desc;
3698         union acc100_dma_rsp_desc rsp;
3699         struct rte_bbdev_enc_op *op;
3700         uint8_t i = 0;
3701         uint16_t current_dequeued_cbs = 0, cbs_in_tb;
3702
3703         desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
3704                         & q->sw_ring_wrap_mask);
3705         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3706                         __ATOMIC_RELAXED);
3707
3708         /* Check fdone bit */
3709         if (!(atom_desc.rsp.val & ACC100_FDONE))
3710                 return -1;
3711
3712         /* Get number of CBs in dequeued TB */
3713         cbs_in_tb = desc->req.cbs_in_tb;
3714         /* Get last CB */
3715         last_desc = q->ring_addr + ((q->sw_ring_tail
3716                         + total_dequeued_cbs + cbs_in_tb - 1)
3717                         & q->sw_ring_wrap_mask);
3718         /* Check if last CB in TB is ready to dequeue (and thus
3719          * the whole TB) - checking sdone bit. If not return.
3720          */
3721         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
3722                         __ATOMIC_RELAXED);
3723         if (!(atom_desc.rsp.val & ACC100_SDONE))
3724                 return -1;
3725
3726         /* Dequeue */
3727         op = desc->req.op_addr;
3728
3729         /* Clearing status, it will be set based on response */
3730         op->status = 0;
3731
3732         while (i < cbs_in_tb) {
3733                 desc = q->ring_addr + ((q->sw_ring_tail
3734                                 + total_dequeued_cbs)
3735                                 & q->sw_ring_wrap_mask);
3736                 atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3737                                 __ATOMIC_RELAXED);
3738                 rsp.val = atom_desc.rsp.val;
3739                 rte_bbdev_log_debug("Resp. desc %p: %x", desc,
3740                                 rsp.val);
3741
3742                 op->status |= ((rsp.input_err)
3743                                 ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3744                 op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3745                 op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3746
3747                 if (desc->req.last_desc_in_batch) {
3748                         (*aq_dequeued)++;
3749                         desc->req.last_desc_in_batch = 0;
3750                 }
3751                 desc->rsp.val = ACC100_DMA_DESC_TYPE;
3752                 desc->rsp.add_info_0 = 0;
3753                 desc->rsp.add_info_1 = 0;
3754                 total_dequeued_cbs++;
3755                 current_dequeued_cbs++;
3756                 i++;
3757         }
3758
3759         *ref_op = op;
3760
3761         return current_dequeued_cbs;
3762 }
3763
3764 /* Dequeue one decode operation from ACC100 device in CB mode */
3765 static inline int
3766 dequeue_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
3767                 struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3768                 uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3769 {
3770         union acc100_dma_desc *desc, atom_desc;
3771         union acc100_dma_rsp_desc rsp;
3772         struct rte_bbdev_dec_op *op;
3773
3774         desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3775                         & q->sw_ring_wrap_mask);
3776         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3777                         __ATOMIC_RELAXED);
3778
3779         /* Check fdone bit */
3780         if (!(atom_desc.rsp.val & ACC100_FDONE))
3781                 return -1;
3782
3783         rsp.val = atom_desc.rsp.val;
3784         rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
3785
3786         /* Dequeue */
3787         op = desc->req.op_addr;
3788
3789         /* Clearing status, it will be set based on response */
3790         op->status = 0;
3791         op->status |= ((rsp.input_err)
3792                         ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3793         op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3794         op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3795         if (op->status != 0) {
3796                 q_data->queue_stats.dequeue_err_count++;
3797                 acc100_check_ir(q->d);
3798         }
3799
3800         /* CRC invalid if error exists */
3801         if (!op->status)
3802                 op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3803         op->turbo_dec.iter_count = (uint8_t) rsp.iter_cnt / 2;
3804         /* Check if this is the last desc in batch (Atomic Queue) */
3805         if (desc->req.last_desc_in_batch) {
3806                 (*aq_dequeued)++;
3807                 desc->req.last_desc_in_batch = 0;
3808         }
3809         desc->rsp.val = ACC100_DMA_DESC_TYPE;
3810         desc->rsp.add_info_0 = 0;
3811         desc->rsp.add_info_1 = 0;
3812         *ref_op = op;
3813
3814         /* One CB (op) was successfully dequeued */
3815         return 1;
3816 }
3817
3818 /* Dequeue one decode operations from ACC100 device in CB mode */
3819 static inline int
3820 dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
3821                 struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3822                 uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3823 {
3824         union acc100_dma_desc *desc, atom_desc;
3825         union acc100_dma_rsp_desc rsp;
3826         struct rte_bbdev_dec_op *op;
3827
3828         desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3829                         & q->sw_ring_wrap_mask);
3830         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3831                         __ATOMIC_RELAXED);
3832
