app/testpmd: record Rx and dropped stats in flowgen
[dpdk.git] / drivers / baseband / acc100 / rte_acc100_pmd.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2020 Intel Corporation
3  */
4
5 #include <unistd.h>
6
7 #include <rte_common.h>
8 #include <rte_log.h>
9 #include <rte_dev.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12 #include <rte_byteorder.h>
13 #include <rte_errno.h>
14 #include <rte_branch_prediction.h>
15 #include <rte_hexdump.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #ifdef RTE_BBDEV_OFFLOAD_COST
19 #include <rte_cycles.h>
20 #endif
21
22 #include <rte_bbdev.h>
23 #include <rte_bbdev_pmd.h>
24 #include "rte_acc100_pmd.h"
25
26 #ifdef RTE_LIBRTE_BBDEV_DEBUG
27 RTE_LOG_REGISTER_DEFAULT(acc100_logtype, DEBUG);
28 #else
29 RTE_LOG_REGISTER_DEFAULT(acc100_logtype, NOTICE);
30 #endif
31
32 /* Write to MMIO register address */
33 static inline void
34 mmio_write(void *addr, uint32_t value)
35 {
36         *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
37 }
38
39 /* Write a register of a ACC100 device */
40 static inline void
41 acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t value)
42 {
43         void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
44         mmio_write(reg_addr, value);
45         usleep(ACC100_LONG_WAIT);
46 }
47
48 /* Read a register of a ACC100 device */
49 static inline uint32_t
50 acc100_reg_read(struct acc100_device *d, uint32_t offset)
51 {
52
53         void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
54         uint32_t ret = *((volatile uint32_t *)(reg_addr));
55         return rte_le_to_cpu_32(ret);
56 }
57
58 /* Basic Implementation of Log2 for exact 2^N */
59 static inline uint32_t
60 log2_basic(uint32_t value)
61 {
62         return (value == 0) ? 0 : rte_bsf32(value);
63 }
64
65 /* Calculate memory alignment offset assuming alignment is 2^N */
66 static inline uint32_t
67 calc_mem_alignment_offset(void *unaligned_virt_mem, uint32_t alignment)
68 {
69         rte_iova_t unaligned_phy_mem = rte_malloc_virt2iova(unaligned_virt_mem);
70         return (uint32_t)(alignment -
71                         (unaligned_phy_mem & (alignment-1)));
72 }
73
74 /* Calculate the offset of the enqueue register */
75 static inline uint32_t
76 queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
77 {
78         if (pf_device)
79                 return ((vf_id << 12) + (qgrp_id << 7) + (aq_id << 3) +
80                                 HWPfQmgrIngressAq);
81         else
82                 return ((qgrp_id << 7) + (aq_id << 3) +
83                                 HWVfQmgrIngressAq);
84 }
85
86 enum {UL_4G = 0, UL_5G, DL_4G, DL_5G, NUM_ACC};
87
88 /* Return the accelerator enum for a Queue Group Index */
89 static inline int
90 accFromQgid(int qg_idx, const struct rte_acc100_conf *acc100_conf)
91 {
92         int accQg[ACC100_NUM_QGRPS];
93         int NumQGroupsPerFn[NUM_ACC];
94         int acc, qgIdx, qgIndex = 0;
95         for (qgIdx = 0; qgIdx < ACC100_NUM_QGRPS; qgIdx++)
96                 accQg[qgIdx] = 0;
97         NumQGroupsPerFn[UL_4G] = acc100_conf->q_ul_4g.num_qgroups;
98         NumQGroupsPerFn[UL_5G] = acc100_conf->q_ul_5g.num_qgroups;
99         NumQGroupsPerFn[DL_4G] = acc100_conf->q_dl_4g.num_qgroups;
100         NumQGroupsPerFn[DL_5G] = acc100_conf->q_dl_5g.num_qgroups;
101         for (acc = UL_4G;  acc < NUM_ACC; acc++)
102                 for (qgIdx = 0; qgIdx < NumQGroupsPerFn[acc]; qgIdx++)
103                         accQg[qgIndex++] = acc;
104         acc = accQg[qg_idx];
105         return acc;
106 }
107
108 /* Return the queue topology for a Queue Group Index */
109 static inline void
110 qtopFromAcc(struct rte_acc100_queue_topology **qtop, int acc_enum,
111                 struct rte_acc100_conf *acc100_conf)
112 {
113         struct rte_acc100_queue_topology *p_qtop;
114         p_qtop = NULL;
115         switch (acc_enum) {
116         case UL_4G:
117                 p_qtop = &(acc100_conf->q_ul_4g);
118                 break;
119         case UL_5G:
120                 p_qtop = &(acc100_conf->q_ul_5g);
121                 break;
122         case DL_4G:
123                 p_qtop = &(acc100_conf->q_dl_4g);
124                 break;
125         case DL_5G:
126                 p_qtop = &(acc100_conf->q_dl_5g);
127                 break;
128         default:
129                 /* NOTREACHED */
130                 rte_bbdev_log(ERR, "Unexpected error evaluating qtopFromAcc");
131                 break;
132         }
133         *qtop = p_qtop;
134 }
135
136 /* Return the AQ depth for a Queue Group Index */
137 static inline int
138 aqDepth(int qg_idx, struct rte_acc100_conf *acc100_conf)
139 {
140         struct rte_acc100_queue_topology *q_top = NULL;
141         int acc_enum = accFromQgid(qg_idx, acc100_conf);
142         qtopFromAcc(&q_top, acc_enum, acc100_conf);
143         if (unlikely(q_top == NULL))
144                 return 0;
145         return q_top->aq_depth_log2;
146 }
147
148 /* Return the AQ depth for a Queue Group Index */
149 static inline int
150 aqNum(int qg_idx, struct rte_acc100_conf *acc100_conf)
151 {
152         struct rte_acc100_queue_topology *q_top = NULL;
153         int acc_enum = accFromQgid(qg_idx, acc100_conf);
154         qtopFromAcc(&q_top, acc_enum, acc100_conf);
155         if (unlikely(q_top == NULL))
156                 return 0;
157         return q_top->num_aqs_per_groups;
158 }
159
160 static void
161 initQTop(struct rte_acc100_conf *acc100_conf)
162 {
163         acc100_conf->q_ul_4g.num_aqs_per_groups = 0;
164         acc100_conf->q_ul_4g.num_qgroups = 0;
165         acc100_conf->q_ul_4g.first_qgroup_index = -1;
166         acc100_conf->q_ul_5g.num_aqs_per_groups = 0;
167         acc100_conf->q_ul_5g.num_qgroups = 0;
168         acc100_conf->q_ul_5g.first_qgroup_index = -1;
169         acc100_conf->q_dl_4g.num_aqs_per_groups = 0;
170         acc100_conf->q_dl_4g.num_qgroups = 0;
171         acc100_conf->q_dl_4g.first_qgroup_index = -1;
172         acc100_conf->q_dl_5g.num_aqs_per_groups = 0;
173         acc100_conf->q_dl_5g.num_qgroups = 0;
174         acc100_conf->q_dl_5g.first_qgroup_index = -1;
175 }
176
177 static inline void
178 updateQtop(uint8_t acc, uint8_t qg, struct rte_acc100_conf *acc100_conf,
179                 struct acc100_device *d) {
180         uint32_t reg;
181         struct rte_acc100_queue_topology *q_top = NULL;
182         qtopFromAcc(&q_top, acc, acc100_conf);
183         if (unlikely(q_top == NULL))
184                 return;
185         uint16_t aq;
186         q_top->num_qgroups++;
187         if (q_top->first_qgroup_index == -1) {
188                 q_top->first_qgroup_index = qg;
189                 /* Can be optimized to assume all are enabled by default */
190                 reg = acc100_reg_read(d, queue_offset(d->pf_device,
191                                 0, qg, ACC100_NUM_AQS - 1));
192                 if (reg & ACC100_QUEUE_ENABLE) {
193                         q_top->num_aqs_per_groups = ACC100_NUM_AQS;
194                         return;
195                 }
196                 q_top->num_aqs_per_groups = 0;
197                 for (aq = 0; aq < ACC100_NUM_AQS; aq++) {
198                         reg = acc100_reg_read(d, queue_offset(d->pf_device,
199                                         0, qg, aq));
200                         if (reg & ACC100_QUEUE_ENABLE)
201                                 q_top->num_aqs_per_groups++;
202                 }
203         }
204 }
205
206 /* Fetch configuration enabled for the PF/VF using MMIO Read (slow) */
207 static inline void
208 fetch_acc100_config(struct rte_bbdev *dev)
209 {
210         struct acc100_device *d = dev->data->dev_private;
211         struct rte_acc100_conf *acc100_conf = &d->acc100_conf;
212         const struct acc100_registry_addr *reg_addr;
213         uint8_t acc, qg;
214         uint32_t reg, reg_aq, reg_len0, reg_len1;
215         uint32_t reg_mode;
216
217         /* No need to retrieve the configuration is already done */
218         if (d->configured)
219                 return;
220
221         /* Choose correct registry addresses for the device type */
222         if (d->pf_device)
223                 reg_addr = &pf_reg_addr;
224         else
225                 reg_addr = &vf_reg_addr;
226
227         d->ddr_size = (1 + acc100_reg_read(d, reg_addr->ddr_range)) << 10;
228
229         /* Single VF Bundle by VF */
230         acc100_conf->num_vf_bundles = 1;
231         initQTop(acc100_conf);
232
233         struct rte_acc100_queue_topology *q_top = NULL;
234         int qman_func_id[ACC100_NUM_ACCS] = {ACC100_ACCMAP_0, ACC100_ACCMAP_1,
235                         ACC100_ACCMAP_2, ACC100_ACCMAP_3, ACC100_ACCMAP_4};
236         reg = acc100_reg_read(d, reg_addr->qman_group_func);
237         for (qg = 0; qg < ACC100_NUM_QGRPS_PER_WORD; qg++) {
238                 reg_aq = acc100_reg_read(d,
239                                 queue_offset(d->pf_device, 0, qg, 0));
240                 if (reg_aq & ACC100_QUEUE_ENABLE) {
241                         uint32_t idx = (reg >> (qg * 4)) & 0x7;
242                         if (idx < ACC100_NUM_ACCS) {
243                                 acc = qman_func_id[idx];
244                                 updateQtop(acc, qg, acc100_conf, d);
245                         }
246                 }
247         }
248
249         /* Check the depth of the AQs*/
250         reg_len0 = acc100_reg_read(d, reg_addr->depth_log0_offset);
251         reg_len1 = acc100_reg_read(d, reg_addr->depth_log1_offset);
252         for (acc = 0; acc < NUM_ACC; acc++) {
253                 qtopFromAcc(&q_top, acc, acc100_conf);
254                 if (q_top->first_qgroup_index < ACC100_NUM_QGRPS_PER_WORD)
255                         q_top->aq_depth_log2 = (reg_len0 >>
256                                         (q_top->first_qgroup_index * 4))
257                                         & 0xF;
258                 else
259                         q_top->aq_depth_log2 = (reg_len1 >>
260                                         ((q_top->first_qgroup_index -
261                                         ACC100_NUM_QGRPS_PER_WORD) * 4))
262                                         & 0xF;
263         }
264
265         /* Read PF mode */
266         if (d->pf_device) {
267                 reg_mode = acc100_reg_read(d, HWPfHiPfMode);
268                 acc100_conf->pf_mode_en = (reg_mode == ACC100_PF_VAL) ? 1 : 0;
269         }
270
271         rte_bbdev_log_debug(
272                         "%s Config LLR SIGN IN/OUT %s %s QG %u %u %u %u AQ %u %u %u %u Len %u %u %u %u\n",
273                         (d->pf_device) ? "PF" : "VF",
274                         (acc100_conf->input_pos_llr_1_bit) ? "POS" : "NEG",
275                         (acc100_conf->output_pos_llr_1_bit) ? "POS" : "NEG",
276                         acc100_conf->q_ul_4g.num_qgroups,
277                         acc100_conf->q_dl_4g.num_qgroups,
278                         acc100_conf->q_ul_5g.num_qgroups,
279                         acc100_conf->q_dl_5g.num_qgroups,
280                         acc100_conf->q_ul_4g.num_aqs_per_groups,
281                         acc100_conf->q_dl_4g.num_aqs_per_groups,
282                         acc100_conf->q_ul_5g.num_aqs_per_groups,
283                         acc100_conf->q_dl_5g.num_aqs_per_groups,
284                         acc100_conf->q_ul_4g.aq_depth_log2,
285                         acc100_conf->q_dl_4g.aq_depth_log2,
286                         acc100_conf->q_ul_5g.aq_depth_log2,
287                         acc100_conf->q_dl_5g.aq_depth_log2);
288 }
289
290 static void
291 free_base_addresses(void **base_addrs, int size)
292 {
293         int i;
294         for (i = 0; i < size; i++)
295                 rte_free(base_addrs[i]);
296 }
297
298 static inline uint32_t
299 get_desc_len(void)
300 {
301         return sizeof(union acc100_dma_desc);
302 }
303
304 /* Allocate the 2 * 64MB block for the sw rings */
305 static int
306 alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc100_device *d,
307                 int socket)
308 {
309         uint32_t sw_ring_size = ACC100_SIZE_64MBYTE;
310         d->sw_rings_base = rte_zmalloc_socket(dev->device->driver->name,
311                         2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
312         if (d->sw_rings_base == NULL) {
313                 rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
314                                 dev->device->driver->name,
315                                 dev->data->dev_id);
316                 return -ENOMEM;
317         }
318         uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
319                         d->sw_rings_base, ACC100_SIZE_64MBYTE);
320         d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, next_64mb_align_offset);
321         d->sw_rings_iova = rte_malloc_virt2iova(d->sw_rings_base) +
322                         next_64mb_align_offset;
323         d->sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
324         d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
325
326         return 0;
327 }
328
329 /* Attempt to allocate minimised memory space for sw rings */
330 static void
331 alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d,
332                 uint16_t num_queues, int socket)
333 {
334         rte_iova_t sw_rings_base_iova, next_64mb_align_addr_iova;
335         uint32_t next_64mb_align_offset;
336         rte_iova_t sw_ring_iova_end_addr;
337         void *base_addrs[ACC100_SW_RING_MEM_ALLOC_ATTEMPTS];
338         void *sw_rings_base;
339         int i = 0;
340         uint32_t q_sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
341         uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
342
343         /* Find an aligned block of memory to store sw rings */
344         while (i < ACC100_SW_RING_MEM_ALLOC_ATTEMPTS) {
345                 /*
346                  * sw_ring allocated memory is guaranteed to be aligned to
347                  * q_sw_ring_size at the condition that the requested size is
348                  * less than the page size
349                  */
350                 sw_rings_base = rte_zmalloc_socket(
351                                 dev->device->driver->name,
352                                 dev_sw_ring_size, q_sw_ring_size, socket);
353
354                 if (sw_rings_base == NULL) {
355                         rte_bbdev_log(ERR,
356                                         "Failed to allocate memory for %s:%u",
357                                         dev->device->driver->name,
358                                         dev->data->dev_id);
359                         break;
360                 }
361
362                 sw_rings_base_iova = rte_malloc_virt2iova(sw_rings_base);
363                 next_64mb_align_offset = calc_mem_alignment_offset(
364                                 sw_rings_base, ACC100_SIZE_64MBYTE);
365                 next_64mb_align_addr_iova = sw_rings_base_iova +
366                                 next_64mb_align_offset;
367                 sw_ring_iova_end_addr = sw_rings_base_iova + dev_sw_ring_size;
368
369                 /* Check if the end of the sw ring memory block is before the
370                  * start of next 64MB aligned mem address
371                  */
372                 if (sw_ring_iova_end_addr < next_64mb_align_addr_iova) {
373                         d->sw_rings_iova = sw_rings_base_iova;
374                         d->sw_rings = sw_rings_base;
375                         d->sw_rings_base = sw_rings_base;
376                         d->sw_ring_size = q_sw_ring_size;
377                         d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
378                         break;
379                 }
380                 /* Store the address of the unaligned mem block */
381                 base_addrs[i] = sw_rings_base;
382                 i++;
383         }
384
385         /* Free all unaligned blocks of mem allocated in the loop */
386         free_base_addresses(base_addrs, i);
387 }
388
389 /*
390  * Find queue_id of a device queue based on details from the Info Ring.