3833         /* Check fdone bit */
3834         if (!(atom_desc.rsp.val & ACC100_FDONE))
3835                 return -1;
3836
3837         rsp.val = atom_desc.rsp.val;
3838
3839         /* Dequeue */
3840         op = desc->req.op_addr;
3841
3842         /* Clearing status, it will be set based on response */
3843         op->status = 0;
3844         op->status |= rsp.input_err << RTE_BBDEV_DATA_ERROR;
3845         op->status |= rsp.dma_err << RTE_BBDEV_DRV_ERROR;
3846         op->status |= rsp.fcw_err << RTE_BBDEV_DRV_ERROR;
3847         if (op->status != 0)
3848                 q_data->queue_stats.dequeue_err_count++;
3849
3850         op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3851         if (op->ldpc_dec.hard_output.length > 0 && !rsp.synd_ok)
3852                 op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
3853         op->ldpc_dec.iter_count = (uint8_t) rsp.iter_cnt;
3854
3855         if (op->status & (1 << RTE_BBDEV_DRV_ERROR))
3856                 acc100_check_ir(q->d);
3857
3858         /* Check if this is the last desc in batch (Atomic Queue) */
3859         if (desc->req.last_desc_in_batch) {
3860                 (*aq_dequeued)++;
3861                 desc->req.last_desc_in_batch = 0;
3862         }
3863
3864         desc->rsp.val = ACC100_DMA_DESC_TYPE;
3865         desc->rsp.add_info_0 = 0;
3866         desc->rsp.add_info_1 = 0;
3867
3868         *ref_op = op;
3869
3870         /* One CB (op) was successfully dequeued */
3871         return 1;
3872 }
3873
3874 /* Dequeue one decode operations from ACC100 device in TB mode. */
3875 static inline int
3876 dequeue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3877                 uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3878 {
3879         union acc100_dma_desc *desc, *last_desc, atom_desc;
3880         union acc100_dma_rsp_desc rsp;
3881         struct rte_bbdev_dec_op *op;
3882         uint8_t cbs_in_tb = 1, cb_idx = 0;
3883
3884         desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3885                         & q->sw_ring_wrap_mask);
3886         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3887                         __ATOMIC_RELAXED);
3888
3889         /* Check fdone bit */
3890         if (!(atom_desc.rsp.val & ACC100_FDONE))
3891                 return -1;
3892
3893         /* Dequeue */
3894         op = desc->req.op_addr;
3895
3896         /* Get number of CBs in dequeued TB */
3897         cbs_in_tb = desc->req.cbs_in_tb;
3898         /* Get last CB */
3899         last_desc = q->ring_addr + ((q->sw_ring_tail
3900                         + dequeued_cbs + cbs_in_tb - 1)
3901                         & q->sw_ring_wrap_mask);
3902         /* Check if last CB in TB is ready to dequeue (and thus
3903          * the whole TB) - checking sdone bit. If not return.
3904          */
3905         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
3906                         __ATOMIC_RELAXED);
3907         if (!(atom_desc.rsp.val & ACC100_SDONE))
3908                 return -1;
3909
3910         /* Clearing status, it will be set based on response */
3911         op->status = 0;
3912
3913         /* Read remaining CBs if exists */
3914         while (cb_idx < cbs_in_tb) {
3915                 desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3916                                 & q->sw_ring_wrap_mask);
3917                 atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3918                                 __ATOMIC_RELAXED);
3919                 rsp.val = atom_desc.rsp.val;
3920                 rte_bbdev_log_debug("Resp. desc %p: %x", desc,
3921                                 rsp.val);
3922
3923                 op->status |= ((rsp.input_err)
3924                                 ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3925                 op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3926                 op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3927
3928                 /* CRC invalid if error exists */
3929                 if (!op->status)
3930                         op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3931                 op->turbo_dec.iter_count = RTE_MAX((uint8_t) rsp.iter_cnt,
3932                                 op->turbo_dec.iter_count);
3933
3934                 /* Check if this is the last desc in batch (Atomic Queue) */
3935                 if (desc->req.last_desc_in_batch) {
3936                         (*aq_dequeued)++;
3937                         desc->req.last_desc_in_batch = 0;
3938                 }
3939                 desc->rsp.val = ACC100_DMA_DESC_TYPE;
3940                 desc->rsp.add_info_0 = 0;
3941                 desc->rsp.add_info_1 = 0;
3942                 dequeued_cbs++;
3943                 cb_idx++;
3944         }
3945
3946         *ref_op = op;
3947
3948         return cb_idx;
3949 }
3950
3951 /* Dequeue encode operations from ACC100 device. */
3952 static uint16_t
3953 acc100_dequeue_enc(struct rte_bbdev_queue_data *q_data,
3954                 struct rte_bbdev_enc_op **ops, uint16_t num)
3955 {
3956         struct acc100_queue *q = q_data->queue_private;
3957         uint16_t dequeue_num;
3958         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
3959         uint32_t aq_dequeued = 0;
3960         uint16_t i, dequeued_cbs = 0;
3961         struct rte_bbdev_enc_op *op;
3962         int ret;
3963
3964 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3965         if (unlikely(ops == NULL || q == NULL)) {
3966                 rte_bbdev_log_debug("Unexpected undefined pointer");
3967                 return 0;
3968         }
3969 #endif
3970
3971         dequeue_num = (avail < num) ? avail : num;
3972
3973         for (i = 0; i < dequeue_num; ++i) {
3974                 op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3975                         & q->sw_ring_wrap_mask))->req.op_addr;
3976                 if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3977                         ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs,
3978                                         &aq_dequeued);
3979                 else
3980                         ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs,
3981                                         &aq_dequeued);
3982
3983                 if (ret < 0)
3984                         break;
3985                 dequeued_cbs += ret;
3986         }
3987
3988         q->aq_dequeued += aq_dequeued;
3989         q->sw_ring_tail += dequeued_cbs;
3990
3991         /* Update enqueue stats */
3992         q_data->queue_stats.dequeued_count += i;
3993
3994         return i;
3995 }
3996
3997 /* Dequeue LDPC encode operations from ACC100 device. */
3998 static uint16_t
3999 acc100_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
4000                 struct rte_bbdev_enc_op **ops, uint16_t num)
4001 {
4002         struct acc100_queue *q = q_data->queue_private;
4003         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4004         uint32_t aq_dequeued = 0;
4005         uint16_t dequeue_num, i, dequeued_cbs = 0, dequeued_descs = 0;
4006         int ret;
4007
4008 #ifdef RTE_LIBRTE_BBDEV_DEBUG
4009         if (unlikely(ops == 0 && q == NULL))
4010                 return 0;
4011 #endif
4012
4013         dequeue_num = RTE_MIN(avail, num);
4014
4015         for (i = 0; i < dequeue_num; i++) {
4016                 ret = dequeue_enc_one_op_cb(q, &ops[dequeued_cbs],
4017                                 dequeued_descs, &aq_dequeued);
4018                 if (ret < 0)
4019                         break;
4020                 dequeued_cbs += ret;
4021                 dequeued_descs++;
4022                 if (dequeued_cbs >= num)
4023                         break;
4024         }
4025
4026         q->aq_dequeued += aq_dequeued;
4027         q->sw_ring_tail += dequeued_descs;
4028
4029         /* Update enqueue stats */
4030         q_data->queue_stats.dequeued_count += dequeued_cbs;
4031
4032         return dequeued_cbs;
4033 }
4034
4035
4036 /* Dequeue decode operations from ACC100 device. */
4037 static uint16_t
4038 acc100_dequeue_dec(struct rte_bbdev_queue_data *q_data,
4039                 struct rte_bbdev_dec_op **ops, uint16_t num)
4040 {
4041         struct acc100_queue *q = q_data->queue_private;
4042         uint16_t dequeue_num;
4043         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4044         uint32_t aq_dequeued = 0;
4045         uint16_t i;
4046         uint16_t dequeued_cbs = 0;
4047         struct rte_bbdev_dec_op *op;
4048         int ret;
4049
4050 #ifdef RTE_LIBRTE_BBDEV_DEBUG
4051         if (unlikely(ops == 0 && q == NULL))
4052                 return 0;
4053 #endif
4054
4055         dequeue_num = (avail < num) ? avail : num;
4056
4057         for (i = 0; i < dequeue_num; ++i) {
4058                 op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
4059                         & q->sw_ring_wrap_mask))->req.op_addr;
4060                 if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
4061                         ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
4062                                         &aq_dequeued);
4063                 else
4064                         ret = dequeue_dec_one_op_cb(q_data, q, &ops[i],
4065                                         dequeued_cbs, &aq_dequeued);
4066
4067                 if (ret < 0)
4068                         break;
4069                 dequeued_cbs += ret;
4070         }
4071
4072         q->aq_dequeued += aq_dequeued;
4073         q->sw_ring_tail += dequeued_cbs;
4074
4075         /* Update enqueue stats */
4076         q_data->queue_stats.dequeued_count += i;
4077
4078         return i;
4079 }
4080
4081 /* Dequeue decode operations from ACC100 device. */
4082 static uint16_t
4083 acc100_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
4084                 struct rte_bbdev_dec_op **ops, uint16_t num)
4085 {
4086         struct acc100_queue *q = q_data->queue_private;
4087         uint16_t dequeue_num;
4088         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4089         uint32_t aq_dequeued = 0;
4090         uint16_t i;
4091         uint16_t dequeued_cbs = 0;
4092         struct rte_bbdev_dec_op *op;
4093         int ret;
4094
4095 #ifdef RTE_LIBRTE_BBDEV_DEBUG
4096         if (unlikely(ops == 0 && q == NULL))
4097                 return 0;
4098 #endif
4099
4100         dequeue_num = RTE_MIN(avail, num);
4101
4102         for (i = 0; i < dequeue_num; ++i) {
4103                 op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
4104                         & q->sw_ring_wrap_mask))->req.op_addr;
4105                 if (op->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
4106                         ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
4107                                         &aq_dequeued);
4108                 else
4109                         ret = dequeue_ldpc_dec_one_op_cb(
4110                                         q_data, q, &ops[i], dequeued_cbs,
4111                                         &aq_dequeued);
4112
4113                 if (ret < 0)
4114                         break;
4115                 dequeued_cbs += ret;
4116         }
4117
4118         q->aq_dequeued += aq_dequeued;
4119         q->sw_ring_tail += dequeued_cbs;
4120
4121         /* Update enqueue stats */
4122         q_data->queue_stats.dequeued_count += i;