391  * If a queue isn't found UINT16_MAX is returned.
392  */
393 static inline uint16_t
394 get_queue_id_from_ring_info(struct rte_bbdev_data *data,
395                 const union acc100_info_ring_data ring_data)
396 {
397         uint16_t queue_id;
398
399         for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
400                 struct acc100_queue *acc100_q =
401                                 data->queues[queue_id].queue_private;
402                 if (acc100_q != NULL && acc100_q->aq_id == ring_data.aq_id &&
403                                 acc100_q->qgrp_id == ring_data.qg_id &&
404                                 acc100_q->vf_id == ring_data.vf_id)
405                         return queue_id;
406         }
407
408         return UINT16_MAX;
409 }
410
411 /* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
412 static inline void
413 acc100_check_ir(struct acc100_device *acc100_dev)
414 {
415         volatile union acc100_info_ring_data *ring_data;
416         uint16_t info_ring_head = acc100_dev->info_ring_head;
417         if (acc100_dev->info_ring == NULL)
418                 return;
419
420         ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
421                         ACC100_INFO_RING_MASK);
422
423         while (ring_data->valid) {
424                 if ((ring_data->int_nb < ACC100_PF_INT_DMA_DL_DESC_IRQ) || (
425                                 ring_data->int_nb >
426                                 ACC100_PF_INT_DMA_DL5G_DESC_IRQ))
427                         rte_bbdev_log(WARNING, "InfoRing: ITR:%d Info:0x%x",
428                                 ring_data->int_nb, ring_data->detailed_info);
429                 /* Initialize Info Ring entry and move forward */
430                 ring_data->val = 0;
431                 info_ring_head++;
432                 ring_data = acc100_dev->info_ring +
433                                 (info_ring_head & ACC100_INFO_RING_MASK);
434         }
435 }
436
437 /* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
438 static inline void
439 acc100_pf_interrupt_handler(struct rte_bbdev *dev)
440 {
441         struct acc100_device *acc100_dev = dev->data->dev_private;
442         volatile union acc100_info_ring_data *ring_data;
443         struct acc100_deq_intr_details deq_intr_det;
444
445         ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
446                         ACC100_INFO_RING_MASK);
447
448         while (ring_data->valid) {
449
450                 rte_bbdev_log_debug(
451                                 "ACC100 PF Interrupt received, Info Ring data: 0x%x",
452                                 ring_data->val);
453
454                 switch (ring_data->int_nb) {
455                 case ACC100_PF_INT_DMA_DL_DESC_IRQ:
456                 case ACC100_PF_INT_DMA_UL_DESC_IRQ:
457                 case ACC100_PF_INT_DMA_UL5G_DESC_IRQ:
458                 case ACC100_PF_INT_DMA_DL5G_DESC_IRQ:
459                         deq_intr_det.queue_id = get_queue_id_from_ring_info(
460                                         dev->data, *ring_data);
461                         if (deq_intr_det.queue_id == UINT16_MAX) {
462                                 rte_bbdev_log(ERR,
463                                                 "Couldn't find queue: aq_id: %u, qg_id: %u, vf_id: %u",
464                                                 ring_data->aq_id,
465                                                 ring_data->qg_id,
466                                                 ring_data->vf_id);
467                                 return;
468                         }
469                         rte_bbdev_pmd_callback_process(dev,
470                                         RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
471                         break;
472                 default:
473                         rte_bbdev_pmd_callback_process(dev,
474                                         RTE_BBDEV_EVENT_ERROR, NULL);
475                         break;
476                 }
477
478                 /* Initialize Info Ring entry and move forward */
479                 ring_data->val = 0;
480                 ++acc100_dev->info_ring_head;
481                 ring_data = acc100_dev->info_ring +
482                                 (acc100_dev->info_ring_head &
483                                 ACC100_INFO_RING_MASK);
484         }
485 }
486
487 /* Checks VF Info Ring to find the interrupt cause and handles it accordingly */
488 static inline void
489 acc100_vf_interrupt_handler(struct rte_bbdev *dev)
490 {
491         struct acc100_device *acc100_dev = dev->data->dev_private;
492         volatile union acc100_info_ring_data *ring_data;
493         struct acc100_deq_intr_details deq_intr_det;
494
495         ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
496                         ACC100_INFO_RING_MASK);
497
498         while (ring_data->valid) {
499
500                 rte_bbdev_log_debug(
501                                 "ACC100 VF Interrupt received, Info Ring data: 0x%x",
502                                 ring_data->val);
503
504                 switch (ring_data->int_nb) {
505                 case ACC100_VF_INT_DMA_DL_DESC_IRQ:
506                 case ACC100_VF_INT_DMA_UL_DESC_IRQ:
507                 case ACC100_VF_INT_DMA_UL5G_DESC_IRQ:
508                 case ACC100_VF_INT_DMA_DL5G_DESC_IRQ:
509                         /* VFs are not aware of their vf_id - it's set to 0 in
510                          * queue structures.
511                          */
512                         ring_data->vf_id = 0;
513                         deq_intr_det.queue_id = get_queue_id_from_ring_info(
514                                         dev->data, *ring_data);
515                         if (deq_intr_det.queue_id == UINT16_MAX) {
516                                 rte_bbdev_log(ERR,
517                                                 "Couldn't find queue: aq_id: %u, qg_id: %u",
518                                                 ring_data->aq_id,
519                                                 ring_data->qg_id);
520                                 return;
521                         }
522                         rte_bbdev_pmd_callback_process(dev,
523                                         RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
524                         break;
525                 default:
526                         rte_bbdev_pmd_callback_process(dev,
527                                         RTE_BBDEV_EVENT_ERROR, NULL);
528                         break;
529                 }
530
531                 /* Initialize Info Ring entry and move forward */
532                 ring_data->valid = 0;
533                 ++acc100_dev->info_ring_head;
534                 ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head
535                                 & ACC100_INFO_RING_MASK);
536         }
537 }
538
539 /* Interrupt handler triggered by ACC100 dev for handling specific interrupt */
540 static void
541 acc100_dev_interrupt_handler(void *cb_arg)
542 {
543         struct rte_bbdev *dev = cb_arg;
544         struct acc100_device *acc100_dev = dev->data->dev_private;
545
546         /* Read info ring */
547         if (acc100_dev->pf_device)
548                 acc100_pf_interrupt_handler(dev);
549         else
550                 acc100_vf_interrupt_handler(dev);
551 }
552
553 /* Allocate and setup inforing */
554 static int
555 allocate_info_ring(struct rte_bbdev *dev)
556 {
557         struct acc100_device *d = dev->data->dev_private;
558         const struct acc100_registry_addr *reg_addr;
559         rte_iova_t info_ring_iova;
560         uint32_t phys_low, phys_high;
561
562         if (d->info_ring != NULL)
563                 return 0; /* Already configured */
564
565         /* Choose correct registry addresses for the device type */
566         if (d->pf_device)
567                 reg_addr = &pf_reg_addr;
568         else
569                 reg_addr = &vf_reg_addr;
570         /* Allocate InfoRing */
571         d->info_ring = rte_zmalloc_socket("Info Ring",
572                         ACC100_INFO_RING_NUM_ENTRIES *
573                         sizeof(*d->info_ring), RTE_CACHE_LINE_SIZE,
574                         dev->data->socket_id);
575         if (d->info_ring == NULL) {
576                 rte_bbdev_log(ERR,
577                                 "Failed to allocate Info Ring for %s:%u",
578                                 dev->device->driver->name,
579                                 dev->data->dev_id);
580                 return -ENOMEM;
581         }
582         info_ring_iova = rte_malloc_virt2iova(d->info_ring);
583
584         /* Setup Info Ring */
585         phys_high = (uint32_t)(info_ring_iova >> 32);
586         phys_low  = (uint32_t)(info_ring_iova);
587         acc100_reg_write(d, reg_addr->info_ring_hi, phys_high);
588         acc100_reg_write(d, reg_addr->info_ring_lo, phys_low);
589         acc100_reg_write(d, reg_addr->info_ring_en, ACC100_REG_IRQ_EN_ALL);
590         d->info_ring_head = (acc100_reg_read(d, reg_addr->info_ring_ptr) &
591                         0xFFF) / sizeof(union acc100_info_ring_data);
592         return 0;
593 }
594
595
596 /* Allocate 64MB memory used for all software rings */
597 static int
598 acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
599 {
600         uint32_t phys_low, phys_high, value;
601         struct acc100_device *d = dev->data->dev_private;
602         const struct acc100_registry_addr *reg_addr;
603         int ret;
604
605         if (d->pf_device && !d->acc100_conf.pf_mode_en) {
606                 rte_bbdev_log(NOTICE,
607                                 "%s has PF mode disabled. This PF can't be used.",
608                                 dev->data->name);
609                 return -ENODEV;
610         }
611
612         alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
613
614         /* If minimal memory space approach failed, then allocate
615          * the 2 * 64MB block for the sw rings
616          */
617         if (d->sw_rings == NULL)
618                 alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
619
620         if (d->sw_rings == NULL) {
621                 rte_bbdev_log(NOTICE,
622                                 "Failure allocating sw_rings memory");
623                 return -ENODEV;
624         }
625
626         /* Configure ACC100 with the base address for DMA descriptor rings
627          * Same descriptor rings used for UL and DL DMA Engines
628          * Note : Assuming only VF0 bundle is used for PF mode
629          */
630         phys_high = (uint32_t)(d->sw_rings_iova >> 32);
631         phys_low  = (uint32_t)(d->sw_rings_iova & ~(ACC100_SIZE_64MBYTE-1));
632
633         /* Choose correct registry addresses for the device type */
634         if (d->pf_device)
635                 reg_addr = &pf_reg_addr;
636         else
637                 reg_addr = &vf_reg_addr;
638
639         /* Read the populated cfg from ACC100 registers */
640         fetch_acc100_config(dev);
641
642         /* Release AXI from PF */
643         if (d->pf_device)
644                 acc100_reg_write(d, HWPfDmaAxiControl, 1);
645
646         acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
647         acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
648         acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
649         acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
650         acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
651         acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
652         acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
653         acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
654
655         /*
656          * Configure Ring Size to the max queue ring size
657          * (used for wrapping purpose)
658          */
659         value = log2_basic(d->sw_ring_size / 64);
660         acc100_reg_write(d, reg_addr->ring_size, value);
661
662         /* Configure tail pointer for use when SDONE enabled */
663         d->tail_ptrs = rte_zmalloc_socket(
664                         dev->device->driver->name,
665                         ACC100_NUM_QGRPS * ACC100_NUM_AQS * sizeof(uint32_t),
666                         RTE_CACHE_LINE_SIZE, socket_id);
667         if (d->tail_ptrs == NULL) {
668                 rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
669                                 dev->device->driver->name,
670                                 dev->data->dev_id);
671                 rte_free(d->sw_rings);
672                 return -ENOMEM;
673         }
674         d->tail_ptr_iova = rte_malloc_virt2iova(d->tail_ptrs);
675
676         phys_high = (uint32_t)(d->tail_ptr_iova >> 32);
677         phys_low  = (uint32_t)(d->tail_ptr_iova);
678         acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
679         acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
680         acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
681         acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
682         acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
683         acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
684         acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
685         acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
686
687         ret = allocate_info_ring(dev);
688         if (ret < 0) {
689                 rte_bbdev_log(ERR, "Failed to allocate info_ring for %s:%u",
690                                 dev->device->driver->name,
691                                 dev->data->dev_id);
692                 /* Continue */
693         }
694
695         d->harq_layout = rte_zmalloc_socket("HARQ Layout",
696                         ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout),
697                         RTE_CACHE_LINE_SIZE, dev->data->socket_id);
698         if (d->harq_layout == NULL) {
699                 rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
700                                 dev->device->driver->name,
701                                 dev->data->dev_id);
702                 rte_free(d->sw_rings);
703                 return -ENOMEM;
704         }
705
706         /* Mark as configured properly */
707         d->configured = true;
708
709         rte_bbdev_log_debug(
710                         "ACC100 (%s) configured  sw_rings = %p, sw_rings_iova = %#"
711                         PRIx64, dev->data->name, d->sw_rings, d->sw_rings_iova);
712
713         return 0;
714 }
715
716 static int
717 acc100_intr_enable(struct rte_bbdev *dev)
718 {
719         int ret;
720         struct acc100_device *d = dev->data->dev_private;
721
722         /* Only MSI are currently supported */
723         if (dev->intr_handle->type == RTE_INTR_HANDLE_VFIO_MSI ||
724                         dev->intr_handle->type == RTE_INTR_HANDLE_UIO) {
725
726                 ret = allocate_info_ring(dev);
727                 if (ret < 0) {
728                         rte_bbdev_log(ERR,
729                                         "Couldn't allocate info ring for device: %s",
730                                         dev->data->name);
731                         return ret;
732                 }
733
734                 ret = rte_intr_enable(dev->intr_handle);
735                 if (ret < 0) {
736                         rte_bbdev_log(ERR,
737                                         "Couldn't enable interrupts for device: %s",
738                                         dev->data->name);
739                         rte_free(d->info_ring);
740                         return ret;
741                 }
742                 ret = rte_intr_callback_register(dev->intr_handle,
743                                 acc100_dev_interrupt_handler, dev);
744                 if (ret < 0) {
745                         rte_bbdev_log(ERR,
746                                         "Couldn't register interrupt callback for device: %s",
747                                         dev->data->name);
748                         rte_free(d->info_ring);
749                         return ret;
750                 }
751
752                 return 0;
753         }
754
755         rte_bbdev_log(ERR, "ACC100 (%s) supports only VFIO MSI interrupts",
756                         dev->data->name);
757         return -ENOTSUP;
758 }
759
760 /* Free memory used for software rings */
761 static int
762 acc100_dev_close(struct rte_bbdev *dev)
763 {
764         struct acc100_device *d = dev->data->dev_private;
765         acc100_check_ir(d);
766         if (d->sw_rings_base != NULL) {
767                 rte_free(d->tail_ptrs);
768                 rte_free(d->info_ring);
769                 rte_free(d->sw_rings_base);
770                 d->sw_rings_base = NULL;
771         }
772         /* Ensure all in flight HW transactions are completed */
773         usleep(ACC100_LONG_WAIT);
774         return 0;
775 }
776
777 /**
778  * Report a ACC100 queue index which is free
779  * Return 0 to 16k for a valid queue_idx or -1 when no queue is available
780  * Note : Only supporting VF0 Bundle for PF mode
781  */
782 static int
783 acc100_find_free_queue_idx(struct rte_bbdev *dev,
784                 const struct rte_bbdev_queue_conf *conf)
785 {
786         struct acc100_device *d = dev->data->dev_private;
787         int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
788         int acc = op_2_acc[conf->op_type];
789         struct rte_acc100_queue_topology *qtop = NULL;
790
791         qtopFromAcc(&qtop, acc, &(d->acc100_conf));
792         if (qtop == NULL)
793                 return -1;
794         /* Identify matching QGroup Index which are sorted in priority order */
795         uint16_t group_idx = qtop->first_qgroup_index;
796         group_idx += conf->priority;
797         if (group_idx >= ACC100_NUM_QGRPS ||
798                         conf->priority >= qtop->num_qgroups) {
799                 rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
800                                 dev->data->name, conf->priority);
801                 return -1;
802         }
803         /* Find a free AQ_idx  */
804         uint16_t aq_idx;
805         for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
806                 if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
807                         /* Mark the Queue as assigned */
808                         d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
809                         /* Report the AQ Index */
810                         return (group_idx << ACC100_GRP_ID_SHIFT) + aq_idx;
811                 }
812         }
813         rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
814                         dev->data->name, conf->priority);
815         return -1;
816 }
817
818 /* Setup ACC100 queue */
819 static int
820 acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
821                 const struct rte_bbdev_queue_conf *conf)
822 {
823         struct acc100_device *d = dev->data->dev_private;
824         struct acc100_queue *q;
825         int16_t q_idx;
826
827         /* Allocate the queue data structure. */
828         q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
829                         RTE_CACHE_LINE_SIZE, conf->socket);
830         if (q == NULL) {
831                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
832                 return -ENOMEM;
833         }
834         if (d == NULL) {
835                 rte_bbdev_log(ERR, "Undefined device");
836                 return -ENODEV;
837         }
838
839         q->d = d;
840         q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
841         q->ring_addr_iova = d->sw_rings_iova + (d->sw_ring_size * queue_id);
842
843         /* Prepare the Ring with default descriptor format */
844         union acc100_dma_desc *desc = NULL;
845         unsigned int desc_idx, b_idx;
846         int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
847                 ACC100_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
848                 ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN));
849
850         for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
851                 desc = q->ring_addr + desc_idx;
852                 desc->req.word0 = ACC100_DMA_DESC_TYPE;
853                 desc->req.word1 = 0; /**< Timestamp */
854                 desc->req.word2 = 0;
855                 desc->req.word3 = 0;
856                 uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
857                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
858                 desc->req.data_ptrs[0].blen = fcw_len;
859                 desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
860                 desc->req.data_ptrs[0].last = 0;
861                 desc->req.data_ptrs[0].dma_ext = 0;
862                 for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS - 1;
863                                 b_idx++) {
864                         desc->req.data_ptrs[b_idx].blkid = ACC100_DMA_BLKID_IN;
865                         desc->req.data_ptrs[b_idx].last = 1;
866                         desc->req.data_ptrs[b_idx].dma_ext = 0;
867                         b_idx++;
868                         desc->req.data_ptrs[b_idx].blkid =
869                                         ACC100_DMA_BLKID_OUT_ENC;
870                         desc->req.data_ptrs[b_idx].last = 1;
871                         desc->req.data_ptrs[b_idx].dma_ext = 0;
872                 }
873                 /* Preset some fields of LDPC FCW */
874                 desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
875                 desc->req.fcw_ld.gain_i = 1;
876                 desc->req.fcw_ld.gain_h = 1;
877         }
878
879         q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
880                         RTE_CACHE_LINE_SIZE,
881                         RTE_CACHE_LINE_SIZE, conf->socket);
882         if (q->lb_in == NULL) {
883                 rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
884                 rte_free(q);
885                 return -ENOMEM;
886         }
887         q->lb_in_addr_iova = rte_malloc_virt2iova(q->lb_in);
888         q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
889                         RTE_CACHE_LINE_SIZE,
890                         RTE_CACHE_LINE_SIZE, conf->socket);
891         if (q->lb_out == NULL) {
892                 rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
893                 rte_free(q->lb_in);
894                 rte_free(q);
895                 return -ENOMEM;
896         }
897         q->lb_out_addr_iova = rte_malloc_virt2iova(q->lb_out);
898
899         /*
900          * Software queue ring wraps synchronously with the HW when it reaches
901          * the boundary of the maximum allocated queue size, no matter what the
902          * sw queue size is. This wrapping is guarded by setting the wrap_mask
903          * to represent the maximum queue size as allocated at the time when
904          * the device has been setup (in configure()).
905          *
906          * The queue depth is set to the queue size value (conf->queue_size).
907          * This limits the occupancy of the queue at any point of time, so that
908          * the queue does not get swamped with enqueue requests.
909          */
910         q->sw_ring_depth = conf->queue_size;
911         q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
912
913         q->op_type = conf->op_type;
914
915         q_idx = acc100_find_free_queue_idx(dev, conf);
916         if (q_idx == -1) {
917                 rte_free(q->lb_in);
918                 rte_free(q->lb_out);
919                 rte_free(q);
920                 return -1;
921         }
922
923         q->qgrp_id = (q_idx >> ACC100_GRP_ID_SHIFT) & 0xF;
924         q->vf_id = (q_idx >> ACC100_VF_ID_SHIFT)  & 0x3F;
925         q->aq_id = q_idx & 0xF;
926         q->aq_depth = (conf->op_type ==  RTE_BBDEV_OP_TURBO_DEC) ?