4123
4124         return i;
4125 }
4126
4127 /* Initialization Function */
4128 static void
4129 acc100_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
4130 {
4131         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
4132
4133         dev->dev_ops = &acc100_bbdev_ops;
4134         dev->enqueue_enc_ops = acc100_enqueue_enc;
4135         dev->enqueue_dec_ops = acc100_enqueue_dec;
4136         dev->dequeue_enc_ops = acc100_dequeue_enc;
4137         dev->dequeue_dec_ops = acc100_dequeue_dec;
4138         dev->enqueue_ldpc_enc_ops = acc100_enqueue_ldpc_enc;
4139         dev->enqueue_ldpc_dec_ops = acc100_enqueue_ldpc_dec;
4140         dev->dequeue_ldpc_enc_ops = acc100_dequeue_ldpc_enc;
4141         dev->dequeue_ldpc_dec_ops = acc100_dequeue_ldpc_dec;
4142
4143         ((struct acc100_device *) dev->data->dev_private)->pf_device =
4144                         !strcmp(drv->driver.name,
4145                                         RTE_STR(ACC100PF_DRIVER_NAME));
4146         ((struct acc100_device *) dev->data->dev_private)->mmio_base =
4147                         pci_dev->mem_resource[0].addr;
4148
4149         rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"",
4150                         drv->driver.name, dev->data->name,
4151                         (void *)pci_dev->mem_resource[0].addr,
4152                         pci_dev->mem_resource[0].phys_addr);
4153 }
4154
4155 static int acc100_pci_probe(struct rte_pci_driver *pci_drv,
4156         struct rte_pci_device *pci_dev)
4157 {
4158         struct rte_bbdev *bbdev = NULL;
4159         char dev_name[RTE_BBDEV_NAME_MAX_LEN];
4160
4161         if (pci_dev == NULL) {
4162                 rte_bbdev_log(ERR, "NULL PCI device");
4163                 return -EINVAL;
4164         }
4165
4166         rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
4167
4168         /* Allocate memory to be used privately by drivers */
4169         bbdev = rte_bbdev_allocate(pci_dev->device.name);
4170         if (bbdev == NULL)
4171                 return -ENODEV;
4172
4173         /* allocate device private memory */
4174         bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
4175                         sizeof(struct acc100_device), RTE_CACHE_LINE_SIZE,
4176                         pci_dev->device.numa_node);
4177
4178         if (bbdev->data->dev_private == NULL) {
4179                 rte_bbdev_log(CRIT,
4180                                 "Allocate of %zu bytes for device \"%s\" failed",
4181                                 sizeof(struct acc100_device), dev_name);
4182                                 rte_bbdev_release(bbdev);
4183                         return -ENOMEM;
4184         }
4185
4186         /* Fill HW specific part of device structure */
4187         bbdev->device = &pci_dev->device;
4188         bbdev->intr_handle = pci_dev->intr_handle;
4189         bbdev->data->socket_id = pci_dev->device.numa_node;
4190
4191         /* Invoke ACC100 device initialization function */
4192         acc100_bbdev_init(bbdev, pci_drv);
4193
4194         rte_bbdev_log_debug("Initialised bbdev %s (id = %u)",
4195                         dev_name, bbdev->data->dev_id);
4196         return 0;
4197 }
4198
4199 static int acc100_pci_remove(struct rte_pci_device *pci_dev)
4200 {
4201         struct rte_bbdev *bbdev;
4202         int ret;
4203         uint8_t dev_id;
4204
4205         if (pci_dev == NULL)
4206                 return -EINVAL;
4207
4208         /* Find device */
4209         bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
4210         if (bbdev == NULL) {
4211                 rte_bbdev_log(CRIT,
4212                                 "Couldn't find HW dev \"%s\" to uninitialise it",
4213                                 pci_dev->device.name);
4214                 return -ENODEV;
4215         }
4216         dev_id = bbdev->data->dev_id;
4217
4218         /* free device private memory before close */
4219         rte_free(bbdev->data->dev_private);
4220
4221         /* Close device */
4222         ret = rte_bbdev_close(dev_id);
4223         if (ret < 0)
4224                 rte_bbdev_log(ERR,
4225                                 "Device %i failed to close during uninit: %i",
4226                                 dev_id, ret);
4227
4228         /* release bbdev from library */
4229         rte_bbdev_release(bbdev);
4230
4231         rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
4232
4233         return 0;
4234 }
4235
4236 static struct rte_pci_driver acc100_pci_pf_driver = {
4237                 .probe = acc100_pci_probe,
4238                 .remove = acc100_pci_remove,
4239                 .id_table = pci_id_acc100_pf_map,
4240                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING
4241 };
4242
4243 static struct rte_pci_driver acc100_pci_vf_driver = {
4244                 .probe = acc100_pci_probe,
4245                 .remove = acc100_pci_remove,
4246                 .id_table = pci_id_acc100_vf_map,
4247                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING
4248 };
4249
4250 RTE_PMD_REGISTER_PCI(ACC100PF_DRIVER_NAME, acc100_pci_pf_driver);
4251 RTE_PMD_REGISTER_PCI_TABLE(ACC100PF_DRIVER_NAME, pci_id_acc100_pf_map);
4252 RTE_PMD_REGISTER_PCI(ACC100VF_DRIVER_NAME, acc100_pci_vf_driver);
4253 RTE_PMD_REGISTER_PCI_TABLE(ACC100VF_DRIVER_NAME, pci_id_acc100_vf_map);
4254
4255 /*
4256  * Workaround implementation to fix the power on status of some 5GUL engines
4257  * This requires DMA permission if ported outside DPDK
4258  * It consists in resolving the state of these engines by running a
4259  * dummy operation and resetting the engines to ensure state are reliably
4260  * defined.