927                         (1 << d->acc100_conf.q_ul_4g.aq_depth_log2) :
928                         (1 << d->acc100_conf.q_dl_4g.aq_depth_log2);
929
930         q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
931                         queue_offset(d->pf_device,
932                                         q->vf_id, q->qgrp_id, q->aq_id));
933
934         rte_bbdev_log_debug(
935                         "Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p",
936                         dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
937                         q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
938
939         dev->data->queues[queue_id].queue_private = q;
940         return 0;
941 }
942
943 /* Release ACC100 queue */
944 static int
945 acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id)
946 {
947         struct acc100_device *d = dev->data->dev_private;
948         struct acc100_queue *q = dev->data->queues[q_id].queue_private;
949
950         if (q != NULL) {
951                 /* Mark the Queue as un-assigned */
952                 d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
953                                 (1 << q->aq_id));
954                 rte_free(q->lb_in);
955                 rte_free(q->lb_out);
956                 rte_free(q);
957                 dev->data->queues[q_id].queue_private = NULL;
958         }
959
960         return 0;
961 }
962
963 /* Get ACC100 device info */
964 static void
965 acc100_dev_info_get(struct rte_bbdev *dev,
966                 struct rte_bbdev_driver_info *dev_info)
967 {
968         struct acc100_device *d = dev->data->dev_private;
969
970         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
971                 {
972                         .type = RTE_BBDEV_OP_TURBO_DEC,
973                         .cap.turbo_dec = {
974                                 .capability_flags =
975                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
976                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
977                                         RTE_BBDEV_TURBO_HALF_ITERATION_EVEN |
978                                         RTE_BBDEV_TURBO_EARLY_TERMINATION |
979                                         RTE_BBDEV_TURBO_DEC_INTERRUPTS |
980                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
981                                         RTE_BBDEV_TURBO_MAP_DEC |
982                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
983                                         RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,
984                                 .max_llr_modulus = INT8_MAX,
985                                 .num_buffers_src =
986                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
987                                 .num_buffers_hard_out =
988                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
989                                 .num_buffers_soft_out =
990                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
991                         }
992                 },
993                 {
994                         .type = RTE_BBDEV_OP_TURBO_ENC,
995                         .cap.turbo_enc = {
996                                 .capability_flags =
997                                         RTE_BBDEV_TURBO_CRC_24B_ATTACH |
998                                         RTE_BBDEV_TURBO_RV_INDEX_BYPASS |
999                                         RTE_BBDEV_TURBO_RATE_MATCH |
1000                                         RTE_BBDEV_TURBO_ENC_INTERRUPTS |
1001                                         RTE_BBDEV_TURBO_ENC_SCATTER_GATHER,
1002                                 .num_buffers_src =
1003                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
1004                                 .num_buffers_dst =
1005                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
1006                         }
1007                 },
1008                 {
1009                         .type   = RTE_BBDEV_OP_LDPC_ENC,
1010                         .cap.ldpc_enc = {
1011                                 .capability_flags =
1012                                         RTE_BBDEV_LDPC_RATE_MATCH |
1013                                         RTE_BBDEV_LDPC_CRC_24B_ATTACH |
1014                                         RTE_BBDEV_LDPC_INTERLEAVER_BYPASS |
1015                                         RTE_BBDEV_LDPC_ENC_INTERRUPTS,
1016                                 .num_buffers_src =
1017                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1018                                 .num_buffers_dst =
1019                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1020                         }
1021                 },
1022                 {
1023                         .type   = RTE_BBDEV_OP_LDPC_DEC,
1024                         .cap.ldpc_dec = {
1025                         .capability_flags =
1026                                 RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
1027                                 RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
1028                                 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
1029                                 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
1030 #ifdef ACC100_EXT_MEM
1031                                 RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK |
1032                                 RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE |
1033                                 RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE |
1034 #endif
1035                                 RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
1036                                 RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS |
1037                                 RTE_BBDEV_LDPC_DECODE_BYPASS |
1038                                 RTE_BBDEV_LDPC_DEC_SCATTER_GATHER |
1039                                 RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION |
1040                                 RTE_BBDEV_LDPC_LLR_COMPRESSION |
1041                                 RTE_BBDEV_LDPC_DEC_INTERRUPTS,
1042                         .llr_size = 8,
1043                         .llr_decimals = 1,
1044                         .num_buffers_src =
1045                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1046                         .num_buffers_hard_out =
1047                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1048                         .num_buffers_soft_out = 0,
1049                         }
1050                 },
1051                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
1052         };
1053
1054         static struct rte_bbdev_queue_conf default_queue_conf;
1055         default_queue_conf.socket = dev->data->socket_id;
1056         default_queue_conf.queue_size = ACC100_MAX_QUEUE_DEPTH;
1057
1058         dev_info->driver_name = dev->device->driver->name;
1059
1060         /* Read and save the populated config from ACC100 registers */
1061         fetch_acc100_config(dev);
1062
1063         /* This isn't ideal because it reports the maximum number of queues but
1064          * does not provide info on how many can be uplink/downlink or different
1065          * priorities
1066          */
1067         dev_info->max_num_queues =
1068                         d->acc100_conf.q_dl_5g.num_aqs_per_groups *
1069                         d->acc100_conf.q_dl_5g.num_qgroups +
1070                         d->acc100_conf.q_ul_5g.num_aqs_per_groups *
1071                         d->acc100_conf.q_ul_5g.num_qgroups +
1072                         d->acc100_conf.q_dl_4g.num_aqs_per_groups *
1073                         d->acc100_conf.q_dl_4g.num_qgroups +
1074                         d->acc100_conf.q_ul_4g.num_aqs_per_groups *
1075                         d->acc100_conf.q_ul_4g.num_qgroups;
1076         dev_info->queue_size_lim = ACC100_MAX_QUEUE_DEPTH;
1077         dev_info->hardware_accelerated = true;
1078         dev_info->max_dl_queue_priority =
1079                         d->acc100_conf.q_dl_4g.num_qgroups - 1;
1080         dev_info->max_ul_queue_priority =
1081                         d->acc100_conf.q_ul_4g.num_qgroups - 1;
1082         dev_info->default_queue_conf = default_queue_conf;
1083         dev_info->cpu_flag_reqs = NULL;
1084         dev_info->min_alignment = 64;
1085         dev_info->capabilities = bbdev_capabilities;
1086 #ifdef ACC100_EXT_MEM
1087         dev_info->harq_buffer_size = d->ddr_size;
1088 #else
1089         dev_info->harq_buffer_size = 0;
1090 #endif
1091         acc100_check_ir(d);
1092 }
1093
1094 static int
1095 acc100_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
1096 {
1097         struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
1098
1099         if (dev->intr_handle->type != RTE_INTR_HANDLE_VFIO_MSI &&
1100                         dev->intr_handle->type != RTE_INTR_HANDLE_UIO)
1101                 return -ENOTSUP;
1102
1103         q->irq_enable = 1;
1104         return 0;
1105 }
1106
1107 static int
1108 acc100_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
1109 {
1110         struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
1111
1112         if (dev->intr_handle->type != RTE_INTR_HANDLE_VFIO_MSI &&
1113                         dev->intr_handle->type != RTE_INTR_HANDLE_UIO)
1114                 return -ENOTSUP;
1115
1116         q->irq_enable = 0;
1117         return 0;
1118 }
1119
1120 static const struct rte_bbdev_ops acc100_bbdev_ops = {
1121         .setup_queues = acc100_setup_queues,
1122         .intr_enable = acc100_intr_enable,
1123         .close = acc100_dev_close,
1124         .info_get = acc100_dev_info_get,
1125         .queue_setup = acc100_queue_setup,
1126         .queue_release = acc100_queue_release,
1127         .queue_intr_enable = acc100_queue_intr_enable,
1128         .queue_intr_disable = acc100_queue_intr_disable
1129 };
1130
1131 /* ACC100 PCI PF address map */
1132 static struct rte_pci_id pci_id_acc100_pf_map[] = {
1133         {
1134                 RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_PF_DEVICE_ID)
1135         },
1136         {.device_id = 0},
1137 };
1138
1139 /* ACC100 PCI VF address map */
1140 static struct rte_pci_id pci_id_acc100_vf_map[] = {
1141         {
1142                 RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_VF_DEVICE_ID)
1143         },
1144         {.device_id = 0},
1145 };
1146
1147 /* Read flag value 0/1 from bitmap */
1148 static inline bool
1149 check_bit(uint32_t bitmap, uint32_t bitmask)
1150 {
1151         return bitmap & bitmask;
1152 }
1153
1154 static inline char *
1155 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
1156 {
1157         if (unlikely(len > rte_pktmbuf_tailroom(m)))
1158                 return NULL;
1159
1160         char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
1161         m->data_len = (uint16_t)(m->data_len + len);
1162         m_head->pkt_len  = (m_head->pkt_len + len);
1163         return tail;
1164 }
1165
1166 /* Fill in a frame control word for turbo encoding. */
1167 static inline void
1168 acc100_fcw_te_fill(const struct rte_bbdev_enc_op *op, struct acc100_fcw_te *fcw)
1169 {
1170         fcw->code_block_mode = op->turbo_enc.code_block_mode;
1171         if (fcw->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1172                 fcw->k_neg = op->turbo_enc.tb_params.k_neg;
1173                 fcw->k_pos = op->turbo_enc.tb_params.k_pos;
1174                 fcw->c_neg = op->turbo_enc.tb_params.c_neg;
1175                 fcw->c = op->turbo_enc.tb_params.c;
1176                 fcw->ncb_neg = op->turbo_enc.tb_params.ncb_neg;
1177                 fcw->ncb_pos = op->turbo_enc.tb_params.ncb_pos;
1178
1179                 if (check_bit(op->turbo_enc.op_flags,
1180                                 RTE_BBDEV_TURBO_RATE_MATCH)) {
1181                         fcw->bypass_rm = 0;
1182                         fcw->cab = op->turbo_enc.tb_params.cab;
1183                         fcw->ea = op->turbo_enc.tb_params.ea;
1184                         fcw->eb = op->turbo_enc.tb_params.eb;
1185                 } else {
1186                         /* E is set to the encoding output size when RM is
1187                          * bypassed.
1188                          */
1189                         fcw->bypass_rm = 1;
1190                         fcw->cab = fcw->c_neg;
1191                         fcw->ea = 3 * fcw->k_neg + 12;
1192                         fcw->eb = 3 * fcw->k_pos + 12;
1193                 }
1194         } else { /* For CB mode */
1195                 fcw->k_pos = op->turbo_enc.cb_params.k;
1196                 fcw->ncb_pos = op->turbo_enc.cb_params.ncb;
1197
1198                 if (check_bit(op->turbo_enc.op_flags,
1199                                 RTE_BBDEV_TURBO_RATE_MATCH)) {
1200                         fcw->bypass_rm = 0;
1201                         fcw->eb = op->turbo_enc.cb_params.e;
1202                 } else {
1203                         /* E is set to the encoding output size when RM is
1204                          * bypassed.
1205                          */
1206                         fcw->bypass_rm = 1;
1207                         fcw->eb = 3 * fcw->k_pos + 12;
1208                 }
1209         }
1210
1211         fcw->bypass_rv_idx1 = check_bit(op->turbo_enc.op_flags,
1212                         RTE_BBDEV_TURBO_RV_INDEX_BYPASS);
1213         fcw->code_block_crc = check_bit(op->turbo_enc.op_flags,
1214                         RTE_BBDEV_TURBO_CRC_24B_ATTACH);
1215         fcw->rv_idx1 = op->turbo_enc.rv_index;
1216 }
1217
1218 /* Compute value of k0.
1219  * Based on 3GPP 38.212 Table 5.4.2.1-2
1220  * Starting position of different redundancy versions, k0
1221  */
1222 static inline uint16_t
1223 get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
1224 {
1225         if (rv_index == 0)
1226                 return 0;
1227         uint16_t n = (bg == 1 ? ACC100_N_ZC_1 : ACC100_N_ZC_2) * z_c;
1228         if (n_cb == n) {
1229                 if (rv_index == 1)
1230                         return (bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * z_c;
1231                 else if (rv_index == 2)
1232                         return (bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * z_c;
1233                 else
1234                         return (bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * z_c;
1235         }
1236         /* LBRM case - includes a division by N */
1237         if (rv_index == 1)
1238                 return (((bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * n_cb)
1239                                 / n) * z_c;
1240         else if (rv_index == 2)
1241                 return (((bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * n_cb)
1242                                 / n) * z_c;
1243         else
1244                 return (((bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * n_cb)
1245                                 / n) * z_c;
1246 }
1247
1248 /* Fill in a frame control word for LDPC encoding. */
1249 static inline void
1250 acc100_fcw_le_fill(const struct rte_bbdev_enc_op *op,
1251                 struct acc100_fcw_le *fcw, int num_cb)
1252 {
1253         fcw->qm = op->ldpc_enc.q_m;
1254         fcw->nfiller = op->ldpc_enc.n_filler;
1255         fcw->BG = (op->ldpc_enc.basegraph - 1);
1256         fcw->Zc = op->ldpc_enc.z_c;
1257         fcw->ncb = op->ldpc_enc.n_cb;
1258         fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_enc.basegraph,
1259                         op->ldpc_enc.rv_index);
1260         fcw->rm_e = op->ldpc_enc.cb_params.e;
1261         fcw->crc_select = check_bit(op->ldpc_enc.op_flags,
1262                         RTE_BBDEV_LDPC_CRC_24B_ATTACH);
1263         fcw->bypass_intlv = check_bit(op->ldpc_enc.op_flags,
1264                         RTE_BBDEV_LDPC_INTERLEAVER_BYPASS);
1265         fcw->mcb_count = num_cb;
1266 }
1267
1268 /* Fill in a frame control word for turbo decoding. */
1269 static inline void
1270 acc100_fcw_td_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_td *fcw)
1271 {
1272         /* Note : Early termination is always enabled for 4GUL */
1273         fcw->fcw_ver = 1;
1274         if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1275                 fcw->k_pos = op->turbo_dec.tb_params.k_pos;
1276         else
1277                 fcw->k_pos = op->turbo_dec.cb_params.k;
1278         fcw->turbo_crc_type = check_bit(op->turbo_dec.op_flags,
1279                         RTE_BBDEV_TURBO_CRC_TYPE_24B);
1280         fcw->bypass_sb_deint = 0;
1281         fcw->raw_decoder_input_on = 0;
1282         fcw->max_iter = op->turbo_dec.iter_max;
1283         fcw->half_iter_on = !check_bit(op->turbo_dec.op_flags,
1284                         RTE_BBDEV_TURBO_HALF_ITERATION_EVEN);
1285 }
1286
1287 /* Fill in a frame control word for LDPC decoding. */
1288 static inline void
1289 acc100_fcw_ld_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw,
1290                 union acc100_harq_layout_data *harq_layout)
1291 {
1292         uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset;
1293         uint16_t harq_index;
1294         uint32_t l;
1295         bool harq_prun = false;
1296
1297         fcw->qm = op->ldpc_dec.q_m;
1298         fcw->nfiller = op->ldpc_dec.n_filler;
1299         fcw->BG = (op->ldpc_dec.basegraph - 1);
1300         fcw->Zc = op->ldpc_dec.z_c;
1301         fcw->ncb = op->ldpc_dec.n_cb;
1302         fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_dec.basegraph,
1303                         op->ldpc_dec.rv_index);
1304         if (op->ldpc_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
1305                 fcw->rm_e = op->ldpc_dec.cb_params.e;
1306         else
1307                 fcw->rm_e = (op->ldpc_dec.tb_params.r <
1308                                 op->ldpc_dec.tb_params.cab) ?