4261  */
4262 static void
4263 poweron_cleanup(struct rte_bbdev *bbdev, struct acc100_device *d,
4264                 struct rte_acc100_conf *conf)
4265 {
4266         int i, template_idx, qg_idx;
4267         uint32_t address, status, value;
4268         printf("Need to clear power-on 5GUL status in internal memory\n");
4269         /* Reset LDPC Cores */
4270         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4271                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4272                                 ACC100_ENGINE_OFFSET * i, ACC100_RESET_HI);
4273         usleep(ACC100_LONG_WAIT);
4274         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4275                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4276                                 ACC100_ENGINE_OFFSET * i, ACC100_RESET_LO);
4277         usleep(ACC100_LONG_WAIT);
4278         /* Prepare dummy workload */
4279         alloc_2x64mb_sw_rings_mem(bbdev, d, 0);
4280         /* Set base addresses */
4281         uint32_t phys_high = (uint32_t)(d->sw_rings_iova >> 32);
4282         uint32_t phys_low  = (uint32_t)(d->sw_rings_iova &
4283                         ~(ACC100_SIZE_64MBYTE-1));
4284         acc100_reg_write(d, HWPfDmaFec5GulDescBaseHiRegVf, phys_high);
4285         acc100_reg_write(d, HWPfDmaFec5GulDescBaseLoRegVf, phys_low);
4286
4287         /* Descriptor for a dummy 5GUL code block processing*/
4288         union acc100_dma_desc *desc = NULL;
4289         desc = d->sw_rings;
4290         desc->req.data_ptrs[0].address = d->sw_rings_iova +
4291                         ACC100_DESC_FCW_OFFSET;
4292         desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
4293         desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
4294         desc->req.data_ptrs[0].last = 0;
4295         desc->req.data_ptrs[0].dma_ext = 0;
4296         desc->req.data_ptrs[1].address = d->sw_rings_iova + 512;
4297         desc->req.data_ptrs[1].blkid = ACC100_DMA_BLKID_IN;
4298         desc->req.data_ptrs[1].last = 1;
4299         desc->req.data_ptrs[1].dma_ext = 0;
4300         desc->req.data_ptrs[1].blen = 44;
4301         desc->req.data_ptrs[2].address = d->sw_rings_iova + 1024;
4302         desc->req.data_ptrs[2].blkid = ACC100_DMA_BLKID_OUT_ENC;
4303         desc->req.data_ptrs[2].last = 1;
4304         desc->req.data_ptrs[2].dma_ext = 0;
4305         desc->req.data_ptrs[2].blen = 5;
4306         /* Dummy FCW */
4307         desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
4308         desc->req.fcw_ld.qm = 1;
4309         desc->req.fcw_ld.nfiller = 30;
4310         desc->req.fcw_ld.BG = 2 - 1;
4311         desc->req.fcw_ld.Zc = 7;
4312         desc->req.fcw_ld.ncb = 350;
4313         desc->req.fcw_ld.rm_e = 4;
4314         desc->req.fcw_ld.itmax = 10;
4315         desc->req.fcw_ld.gain_i = 1;
4316         desc->req.fcw_ld.gain_h = 1;
4317
4318         int engines_to_restart[ACC100_SIG_UL_5G_LAST + 1] = {0};
4319         int num_failed_engine = 0;
4320         /* Detect engines in undefined state */
4321         for (template_idx = ACC100_SIG_UL_5G;
4322                         template_idx <= ACC100_SIG_UL_5G_LAST;
4323                         template_idx++) {
4324                 /* Check engine power-on status */
4325                 address = HwPfFecUl5gIbDebugReg +
4326                                 ACC100_ENGINE_OFFSET * template_idx;
4327                 status = (acc100_reg_read(d, address) >> 4) & 0xF;
4328                 if (status == 0) {
4329                         engines_to_restart[num_failed_engine] = template_idx;
4330                         num_failed_engine++;
4331                 }
4332         }
4333
4334         int numQqsAcc = conf->q_ul_5g.num_qgroups;
4335         int numQgs = conf->q_ul_5g.num_qgroups;
4336         value = 0;
4337         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4338                 value |= (1 << qg_idx);
4339         /* Force each engine which is in unspecified state */
4340         for (i = 0; i < num_failed_engine; i++) {
4341                 int failed_engine = engines_to_restart[i];
4342                 printf("Force engine %d\n", failed_engine);
4343                 for (template_idx = ACC100_SIG_UL_5G;
4344                                 template_idx <= ACC100_SIG_UL_5G_LAST;
4345                                 template_idx++) {
4346                         address = HWPfQmgrGrpTmplateReg4Indx
4347                                         + ACC100_BYTES_IN_WORD * template_idx;
4348                         if (template_idx == failed_engine)
4349                                 acc100_reg_write(d, address, value);
4350                         else
4351                                 acc100_reg_write(d, address, 0);
4352                 }
4353                 /* Reset descriptor header */
4354                 desc->req.word0 = ACC100_DMA_DESC_TYPE;
4355                 desc->req.word1 = 0;
4356                 desc->req.word2 = 0;
4357                 desc->req.word3 = 0;
4358                 desc->req.numCBs = 1;
4359                 desc->req.m2dlen = 2;
4360                 desc->req.d2mlen = 1;
4361                 /* Enqueue the code block for processing */
4362                 union acc100_enqueue_reg_fmt enq_req;
4363                 enq_req.val = 0;
4364                 enq_req.addr_offset = ACC100_DESC_OFFSET;
4365                 enq_req.num_elem = 1;
4366                 enq_req.req_elem_addr = 0;