1309                                                 op->ldpc_dec.tb_params.ea :
1310                                                 op->ldpc_dec.tb_params.eb;
1311
1312         fcw->hcin_en = check_bit(op->ldpc_dec.op_flags,
1313                         RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
1314         fcw->hcout_en = check_bit(op->ldpc_dec.op_flags,
1315                         RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
1316         fcw->crc_select = check_bit(op->ldpc_dec.op_flags,
1317                         RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
1318         fcw->bypass_dec = check_bit(op->ldpc_dec.op_flags,
1319                         RTE_BBDEV_LDPC_DECODE_BYPASS);
1320         fcw->bypass_intlv = check_bit(op->ldpc_dec.op_flags,
1321                         RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS);
1322         if (op->ldpc_dec.q_m == 1) {
1323                 fcw->bypass_intlv = 1;
1324                 fcw->qm = 2;
1325         }
1326         fcw->hcin_decomp_mode = check_bit(op->ldpc_dec.op_flags,
1327                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1328         fcw->hcout_comp_mode = check_bit(op->ldpc_dec.op_flags,
1329                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1330         fcw->llr_pack_mode = check_bit(op->ldpc_dec.op_flags,
1331                         RTE_BBDEV_LDPC_LLR_COMPRESSION);
1332         harq_index = op->ldpc_dec.harq_combined_output.offset /
1333                         ACC100_HARQ_OFFSET;
1334 #ifdef ACC100_EXT_MEM
1335         /* Limit cases when HARQ pruning is valid */
1336         harq_prun = ((op->ldpc_dec.harq_combined_output.offset %
1337                         ACC100_HARQ_OFFSET) == 0) &&
1338                         (op->ldpc_dec.harq_combined_output.offset <= UINT16_MAX
1339                         * ACC100_HARQ_OFFSET);
1340 #endif
1341         if (fcw->hcin_en > 0) {
1342                 harq_in_length = op->ldpc_dec.harq_combined_input.length;
1343                 if (fcw->hcin_decomp_mode > 0)
1344                         harq_in_length = harq_in_length * 8 / 6;
1345                 harq_in_length = RTE_ALIGN(harq_in_length, 64);
1346                 if ((harq_layout[harq_index].offset > 0) & harq_prun) {
1347                         rte_bbdev_log_debug("HARQ IN offset unexpected for now\n");
1348                         fcw->hcin_size0 = harq_layout[harq_index].size0;
1349                         fcw->hcin_offset = harq_layout[harq_index].offset;
1350                         fcw->hcin_size1 = harq_in_length -
1351                                         harq_layout[harq_index].offset;
1352                 } else {
1353                         fcw->hcin_size0 = harq_in_length;
1354                         fcw->hcin_offset = 0;
1355                         fcw->hcin_size1 = 0;
1356                 }
1357         } else {
1358                 fcw->hcin_size0 = 0;
1359                 fcw->hcin_offset = 0;
1360                 fcw->hcin_size1 = 0;
1361         }
1362
1363         fcw->itmax = op->ldpc_dec.iter_max;
1364         fcw->itstop = check_bit(op->ldpc_dec.op_flags,
1365                         RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
1366         fcw->synd_precoder = fcw->itstop;
1367         /*
1368          * These are all implicitly set
1369          * fcw->synd_post = 0;
1370          * fcw->so_en = 0;
1371          * fcw->so_bypass_rm = 0;
1372          * fcw->so_bypass_intlv = 0;
1373          * fcw->dec_convllr = 0;
1374          * fcw->hcout_convllr = 0;
1375          * fcw->hcout_size1 = 0;
1376          * fcw->so_it = 0;
1377          * fcw->hcout_offset = 0;
1378          * fcw->negstop_th = 0;
1379          * fcw->negstop_it = 0;
1380          * fcw->negstop_en = 0;
1381          * fcw->gain_i = 1;
1382          * fcw->gain_h = 1;
1383          */
1384         if (fcw->hcout_en > 0) {
1385                 parity_offset = (op->ldpc_dec.basegraph == 1 ? 20 : 8)
1386                         * op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
1387                 k0_p = (fcw->k0 > parity_offset) ?
1388                                 fcw->k0 - op->ldpc_dec.n_filler : fcw->k0;
1389                 ncb_p = fcw->ncb - op->ldpc_dec.n_filler;
1390                 l = k0_p + fcw->rm_e;
1391                 harq_out_length = (uint16_t) fcw->hcin_size0;
1392                 harq_out_length = RTE_MIN(RTE_MAX(harq_out_length, l), ncb_p);
1393                 harq_out_length = (harq_out_length + 0x3F) & 0xFFC0;
1394                 if ((k0_p > fcw->hcin_size0 + ACC100_HARQ_OFFSET_THRESHOLD) &&
1395                                 harq_prun) {
1396                         fcw->hcout_size0 = (uint16_t) fcw->hcin_size0;
1397                         fcw->hcout_offset = k0_p & 0xFFC0;
1398                         fcw->hcout_size1 = harq_out_length - fcw->hcout_offset;
1399                 } else {
1400                         fcw->hcout_size0 = harq_out_length;
1401                         fcw->hcout_size1 = 0;
1402                         fcw->hcout_offset = 0;
1403                 }
1404                 harq_layout[harq_index].offset = fcw->hcout_offset;
1405                 harq_layout[harq_index].size0 = fcw->hcout_size0;
1406         } else {
1407                 fcw->hcout_size0 = 0;
1408                 fcw->hcout_size1 = 0;
1409                 fcw->hcout_offset = 0;
1410         }
1411 }
1412
1413 /**
1414  * Fills descriptor with data pointers of one block type.
1415  *
1416  * @param desc
1417  *   Pointer to DMA descriptor.
1418  * @param input
1419  *   Pointer to pointer to input data which will be encoded. It can be changed
1420  *   and points to next segment in scatter-gather case.
1421  * @param offset
1422  *   Input offset in rte_mbuf structure. It is used for calculating the point
1423  *   where data is starting.
1424  * @param cb_len
1425  *   Length of currently processed Code Block
1426  * @param seg_total_left
1427  *   It indicates how many bytes still left in segment (mbuf) for further
1428  *   processing.
1429  * @param op_flags
1430  *   Store information about device capabilities
1431  * @param next_triplet
1432  *   Index for ACC100 DMA Descriptor triplet
1433  *
1434  * @return
1435  *   Returns index of next triplet on success, other value if lengths of
1436  *   pkt and processed cb do not match.
1437  *
1438  */
1439 static inline int
1440 acc100_dma_fill_blk_type_in(struct acc100_dma_req_desc *desc,
1441                 struct rte_mbuf **input, uint32_t *offset, uint32_t cb_len,
1442                 uint32_t *seg_total_left, int next_triplet)
1443 {
1444         uint32_t part_len;
1445         struct rte_mbuf *m = *input;
1446
1447         part_len = (*seg_total_left < cb_len) ? *seg_total_left : cb_len;
1448         cb_len -= part_len;
1449         *seg_total_left -= part_len;
1450
1451         desc->data_ptrs[next_triplet].address =
1452                         rte_pktmbuf_iova_offset(m, *offset);
1453         desc->data_ptrs[next_triplet].blen = part_len;
1454         desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
1455         desc->data_ptrs[next_triplet].last = 0;
1456         desc->data_ptrs[next_triplet].dma_ext = 0;
1457         *offset += part_len;
1458         next_triplet++;
1459
1460         while (cb_len > 0) {
1461                 if (next_triplet < ACC100_DMA_MAX_NUM_POINTERS &&
1462                                 m->next != NULL) {
1463
1464                         m = m->next;
1465                         *seg_total_left = rte_pktmbuf_data_len(m);
1466                         part_len = (*seg_total_left < cb_len) ?
1467                                         *seg_total_left :
1468                                         cb_len;
1469                         desc->data_ptrs[next_triplet].address =
1470                                         rte_pktmbuf_iova_offset(m, 0);
1471                         desc->data_ptrs[next_triplet].blen = part_len;
1472                         desc->data_ptrs[next_triplet].blkid =
1473                                         ACC100_DMA_BLKID_IN;
1474                         desc->data_ptrs[next_triplet].last = 0;
1475                         desc->data_ptrs[next_triplet].dma_ext = 0;
1476                         cb_len -= part_len;
1477                         *seg_total_left -= part_len;
1478                         /* Initializing offset for next segment (mbuf) */
1479                         *offset = part_len;
1480                         next_triplet++;
1481                 } else {
1482                         rte_bbdev_log(ERR,
1483                                 "Some data still left for processing: "
1484                                 "data_left: %u, next_triplet: %u, next_mbuf: %p",
1485                                 cb_len, next_triplet, m->next);
1486                         return -EINVAL;
1487                 }
1488         }
1489         /* Storing new mbuf as it could be changed in scatter-gather case*/
1490         *input = m;
1491
1492         return next_triplet;
1493 }
1494
1495 /* Fills descriptor with data pointers of one block type.
1496  * Returns index of next triplet on success, other value if lengths of
1497  * output data and processed mbuf do not match.