4367                 rte_wmb();
4368                 acc100_reg_write(d, HWPfQmgrIngressAq + 0x100, enq_req.val);
4369                 usleep(ACC100_LONG_WAIT * 100);
4370                 if (desc->req.word0 != 2)
4371                         printf("DMA Response %#"PRIx32"\n", desc->req.word0);
4372         }
4373
4374         /* Reset LDPC Cores */
4375         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4376                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4377                                 ACC100_ENGINE_OFFSET * i,
4378                                 ACC100_RESET_HI);
4379         usleep(ACC100_LONG_WAIT);
4380         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4381                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4382                                 ACC100_ENGINE_OFFSET * i,
4383                                 ACC100_RESET_LO);
4384         usleep(ACC100_LONG_WAIT);
4385         acc100_reg_write(d, HWPfHi5GHardResetReg, ACC100_RESET_HARD);
4386         usleep(ACC100_LONG_WAIT);
4387         int numEngines = 0;
4388         /* Check engine power-on status again */
4389         for (template_idx = ACC100_SIG_UL_5G;
4390                         template_idx <= ACC100_SIG_UL_5G_LAST;
4391                         template_idx++) {
4392                 address = HwPfFecUl5gIbDebugReg +
4393                                 ACC100_ENGINE_OFFSET * template_idx;
4394                 status = (acc100_reg_read(d, address) >> 4) & 0xF;
4395                 address = HWPfQmgrGrpTmplateReg4Indx
4396                                 + ACC100_BYTES_IN_WORD * template_idx;
4397                 if (status == 1) {
4398                         acc100_reg_write(d, address, value);
4399                         numEngines++;
4400                 } else
4401                         acc100_reg_write(d, address, 0);
4402         }
4403         printf("Number of 5GUL engines %d\n", numEngines);
4404
4405         if (d->sw_rings_base != NULL)
4406                 rte_free(d->sw_rings_base);
4407         usleep(ACC100_LONG_WAIT);
4408 }
4409
4410 /* Initial configuration of a ACC100 device prior to running configure() */
4411 int
4412 rte_acc100_configure(const char *dev_name, struct rte_acc100_conf *conf)
4413 {
4414         rte_bbdev_log(INFO, "rte_acc100_configure");
4415         uint32_t value, address, status;
4416         int qg_idx, template_idx, vf_idx, acc, i;
4417         struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
4418
4419         /* Compile time checks */
4420         RTE_BUILD_BUG_ON(sizeof(struct acc100_dma_req_desc) != 256);
4421         RTE_BUILD_BUG_ON(sizeof(union acc100_dma_desc) != 256);
4422         RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_td) != 24);
4423         RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_te) != 32);
4424
4425         if (bbdev == NULL) {
4426                 rte_bbdev_log(ERR,
4427                 "Invalid dev_name (%s), or device is not yet initialised",
4428                 dev_name);
4429                 return -ENODEV;
4430         }
4431         struct acc100_device *d = bbdev->data->dev_private;
4432
4433         /* Store configuration */
4434         rte_memcpy(&d->acc100_conf, conf, sizeof(d->acc100_conf));
4435
4436         /* PCIe Bridge configuration */
4437         acc100_reg_write(d, HwPfPcieGpexBridgeControl, ACC100_CFG_PCI_BRIDGE);
4438         for (i = 1; i < ACC100_GPEX_AXIMAP_NUM; i++)
4439                 acc100_reg_write(d,
4440                                 HwPfPcieGpexAxiAddrMappingWindowPexBaseHigh
4441                                 + i * 16, 0);
4442
4443         /* Prevent blocking AXI read on BRESP for AXI Write */
4444         address = HwPfPcieGpexAxiPioControl;
4445         value = ACC100_CFG_PCI_AXI;
4446         acc100_reg_write(d, address, value);
4447
4448         /* 5GDL PLL phase shift */
4449         acc100_reg_write(d, HWPfChaDl5gPllPhshft0, 0x1);
4450
4451         /* Explicitly releasing AXI as this may be stopped after PF FLR/BME */
4452         address = HWPfDmaAxiControl;
4453         value = 1;
4454         acc100_reg_write(d, address, value);
4455
4456         /* DDR Configuration */
4457         address = HWPfDdrBcTim6;
4458         value = acc100_reg_read(d, address);
4459         value &= 0xFFFFFFFB; /* Bit 2 */
4460 #ifdef ACC100_DDR_ECC_ENABLE
4461         value |= 0x4;
4462 #endif
4463         acc100_reg_write(d, address, value);
4464         address = HWPfDdrPhyDqsCountNum;
4465 #ifdef ACC100_DDR_ECC_ENABLE
4466         value = 9;
4467 #else
4468         value = 8;
4469 #endif
4470         acc100_reg_write(d, address, value);
4471
4472         /* Set default descriptor signature */
4473         address = HWPfDmaDescriptorSignatuture;
4474         value = 0;
4475         acc100_reg_write(d, address, value);
4476
4477         /* Enable the Error Detection in DMA */
4478         value = ACC100_CFG_DMA_ERROR;
4479         address = HWPfDmaErrorDetectionEn;
4480         acc100_reg_write(d, address, value);
4481
4482         /* AXI Cache configuration */
4483         value = ACC100_CFG_AXI_CACHE;
4484         address = HWPfDmaAxcacheReg;
4485         acc100_reg_write(d, address, value);
4486
4487         /* Default DMA Configuration (Qmgr Enabled) */
4488         address = HWPfDmaConfig0Reg;
4489         value = 0;
4490         acc100_reg_write(d, address, value);
4491         address = HWPfDmaQmanen;