1498  */
1499 static inline int
1500 acc100_dma_fill_blk_type_out(struct acc100_dma_req_desc *desc,
1501                 struct rte_mbuf *output, uint32_t out_offset,
1502                 uint32_t output_len, int next_triplet, int blk_id)
1503 {
1504         desc->data_ptrs[next_triplet].address =
1505                         rte_pktmbuf_iova_offset(output, out_offset);
1506         desc->data_ptrs[next_triplet].blen = output_len;
1507         desc->data_ptrs[next_triplet].blkid = blk_id;
1508         desc->data_ptrs[next_triplet].last = 0;
1509         desc->data_ptrs[next_triplet].dma_ext = 0;
1510         next_triplet++;
1511
1512         return next_triplet;
1513 }
1514
1515 static inline void
1516 acc100_header_init(struct acc100_dma_req_desc *desc)
1517 {
1518         desc->word0 = ACC100_DMA_DESC_TYPE;
1519         desc->word1 = 0; /**< Timestamp could be disabled */
1520         desc->word2 = 0;
1521         desc->word3 = 0;
1522         desc->numCBs = 1;
1523 }
1524
1525 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1526 /* Check if any input data is unexpectedly left for processing */
1527 static inline int
1528 check_mbuf_total_left(uint32_t mbuf_total_left)
1529 {
1530         if (mbuf_total_left == 0)
1531                 return 0;
1532         rte_bbdev_log(ERR,
1533                 "Some date still left for processing: mbuf_total_left = %u",
1534                 mbuf_total_left);
1535         return -EINVAL;
1536 }
1537 #endif
1538
1539 static inline int
1540 acc100_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
1541                 struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1542                 struct rte_mbuf *output, uint32_t *in_offset,
1543                 uint32_t *out_offset, uint32_t *out_length,
1544                 uint32_t *mbuf_total_left, uint32_t *seg_total_left, uint8_t r)
1545 {
1546         int next_triplet = 1; /* FCW already done */
1547         uint32_t e, ea, eb, length;
1548         uint16_t k, k_neg, k_pos;
1549         uint8_t cab, c_neg;
1550
1551         desc->word0 = ACC100_DMA_DESC_TYPE;
1552         desc->word1 = 0; /**< Timestamp could be disabled */
1553         desc->word2 = 0;
1554         desc->word3 = 0;
1555         desc->numCBs = 1;
1556
1557         if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1558                 ea = op->turbo_enc.tb_params.ea;
1559                 eb = op->turbo_enc.tb_params.eb;
1560                 cab = op->turbo_enc.tb_params.cab;
1561                 k_neg = op->turbo_enc.tb_params.k_neg;
1562                 k_pos = op->turbo_enc.tb_params.k_pos;
1563                 c_neg = op->turbo_enc.tb_params.c_neg;
1564                 e = (r < cab) ? ea : eb;
1565                 k = (r < c_neg) ? k_neg : k_pos;
1566         } else {
1567                 e = op->turbo_enc.cb_params.e;
1568                 k = op->turbo_enc.cb_params.k;
1569         }
1570
1571         if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1572                 length = (k - 24) >> 3;
1573         else
1574                 length = k >> 3;
1575
1576         if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < length))) {
1577                 rte_bbdev_log(ERR,
1578                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1579                                 *mbuf_total_left, length);
1580                 return -1;
1581         }
1582
1583         next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
1584                         length, seg_total_left, next_triplet);
1585         if (unlikely(next_triplet < 0)) {
1586                 rte_bbdev_log(ERR,
1587                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1588                                 op);
1589                 return -1;
1590         }
1591         desc->data_ptrs[next_triplet - 1].last = 1;
1592         desc->m2dlen = next_triplet;
1593         *mbuf_total_left -= length;
1594
1595         /* Set output length */
1596         if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
1597                 /* Integer round up division by 8 */
1598                 *out_length = (e + 7) >> 3;
1599         else
1600                 *out_length = (k >> 3) * 3 + 2;
1601
1602         next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
1603                         *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
1604         if (unlikely(next_triplet < 0)) {
1605                 rte_bbdev_log(ERR,
1606                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1607                                 op);
1608                 return -1;
1609         }
1610         op->turbo_enc.output.length += *out_length;
1611         *out_offset += *out_length;
1612         desc->data_ptrs[next_triplet - 1].last = 1;
1613         desc->d2mlen = next_triplet - desc->m2dlen;
1614
1615         desc->op_addr = op;
1616
1617         return 0;
1618 }
1619
1620 static inline int
1621 acc100_dma_desc_le_fill(struct rte_bbdev_enc_op *op,
1622                 struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1623                 struct rte_mbuf *output, uint32_t *in_offset,
1624                 uint32_t *out_offset, uint32_t *out_length,
1625                 uint32_t *mbuf_total_left, uint32_t *seg_total_left)
1626 {
1627         int next_triplet = 1; /* FCW already done */
1628         uint16_t K, in_length_in_bits, in_length_in_bytes;
1629         struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
1630
1631         acc100_header_init(desc);
1632
1633         K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
1634         in_length_in_bits = K - enc->n_filler;
1635         if ((enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) ||
1636                         (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH))
1637                 in_length_in_bits -= 24;
1638         in_length_in_bytes = in_length_in_bits >> 3;
1639
1640         if (unlikely((*mbuf_total_left == 0) ||
1641                         (*mbuf_total_left < in_length_in_bytes))) {
1642                 rte_bbdev_log(ERR,
1643                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1644                                 *mbuf_total_left, in_length_in_bytes);
1645                 return -1;
1646         }
1647
1648         next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
1649                         in_length_in_bytes,
1650                         seg_total_left, next_triplet);
1651         if (unlikely(next_triplet < 0)) {
1652                 rte_bbdev_log(ERR,
1653                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1654                                 op);
1655                 return -1;
1656         }
1657         desc->data_ptrs[next_triplet - 1].last = 1;
1658         desc->m2dlen = next_triplet;
1659         *mbuf_total_left -= in_length_in_bytes;
1660
1661         /* Set output length */
1662         /* Integer round up division by 8 */
1663         *out_length = (enc->cb_params.e + 7) >> 3;
1664
1665         next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
1666                         *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
1667         op->ldpc_enc.output.length += *out_length;
1668         *out_offset += *out_length;
1669         desc->data_ptrs[next_triplet - 1].last = 1;
1670         desc->data_ptrs[next_triplet - 1].dma_ext = 0;
1671         desc->d2mlen = next_triplet - desc->m2dlen;
1672
1673         desc->op_addr = op;
1674
1675         return 0;
1676 }
1677
1678 static inline int
1679 acc100_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
1680                 struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1681                 struct rte_mbuf *h_output, struct rte_mbuf *s_output,
1682                 uint32_t *in_offset, uint32_t *h_out_offset,
1683                 uint32_t *s_out_offset, uint32_t *h_out_length,
1684                 uint32_t *s_out_length, uint32_t *mbuf_total_left,
1685                 uint32_t *seg_total_left, uint8_t r)
1686 {
1687         int next_triplet = 1; /* FCW already done */
1688         uint16_t k;
1689         uint16_t crc24_overlap = 0;
1690         uint32_t e, kw;
1691
1692         desc->word0 = ACC100_DMA_DESC_TYPE;
1693         desc->word1 = 0; /**< Timestamp could be disabled */
1694         desc->word2 = 0;
1695         desc->word3 = 0;
1696         desc->numCBs = 1;
1697
1698         if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1699                 k = (r < op->turbo_dec.tb_params.c_neg)
1700                         ? op->turbo_dec.tb_params.k_neg
1701                         : op->turbo_dec.tb_params.k_pos;
1702                 e = (r < op->turbo_dec.tb_params.cab)
1703                         ? op->turbo_dec.tb_params.ea
1704                         : op->turbo_dec.tb_params.eb;
1705         } else {
1706                 k = op->turbo_dec.cb_params.k;
1707                 e = op->turbo_dec.cb_params.e;
1708         }
1709
1710         if ((op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1711                 && !check_bit(op->turbo_dec.op_flags,
1712                 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1713                 crc24_overlap = 24;
1714
1715         /* Calculates circular buffer size.
1716          * According to 3gpp 36.212 section 5.1.4.2
1717          *   Kw = 3 * Kpi,
1718          * where:
1719          *   Kpi = nCol * nRow
1720          * where nCol is 32 and nRow can be calculated from:
1721          *   D =< nCol * nRow
1722          * where D is the size of each output from turbo encoder block (k + 4).
1723          */
1724         kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1725
1726         if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < kw))) {
1727                 rte_bbdev_log(ERR,
1728                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1729                                 *mbuf_total_left, kw);
1730                 return -1;
1731         }
1732
1733         next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset, kw,
1734                         seg_total_left, next_triplet);
1735         if (unlikely(next_triplet < 0)) {
1736                 rte_bbdev_log(ERR,
1737                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1738                                 op);
1739                 return -1;
1740         }
1741         desc->data_ptrs[next_triplet - 1].last = 1;
1742         desc->m2dlen = next_triplet;
1743         *mbuf_total_left -= kw;
1744
1745         next_triplet = acc100_dma_fill_blk_type_out(
1746                         desc, h_output, *h_out_offset,
1747                         k >> 3, next_triplet, ACC100_DMA_BLKID_OUT_HARD);
1748         if (unlikely(next_triplet < 0)) {
1749                 rte_bbdev_log(ERR,
1750                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1751                                 op);
1752                 return -1;
1753         }
1754
1755         *h_out_length = ((k - crc24_overlap) >> 3);
1756         op->turbo_dec.hard_output.length += *h_out_length;
1757         *h_out_offset += *h_out_length;
1758
1759         /* Soft output */
1760         if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
1761                 if (check_bit(op->turbo_dec.op_flags,
1762                                 RTE_BBDEV_TURBO_EQUALIZER))
1763                         *s_out_length = e;
1764                 else
1765                         *s_out_length = (k * 3) + 12;
1766
1767                 next_triplet = acc100_dma_fill_blk_type_out(desc, s_output,
1768                                 *s_out_offset, *s_out_length, next_triplet,
1769                                 ACC100_DMA_BLKID_OUT_SOFT);
1770                 if (unlikely(next_triplet < 0)) {
1771                         rte_bbdev_log(ERR,
1772                                         "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1773                                         op);
1774                         return -1;
1775                 }
1776
1777                 op->turbo_dec.soft_output.length += *s_out_length;
1778                 *s_out_offset += *s_out_length;
1779         }
1780
1781         desc->data_ptrs[next_triplet - 1].last = 1;
1782         desc->d2mlen = next_triplet - desc->m2dlen;
1783
1784         desc->op_addr = op;
1785
1786         return 0;
1787 }
1788
1789 static inline int
1790 acc100_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
1791                 struct acc100_dma_req_desc *desc,
1792                 struct rte_mbuf **input, struct rte_mbuf *h_output,
1793                 uint32_t *in_offset, uint32_t *h_out_offset,
1794                 uint32_t *h_out_length, uint32_t *mbuf_total_left,
1795                 uint32_t *seg_total_left,
1796                 struct acc100_fcw_ld *fcw)
1797 {
1798         struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1799         int next_triplet = 1; /* FCW already done */
1800         uint32_t input_length;
1801         uint16_t output_length, crc24_overlap = 0;
1802         uint16_t sys_cols, K, h_p_size, h_np_size;
1803         bool h_comp = check_bit(dec->op_flags,
1804                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1805
1806         acc100_header_init(desc);
1807
1808         if (check_bit(op->ldpc_dec.op_flags,
1809                         RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
1810                 crc24_overlap = 24;
1811
1812         /* Compute some LDPC BG lengths */
1813         input_length = dec->cb_params.e;
1814         if (check_bit(op->ldpc_dec.op_flags,
1815                         RTE_BBDEV_LDPC_LLR_COMPRESSION))
1816                 input_length = (input_length * 3 + 3) / 4;
1817         sys_cols = (dec->basegraph == 1) ? 22 : 10;
1818         K = sys_cols * dec->z_c;
1819         output_length = K - dec->n_filler - crc24_overlap;
1820
1821         if (unlikely((*mbuf_total_left == 0) ||
1822                         (*mbuf_total_left < input_length))) {
1823                 rte_bbdev_log(ERR,
1824                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1825                                 *mbuf_total_left, input_length);
1826                 return -1;
1827         }
1828
1829         next_triplet = acc100_dma_fill_blk_type_in(desc, input,
1830                         in_offset, input_length,
1831                         seg_total_left, next_triplet);
1832
1833         if (unlikely(next_triplet < 0)) {
1834                 rte_bbdev_log(ERR,
1835                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1836                                 op);
1837                 return -1;
1838         }
1839
1840         if (check_bit(op->ldpc_dec.op_flags,
1841                                 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1842                 h_p_size = fcw->hcin_size0 + fcw->hcin_size1;
1843                 if (h_comp)
1844                         h_p_size = (h_p_size * 3 + 3) / 4;
1845                 desc->data_ptrs[next_triplet].address =
1846                                 dec->harq_combined_input.offset;
1847                 desc->data_ptrs[next_triplet].blen = h_p_size;
1848                 desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN_HARQ;
1849                 desc->data_ptrs[next_triplet].dma_ext = 1;
1850 #ifndef ACC100_EXT_MEM
1851                 acc100_dma_fill_blk_type_out(
1852                                 desc,
1853                                 op->ldpc_dec.harq_combined_input.data,
1854                                 op->ldpc_dec.harq_combined_input.offset,
1855                                 h_p_size,
1856                                 next_triplet,
1857                                 ACC100_DMA_BLKID_IN_HARQ);
1858 #endif
1859                 next_triplet++;
1860         }
1861
1862         desc->data_ptrs[next_triplet - 1].last = 1;
1863         desc->m2dlen = next_triplet;
1864         *mbuf_total_left -= input_length;
1865
1866         next_triplet = acc100_dma_fill_blk_type_out(desc, h_output,
1867                         *h_out_offset, output_length >> 3, next_triplet,
1868                         ACC100_DMA_BLKID_OUT_HARD);
1869
1870         if (check_bit(op->ldpc_dec.op_flags,
1871                                 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1872                 /* Pruned size of the HARQ */
1873                 h_p_size = fcw->hcout_size0 + fcw->hcout_size1;
1874                 /* Non-Pruned size of the HARQ */
1875                 h_np_size = fcw->hcout_offset > 0 ?
1876                                 fcw->hcout_offset + fcw->hcout_size1 :
1877                                 h_p_size;
1878                 if (h_comp) {
1879                         h_np_size = (h_np_size * 3 + 3) / 4;
1880                         h_p_size = (h_p_size * 3 + 3) / 4;
1881                 }
1882                 dec->harq_combined_output.length = h_np_size;
1883                 desc->data_ptrs[next_triplet].address =
1884                                 dec->harq_combined_output.offset;
1885                 desc->data_ptrs[next_triplet].blen = h_p_size;
1886                 desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARQ;
1887                 desc->data_ptrs[next_triplet].dma_ext = 1;
1888 #ifndef ACC100_EXT_MEM
1889                 acc100_dma_fill_blk_type_out(
1890                                 desc,
1891                                 dec->harq_combined_output.data,
1892                                 dec->harq_combined_output.offset,
1893                                 h_p_size,
1894                                 next_triplet,
1895                                 ACC100_DMA_BLKID_OUT_HARQ);
1896 #endif
1897                 next_triplet++;
1898         }
1899
1900         *h_out_length = output_length >> 3;
1901         dec->hard_output.length += *h_out_length;
1902         *h_out_offset += *h_out_length;
1903         desc->data_ptrs[next_triplet - 1].last = 1;
1904         desc->d2mlen = next_triplet - desc->m2dlen;
1905
1906         desc->op_addr = op;
1907
1908         return 0;
1909 }
1910
1911 static inline void
1912 acc100_dma_desc_ld_update(struct rte_bbdev_dec_op *op,
1913                 struct acc100_dma_req_desc *desc,
1914                 struct rte_mbuf *input, struct rte_mbuf *h_output,
1915                 uint32_t *in_offset, uint32_t *h_out_offset,
1916                 uint32_t *h_out_length,
1917                 union acc100_harq_layout_data *harq_layout)
1918 {
1919         int next_triplet = 1; /* FCW already done */
1920         desc->data_ptrs[next_triplet].address =
1921                         rte_pktmbuf_iova_offset(input, *in_offset);
1922         next_triplet++;
1923
1924         if (check_bit(op->ldpc_dec.op_flags,
1925                                 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1926                 struct rte_bbdev_op_data hi = op->ldpc_dec.harq_combined_input;
1927                 desc->data_ptrs[next_triplet].address = hi.offset;
1928 #ifndef ACC100_EXT_MEM
1929                 desc->data_ptrs[next_triplet].address =
1930                                 rte_pktmbuf_iova_offset(hi.data, hi.offset);
1931 #endif
1932                 next_triplet++;
1933         }
1934
1935         desc->data_ptrs[next_triplet].address =
1936                         rte_pktmbuf_iova_offset(h_output, *h_out_offset);
1937         *h_out_length = desc->data_ptrs[next_triplet].blen;
1938         next_triplet++;
1939
1940         if (check_bit(op->ldpc_dec.op_flags,
1941                                 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1942                 desc->data_ptrs[next_triplet].address =
1943                                 op->ldpc_dec.harq_combined_output.offset;
1944                 /* Adjust based on previous operation */
1945                 struct rte_bbdev_dec_op *prev_op = desc->op_addr;
1946                 op->ldpc_dec.harq_combined_output.length =
1947                                 prev_op->ldpc_dec.harq_combined_output.length;
1948                 int16_t hq_idx = op->ldpc_dec.harq_combined_output.offset /
1949                                 ACC100_HARQ_OFFSET;
1950                 int16_t prev_hq_idx =
1951                                 prev_op->ldpc_dec.harq_combined_output.offset
1952                                 / ACC100_HARQ_OFFSET;
1953                 harq_layout[hq_idx].val = harq_layout[prev_hq_idx].val;
1954 #ifndef ACC100_EXT_MEM
1955                 struct rte_bbdev_op_data ho =
1956                                 op->ldpc_dec.harq_combined_output;
1957                 desc->data_ptrs[next_triplet].address =
1958                                 rte_pktmbuf_iova_offset(ho.data, ho.offset);
1959 #endif
1960                 next_triplet++;
1961         }
1962
1963         op->ldpc_dec.hard_output.length += *h_out_length;
1964         desc->op_addr = op;
1965 }
1966
1967
1968 /* Enqueue a number of operations to HW and update software rings */
1969 static inline void
1970 acc100_dma_enqueue(struct acc100_queue *q, uint16_t n,
1971                 struct rte_bbdev_stats *queue_stats)
1972 {
1973         union acc100_enqueue_reg_fmt enq_req;
1974 #ifdef RTE_BBDEV_OFFLOAD_COST
1975         uint64_t start_time = 0;
1976         queue_stats->acc_offload_cycles = 0;
1977 #else
1978         RTE_SET_USED(queue_stats);
1979 #endif
1980
1981         enq_req.val = 0;
1982         /* Setting offset, 100b for 256 DMA Desc */
1983         enq_req.addr_offset = ACC100_DESC_OFFSET;
1984
1985         /* Split ops into batches */
1986         do {
1987                 union acc100_dma_desc *desc;
1988                 uint16_t enq_batch_size;
1989                 uint64_t offset;
1990                 rte_iova_t req_elem_addr;
1991
1992                 enq_batch_size = RTE_MIN(n, MAX_ENQ_BATCH_SIZE);
1993
1994                 /* Set flag on last descriptor in a batch */
1995                 desc = q->ring_addr + ((q->sw_ring_head + enq_batch_size - 1) &
1996                                 q->sw_ring_wrap_mask);
1997                 desc->req.last_desc_in_batch = 1;
1998
1999                 /* Calculate the 1st descriptor's address */
2000                 offset = ((q->sw_ring_head & q->sw_ring_wrap_mask) *
2001                                 sizeof(union acc100_dma_desc));
2002                 req_elem_addr = q->ring_addr_iova + offset;
2003
2004                 /* Fill enqueue struct */
2005                 enq_req.num_elem = enq_batch_size;
2006                 /* low 6 bits are not needed */
2007                 enq_req.req_elem_addr = (uint32_t)(req_elem_addr >> 6);
2008
2009 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2010                 rte_memdump(stderr, "Req sdone", desc, sizeof(*desc));
2011 #endif
2012                 rte_bbdev_log_debug(
2013                                 "Enqueue %u reqs (phys %#"PRIx64") to reg %p",
2014                                 enq_batch_size,
2015                                 req_elem_addr,
2016                                 (void *)q->mmio_reg_enqueue);
2017
2018                 rte_wmb();
2019
2020 #ifdef RTE_BBDEV_OFFLOAD_COST
2021                 /* Start time measurement for enqueue function offload. */
2022                 start_time = rte_rdtsc_precise();
2023 #endif
2024                 rte_bbdev_log(DEBUG, "Debug : MMIO Enqueue");
2025                 mmio_write(q->mmio_reg_enqueue, enq_req.val);
2026
2027 #ifdef RTE_BBDEV_OFFLOAD_COST
2028                 queue_stats->acc_offload_cycles +=
2029                                 rte_rdtsc_precise() - start_time;
2030 #endif
2031
2032                 q->aq_enqueued++;
2033                 q->sw_ring_head += enq_batch_size;
2034                 n -= enq_batch_size;
2035
2036         } while (n);
2037
2038
2039 }
2040
2041 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2042 /* Validates turbo encoder parameters */
2043 static inline int
2044 validate_enc_op(struct rte_bbdev_enc_op *op)
2045 {
2046         struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
2047         struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
2048         struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
2049         uint16_t kw, kw_neg, kw_pos;
2050
2051         if (op->mempool == NULL) {
2052                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2053                 return -1;
2054         }
2055         if (turbo_enc->input.data == NULL) {
2056                 rte_bbdev_log(ERR, "Invalid input pointer");
2057                 return -1;
2058         }
2059         if (turbo_enc->output.data == NULL) {
2060                 rte_bbdev_log(ERR, "Invalid output pointer");
2061                 return -1;
2062         }
2063         if (turbo_enc->rv_index > 3) {
2064                 rte_bbdev_log(ERR,
2065                                 "rv_index (%u) is out of range 0 <= value <= 3",
2066                                 turbo_enc->rv_index);
2067                 return -1;
2068         }
2069         if (turbo_enc->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
2070                         turbo_enc->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
2071                 rte_bbdev_log(ERR,
2072                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2073                                 turbo_enc->code_block_mode);
2074                 return -1;
2075         }
2076
2077         if (turbo_enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
2078                 tb = &turbo_enc->tb_params;
2079                 if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
2080                                 || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2081                                 && tb->c_neg > 0) {
2082                         rte_bbdev_log(ERR,
2083                                         "k_neg (%u) is out of range %u <= value <= %u",
2084                                         tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2085                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2086                         return -1;
2087                 }
2088                 if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
2089                                 || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2090                         rte_bbdev_log(ERR,
2091                                         "k_pos (%u) is out of range %u <= value <= %u",
2092                                         tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2093                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2094                         return -1;
2095                 }
2096                 if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
2097                         rte_bbdev_log(ERR,
2098                                         "c_neg (%u) is out of range 0 <= value <= %u",
2099                                         tb->c_neg,
2100                                         RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
2101                 if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
2102                         rte_bbdev_log(ERR,
2103                                         "c (%u) is out of range 1 <= value <= %u",
2104                                         tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
2105                         return -1;
2106                 }
2107                 if (tb->cab > tb->c) {
2108                         rte_bbdev_log(ERR,
2109                                         "cab (%u) is greater than c (%u)",
2110                                         tb->cab, tb->c);
2111                         return -1;
2112                 }
2113                 if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
2114                                 && tb->r < tb->cab) {
2115                         rte_bbdev_log(ERR,
2116                                         "ea (%u) is less than %u or it is not even",
2117                                         tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2118                         return -1;
2119                 }
2120                 if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
2121                                 && tb->c > tb->cab) {
2122                         rte_bbdev_log(ERR,
2123                                         "eb (%u) is less than %u or it is not even",
2124                                         tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2125                         return -1;
2126                 }
2127
2128                 kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
2129                                         RTE_BBDEV_TURBO_C_SUBBLOCK);
2130                 if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
2131                         rte_bbdev_log(ERR,
2132                                         "ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
2133                                         tb->ncb_neg, tb->k_neg, kw_neg);
2134                         return -1;
2135                 }
2136
2137                 kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
2138                                         RTE_BBDEV_TURBO_C_SUBBLOCK);
2139                 if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
2140                         rte_bbdev_log(ERR,
2141                                         "ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
2142                                         tb->ncb_pos, tb->k_pos, kw_pos);
2143                         return -1;
2144                 }
2145                 if (tb->r > (tb->c - 1)) {
2146                         rte_bbdev_log(ERR,
2147                                         "r (%u) is greater than c - 1 (%u)",
2148                                         tb->r, tb->c - 1);
2149                         return -1;
2150                 }
2151         } else {
2152                 cb = &turbo_enc->cb_params;
2153                 if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
2154                                 || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2155                         rte_bbdev_log(ERR,
2156                                         "k (%u) is out of range %u <= value <= %u",
2157                                         cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2158                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2159                         return -1;
2160                 }
2161
2162                 if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
2163                         rte_bbdev_log(ERR,
2164                                         "e (%u) is less than %u or it is not even",
2165                                         cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2166                         return -1;
2167                 }
2168
2169                 kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
2170                 if (cb->ncb < cb->k || cb->ncb > kw) {
2171                         rte_bbdev_log(ERR,
2172                                         "ncb (%u) is out of range (%u) k <= value <= (%u) kw",
2173                                         cb->ncb, cb->k, kw);
2174                         return -1;
2175                 }
2176         }
2177
2178         return 0;
2179 }
2180 /* Validates LDPC encoder parameters */
2181 static inline int
2182 validate_ldpc_enc_op(struct rte_bbdev_enc_op *op)
2183 {
2184         struct rte_bbdev_op_ldpc_enc *ldpc_enc = &op->ldpc_enc;
2185
2186         if (op->mempool == NULL) {
2187                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2188                 return -1;
2189         }
2190         if (ldpc_enc->input.data == NULL) {
2191                 rte_bbdev_log(ERR, "Invalid input pointer");
2192                 return -1;
2193         }
2194         if (ldpc_enc->output.data == NULL) {
2195                 rte_bbdev_log(ERR, "Invalid output pointer");
2196                 return -1;
2197         }
2198         if (ldpc_enc->input.length >
2199                         RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) {