4492         value = 0;
4493         acc100_reg_write(d, address, value);
4494
4495         /* Default RLIM/ALEN configuration */
4496         address = HWPfDmaConfig1Reg;
4497         value = (1 << 31) + (23 << 8) + (1 << 6) + 7;
4498         acc100_reg_write(d, address, value);
4499
4500         /* Configure DMA Qmanager addresses */
4501         address = HWPfDmaQmgrAddrReg;
4502         value = HWPfQmgrEgressQueuesTemplate;
4503         acc100_reg_write(d, address, value);
4504
4505         /* ===== Qmgr Configuration ===== */
4506         /* Configuration of the AQueue Depth QMGR_GRP_0_DEPTH_LOG2 for UL */
4507         int totalQgs = conf->q_ul_4g.num_qgroups +
4508                         conf->q_ul_5g.num_qgroups +
4509                         conf->q_dl_4g.num_qgroups +
4510                         conf->q_dl_5g.num_qgroups;
4511         for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4512                 address = HWPfQmgrDepthLog2Grp +
4513                 ACC100_BYTES_IN_WORD * qg_idx;
4514                 value = aqDepth(qg_idx, conf);
4515                 acc100_reg_write(d, address, value);
4516                 address = HWPfQmgrTholdGrp +
4517                 ACC100_BYTES_IN_WORD * qg_idx;
4518                 value = (1 << 16) + (1 << (aqDepth(qg_idx, conf) - 1));
4519                 acc100_reg_write(d, address, value);
4520         }
4521
4522         /* Template Priority in incremental order */
4523         for (template_idx = 0; template_idx < ACC100_NUM_TMPL;
4524                         template_idx++) {
4525                 address = HWPfQmgrGrpTmplateReg0Indx +
4526                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4527                 value = ACC100_TMPL_PRI_0;
4528                 acc100_reg_write(d, address, value);
4529                 address = HWPfQmgrGrpTmplateReg1Indx +
4530                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4531                 value = ACC100_TMPL_PRI_1;
4532                 acc100_reg_write(d, address, value);
4533                 address = HWPfQmgrGrpTmplateReg2indx +
4534                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4535                 value = ACC100_TMPL_PRI_2;
4536                 acc100_reg_write(d, address, value);
4537                 address = HWPfQmgrGrpTmplateReg3Indx +
4538                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4539                 value = ACC100_TMPL_PRI_3;
4540                 acc100_reg_write(d, address, value);
4541         }
4542
4543         address = HWPfQmgrGrpPriority;
4544         value = ACC100_CFG_QMGR_HI_P;
4545         acc100_reg_write(d, address, value);
4546
4547         /* Template Configuration */
4548         for (template_idx = 0; template_idx < ACC100_NUM_TMPL;
4549                         template_idx++) {
4550                 value = 0;
4551                 address = HWPfQmgrGrpTmplateReg4Indx
4552                                 + ACC100_BYTES_IN_WORD * template_idx;
4553                 acc100_reg_write(d, address, value);
4554         }
4555         /* 4GUL */
4556         int numQgs = conf->q_ul_4g.num_qgroups;
4557         int numQqsAcc = 0;
4558         value = 0;
4559         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4560                 value |= (1 << qg_idx);
4561         for (template_idx = ACC100_SIG_UL_4G;
4562                         template_idx <= ACC100_SIG_UL_4G_LAST;
4563                         template_idx++) {
4564                 address = HWPfQmgrGrpTmplateReg4Indx
4565                                 + ACC100_BYTES_IN_WORD * template_idx;
4566                 acc100_reg_write(d, address, value);
4567         }
4568         /* 5GUL */
4569         numQqsAcc += numQgs;
4570         numQgs  = conf->q_ul_5g.num_qgroups;
4571         value = 0;
4572         int numEngines = 0;
4573         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4574                 value |= (1 << qg_idx);
4575         for (template_idx = ACC100_SIG_UL_5G;
4576                         template_idx <= ACC100_SIG_UL_5G_LAST;
4577                         template_idx++) {
4578                 /* Check engine power-on status */
4579                 address = HwPfFecUl5gIbDebugReg +
4580                                 ACC100_ENGINE_OFFSET * template_idx;
4581                 status = (acc100_reg_read(d, address) >> 4) & 0xF;
4582                 address = HWPfQmgrGrpTmplateReg4Indx
4583                                 + ACC100_BYTES_IN_WORD * template_idx;
4584                 if (status == 1) {
4585                         acc100_reg_write(d, address, value);
4586                         numEngines++;
4587                 } else
4588                         acc100_reg_write(d, address, 0);
4589 #if RTE_ACC100_SINGLE_FEC == 1
4590                 value = 0;
4591 #endif
4592         }
4593         printf("Number of 5GUL engines %d\n", numEngines);
4594         /* 4GDL */
4595         numQqsAcc += numQgs;
4596         numQgs  = conf->q_dl_4g.num_qgroups;
4597         value = 0;
4598         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4599                 value |= (1 << qg_idx);
4600         for (template_idx = ACC100_SIG_DL_4G;
4601                         template_idx <= ACC100_SIG_DL_4G_LAST;
4602                         template_idx++) {
4603                 address = HWPfQmgrGrpTmplateReg4Indx
4604                                 + ACC100_BYTES_IN_WORD * template_idx;
4605                 acc100_reg_write(d, address, value);
4606 #if RTE_ACC100_SINGLE_FEC == 1
4607                         value = 0;
4608 #endif
4609         }
4610         /* 5GDL */
4611         numQqsAcc += numQgs;
4612         numQgs  = conf->q_dl_5g.num_qgroups;
4613         value = 0;
4614         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4615                 value |= (1 << qg_idx);
4616         for (template_idx = ACC100_SIG_DL_5G;
4617                         template_idx <= ACC100_SIG_DL_5G_LAST;
4618                         template_idx++) {
4619                 address = HWPfQmgrGrpTmplateReg4Indx
4620                                 + ACC100_BYTES_IN_WORD * template_idx;
4621                 acc100_reg_write(d, address, value);
4622 #if RTE_ACC100_SINGLE_FEC == 1
4623                 value = 0;
4624 #endif
4625         }
4626
4627         /* Queue Group Function mapping */
4628         int qman_func_id[5] = {0, 2, 1, 3, 4};
4629         address = HWPfQmgrGrpFunction0;
4630         value = 0;
4631         for (qg_idx = 0; qg_idx < 8; qg_idx++) {
4632                 acc = accFromQgid(qg_idx, conf);
4633                 value |= qman_func_id[acc]<<(qg_idx * 4);
4634         }
4635         acc100_reg_write(d, address, value);
4636
4637         /* Configuration of the Arbitration QGroup depth to 1 */
4638         for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4639                 address = HWPfQmgrArbQDepthGrp +
4640                 ACC100_BYTES_IN_WORD * qg_idx;
4641                 value = 0;
4642                 acc100_reg_write(d, address, value);
4643         }
4644
4645         /* Enabling AQueues through the Queue hierarchy*/
4646         for (vf_idx = 0; vf_idx < ACC100_NUM_VFS; vf_idx++) {
4647                 for (qg_idx = 0; qg_idx < ACC100_NUM_QGRPS; qg_idx++) {
4648                         value = 0;
4649                         if (vf_idx < conf->num_vf_bundles &&
4650                                         qg_idx < totalQgs)
4651                                 value = (1 << aqNum(qg_idx, conf)) - 1;
4652                         address = HWPfQmgrAqEnableVf
4653                                         + vf_idx * ACC100_BYTES_IN_WORD;
4654                         value += (qg_idx << 16);
4655                         acc100_reg_write(d, address, value);
4656                 }
4657         }
4658
4659         /* This pointer to ARAM (256kB) is shifted by 2 (4B per register) */
4660         uint32_t aram_address = 0;
4661         for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4662                 for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
4663                         address = HWPfQmgrVfBaseAddr + vf_idx
4664                                         * ACC100_BYTES_IN_WORD + qg_idx
4665                                         * ACC100_BYTES_IN_WORD * 64;
4666                         value = aram_address;
4667                         acc100_reg_write(d, address, value);
4668                         /* Offset ARAM Address for next memory bank
4669                          * - increment of 4B
4670                          */
4671                         aram_address += aqNum(qg_idx, conf) *
4672                                         (1 << aqDepth(qg_idx, conf));
4673                 }
4674         }
4675
4676         if (aram_address > ACC100_WORDS_IN_ARAM_SIZE) {
4677                 rte_bbdev_log(ERR, "ARAM Configuration not fitting %d %d\n",
4678                                 aram_address, ACC100_WORDS_IN_ARAM_SIZE);
4679                 return -EINVAL;
4680         }
4681
4682         /* ==== HI Configuration ==== */
4683
4684         /* Prevent Block on Transmit Error */
4685         address = HWPfHiBlockTransmitOnErrorEn;
4686         value = 0;
4687         acc100_reg_write(d, address, value);
4688         /* Prevents to drop MSI */
4689         address = HWPfHiMsiDropEnableReg;
4690         value = 0;
4691         acc100_reg_write(d, address, value);
4692         /* Set the PF Mode register */
4693         address = HWPfHiPfMode;
4694         value = (conf->pf_mode_en) ? ACC100_PF_VAL : 0;
4695         acc100_reg_write(d, address, value);
4696         /* Enable Error Detection in HW */
4697         address = HWPfDmaErrorDetectionEn;
4698         value = 0x3D7;
4699         acc100_reg_write(d, address, value);
4700
4701         /* QoS overflow init */
4702         value = 1;
4703         address = HWPfQosmonAEvalOverflow0;
4704         acc100_reg_write(d, address, value);
4705         address = HWPfQosmonBEvalOverflow0;
4706         acc100_reg_write(d, address, value);
4707
4708         /* HARQ DDR Configuration */
4709         unsigned int ddrSizeInMb = 512; /* Fixed to 512 MB per VF for now */
4710         for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
4711                 address = HWPfDmaVfDdrBaseRw + vf_idx
4712                                 * 0x10;
4713                 value = ((vf_idx * (ddrSizeInMb / 64)) << 16) +
4714                                 (ddrSizeInMb - 1);
4715                 acc100_reg_write(d, address, value);
4716         }
4717         usleep(ACC100_LONG_WAIT);
4718
4719         /* Workaround in case some 5GUL engines are in an unexpected state */
4720         if (numEngines < (ACC100_SIG_UL_5G_LAST + 1))
4721                 poweron_cleanup(bbdev, d, conf);
4722
4723         rte_bbdev_log_debug("PF Tip configuration complete for %s", dev_name);
4724         return 0;
4725 }