2200                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
2201                                 ldpc_enc->input.length,
2202                                 RTE_BBDEV_LDPC_MAX_CB_SIZE);
2203                 return -1;
2204         }
2205         if ((ldpc_enc->basegraph > 2) || (ldpc_enc->basegraph == 0)) {
2206                 rte_bbdev_log(ERR,
2207                                 "BG (%u) is out of range 1 <= value <= 2",
2208                                 ldpc_enc->basegraph);
2209                 return -1;
2210         }
2211         if (ldpc_enc->rv_index > 3) {
2212                 rte_bbdev_log(ERR,
2213                                 "rv_index (%u) is out of range 0 <= value <= 3",
2214                                 ldpc_enc->rv_index);
2215                 return -1;
2216         }
2217         if (ldpc_enc->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
2218                 rte_bbdev_log(ERR,
2219                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2220                                 ldpc_enc->code_block_mode);
2221                 return -1;
2222         }
2223         int K = (ldpc_enc->basegraph == 1 ? 22 : 10) * ldpc_enc->z_c;
2224         if (ldpc_enc->n_filler >= K) {
2225                 rte_bbdev_log(ERR,
2226                                 "K and F are not compatible %u %u",
2227                                 K, ldpc_enc->n_filler);
2228                 return -1;
2229         }
2230         return 0;
2231 }
2232
2233 /* Validates LDPC decoder parameters */
2234 static inline int
2235 validate_ldpc_dec_op(struct rte_bbdev_dec_op *op)
2236 {
2237         struct rte_bbdev_op_ldpc_dec *ldpc_dec = &op->ldpc_dec;
2238
2239         if (op->mempool == NULL) {
2240                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2241                 return -1;
2242         }
2243         if ((ldpc_dec->basegraph > 2) || (ldpc_dec->basegraph == 0)) {
2244                 rte_bbdev_log(ERR,
2245                                 "BG (%u) is out of range 1 <= value <= 2",
2246                                 ldpc_dec->basegraph);
2247                 return -1;
2248         }
2249         if (ldpc_dec->iter_max == 0) {
2250                 rte_bbdev_log(ERR,
2251                                 "iter_max (%u) is equal to 0",
2252                                 ldpc_dec->iter_max);
2253                 return -1;
2254         }
2255         if (ldpc_dec->rv_index > 3) {
2256                 rte_bbdev_log(ERR,
2257                                 "rv_index (%u) is out of range 0 <= value <= 3",
2258                                 ldpc_dec->rv_index);
2259                 return -1;
2260         }
2261         if (ldpc_dec->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
2262                 rte_bbdev_log(ERR,
2263                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2264                                 ldpc_dec->code_block_mode);
2265                 return -1;
2266         }
2267         int K = (ldpc_dec->basegraph == 1 ? 22 : 10) * ldpc_dec->z_c;
2268         if (ldpc_dec->n_filler >= K) {
2269                 rte_bbdev_log(ERR,
2270                                 "K and F are not compatible %u %u",
2271                                 K, ldpc_dec->n_filler);
2272                 return -1;
2273         }
2274         return 0;
2275 }
2276 #endif
2277
2278 /* Enqueue one encode operations for ACC100 device in CB mode */
2279 static inline int
2280 enqueue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2281                 uint16_t total_enqueued_cbs)
2282 {
2283         union acc100_dma_desc *desc = NULL;
2284         int ret;
2285         uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2286                 seg_total_left;
2287         struct rte_mbuf *input, *output_head, *output;
2288
2289 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2290         /* Validate op structure */
2291         if (validate_enc_op(op) == -1) {
2292                 rte_bbdev_log(ERR, "Turbo encoder validation failed");
2293                 return -EINVAL;
2294         }
2295 #endif
2296
2297         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2298                         & q->sw_ring_wrap_mask);
2299         desc = q->ring_addr + desc_idx;
2300         acc100_fcw_te_fill(op, &desc->req.fcw_te);
2301
2302         input = op->turbo_enc.input.data;
2303         output_head = output = op->turbo_enc.output.data;
2304         in_offset = op->turbo_enc.input.offset;
2305         out_offset = op->turbo_enc.output.offset;
2306         out_length = 0;
2307         mbuf_total_left = op->turbo_enc.input.length;
2308         seg_total_left = rte_pktmbuf_data_len(op->turbo_enc.input.data)
2309                         - in_offset;
2310
2311         ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
2312                         &in_offset, &out_offset, &out_length, &mbuf_total_left,
2313                         &seg_total_left, 0);
2314
2315         if (unlikely(ret < 0))
2316                 return ret;
2317
2318         mbuf_append(output_head, output, out_length);
2319
2320 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2321         rte_memdump(stderr, "FCW", &desc->req.fcw_te,
2322                         sizeof(desc->req.fcw_te) - 8);
2323         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2324         if (check_mbuf_total_left(mbuf_total_left) != 0)
2325                 return -EINVAL;
2326 #endif
2327         /* One CB (one op) was successfully prepared to enqueue */
2328         return 1;
2329 }
2330
2331 /* Enqueue one encode operations for ACC100 device in CB mode */
2332 static inline int
2333 enqueue_ldpc_enc_n_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ops,
2334                 uint16_t total_enqueued_cbs, int16_t num)
2335 {
2336         union acc100_dma_desc *desc = NULL;
2337         uint32_t out_length;
2338         struct rte_mbuf *output_head, *output;
2339         int i, next_triplet;
2340         uint16_t  in_length_in_bytes;
2341         struct rte_bbdev_op_ldpc_enc *enc = &ops[0]->ldpc_enc;
2342
2343 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2344         /* Validate op structure */
2345         if (validate_ldpc_enc_op(ops[0]) == -1) {
2346                 rte_bbdev_log(ERR, "LDPC encoder validation failed");
2347                 return -EINVAL;
2348         }
2349 #endif
2350
2351         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2352                         & q->sw_ring_wrap_mask);
2353         desc = q->ring_addr + desc_idx;
2354         acc100_fcw_le_fill(ops[0], &desc->req.fcw_le, num);
2355
2356         /** This could be done at polling */
2357         acc100_header_init(&desc->req);
2358         desc->req.numCBs = num;
2359
2360         in_length_in_bytes = ops[0]->ldpc_enc.input.data->data_len;
2361         out_length = (enc->cb_params.e + 7) >> 3;
2362         desc->req.m2dlen = 1 + num;
2363         desc->req.d2mlen = num;
2364         next_triplet = 1;
2365
2366         for (i = 0; i < num; i++) {
2367                 desc->req.data_ptrs[next_triplet].address =
2368                         rte_pktmbuf_iova_offset(ops[i]->ldpc_enc.input.data, 0);
2369                 desc->req.data_ptrs[next_triplet].blen = in_length_in_bytes;
2370                 next_triplet++;
2371                 desc->req.data_ptrs[next_triplet].address =
2372                                 rte_pktmbuf_iova_offset(
2373                                 ops[i]->ldpc_enc.output.data, 0);
2374                 desc->req.data_ptrs[next_triplet].blen = out_length;
2375                 next_triplet++;
2376                 ops[i]->ldpc_enc.output.length = out_length;
2377                 output_head = output = ops[i]->ldpc_enc.output.data;
2378                 mbuf_append(output_head, output, out_length);
2379                 output->data_len = out_length;
2380         }
2381
2382         desc->req.op_addr = ops[0];
2383
2384 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2385         rte_memdump(stderr, "FCW", &desc->req.fcw_le,
2386                         sizeof(desc->req.fcw_le) - 8);
2387         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2388 #endif
2389
2390         /* One CB (one op) was successfully prepared to enqueue */
2391         return num;
2392 }
2393
2394 /* Enqueue one encode operations for ACC100 device in CB mode */
2395 static inline int
2396 enqueue_ldpc_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2397                 uint16_t total_enqueued_cbs)
2398 {
2399         union acc100_dma_desc *desc = NULL;
2400         int ret;
2401         uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2402                 seg_total_left;
2403         struct rte_mbuf *input, *output_head, *output;
2404
2405 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2406         /* Validate op structure */
2407         if (validate_ldpc_enc_op(op) == -1) {
2408                 rte_bbdev_log(ERR, "LDPC encoder validation failed");
2409                 return -EINVAL;
2410         }
2411 #endif
2412
2413         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2414                         & q->sw_ring_wrap_mask);
2415         desc = q->ring_addr + desc_idx;
2416         acc100_fcw_le_fill(op, &desc->req.fcw_le, 1);
2417
2418         input = op->ldpc_enc.input.data;
2419         output_head = output = op->ldpc_enc.output.data;
2420         in_offset = op->ldpc_enc.input.offset;
2421         out_offset = op->ldpc_enc.output.offset;
2422         out_length = 0;
2423         mbuf_total_left = op->ldpc_enc.input.length;
2424         seg_total_left = rte_pktmbuf_data_len(op->ldpc_enc.input.data)
2425                         - in_offset;
2426
2427         ret = acc100_dma_desc_le_fill(op, &desc->req, &input, output,
2428                         &in_offset, &out_offset, &out_length, &mbuf_total_left,
2429                         &seg_total_left);
2430
2431         if (unlikely(ret < 0))
2432                 return ret;
2433
2434         mbuf_append(output_head, output, out_length);
2435
2436 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2437         rte_memdump(stderr, "FCW", &desc->req.fcw_le,
2438                         sizeof(desc->req.fcw_le) - 8);
2439         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2440
2441         if (check_mbuf_total_left(mbuf_total_left) != 0)
2442                 return -EINVAL;
2443 #endif
2444         /* One CB (one op) was successfully prepared to enqueue */
2445         return 1;
2446 }
2447
2448
2449 /* Enqueue one encode operations for ACC100 device in TB mode. */
2450 static inline int
2451 enqueue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2452                 uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
2453 {
2454         union acc100_dma_desc *desc = NULL;
2455         int ret;
2456         uint8_t r, c;
2457         uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2458                 seg_total_left;
2459         struct rte_mbuf *input, *output_head, *output;
2460         uint16_t current_enqueued_cbs = 0;
2461
2462 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2463         /* Validate op structure */
2464         if (validate_enc_op(op) == -1) {
2465                 rte_bbdev_log(ERR, "Turbo encoder validation failed");
2466                 return -EINVAL;
2467         }
2468 #endif
2469
2470         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2471                         & q->sw_ring_wrap_mask);
2472         desc = q->ring_addr + desc_idx;
2473         uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
2474         acc100_fcw_te_fill(op, &desc->req.fcw_te);
2475
2476         input = op->turbo_enc.input.data;
2477         output_head = output = op->turbo_enc.output.data;
2478         in_offset = op->turbo_enc.input.offset;
2479         out_offset = op->turbo_enc.output.offset;
2480         out_length = 0;
2481         mbuf_total_left = op->turbo_enc.input.length;
2482
2483         c = op->turbo_enc.tb_params.c;
2484         r = op->turbo_enc.tb_params.r;
2485
2486         while (mbuf_total_left > 0 && r < c) {
2487                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
2488                 /* Set up DMA descriptor */
2489                 desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
2490                                 & q->sw_ring_wrap_mask);
2491                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
2492                 desc->req.data_ptrs[0].blen = ACC100_FCW_TE_BLEN;
2493
2494                 ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
2495                                 &in_offset, &out_offset, &out_length,
2496                                 &mbuf_total_left, &seg_total_left, r);
2497                 if (unlikely(ret < 0))
2498                         return ret;
2499                 mbuf_append(output_head, output, out_length);
2500
2501                 /* Set total number of CBs in TB */
2502                 desc->req.cbs_in_tb = cbs_in_tb;
2503 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2504                 rte_memdump(stderr, "FCW", &desc->req.fcw_te,
2505                                 sizeof(desc->req.fcw_te) - 8);
2506                 rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2507 #endif
2508
2509                 if (seg_total_left == 0) {
2510                         /* Go to the next mbuf */
2511                         input = input->next;
2512                         in_offset = 0;
2513                         output = output->next;
2514                         out_offset = 0;
2515                 }
2516
2517                 total_enqueued_cbs++;
2518                 current_enqueued_cbs++;
2519                 r++;
2520         }
2521
2522 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2523         if (check_mbuf_total_left(mbuf_total_left) != 0)
2524                 return -EINVAL;
2525 #endif
2526
2527         /* Set SDone on last CB descriptor for TB mode. */
2528         desc->req.sdone_enable = 1;
2529         desc->req.irq_enable = q->irq_enable;
2530
2531         return current_enqueued_cbs;
2532 }
2533
2534 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2535 /* Validates turbo decoder parameters */
2536 static inline int
2537 validate_dec_op(struct rte_bbdev_dec_op *op)
2538 {
2539         struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
2540         struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
2541         struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
2542
2543         if (op->mempool == NULL) {
2544                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2545                 return -1;
2546         }
2547         if (turbo_dec->input.data == NULL) {
2548                 rte_bbdev_log(ERR, "Invalid input pointer");
2549                 return -1;
2550         }
2551         if (turbo_dec->hard_output.data == NULL) {
2552                 rte_bbdev_log(ERR, "Invalid hard_output pointer");
2553                 return -1;
2554         }
2555         if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT) &&
2556                         turbo_dec->soft_output.data == NULL) {
2557                 rte_bbdev_log(ERR, "Invalid soft_output pointer");
2558                 return -1;
2559         }
2560         if (turbo_dec->rv_index > 3) {
2561                 rte_bbdev_log(ERR,
2562                                 "rv_index (%u) is out of range 0 <= value <= 3",
2563                                 turbo_dec->rv_index);
2564                 return -1;
2565         }
2566         if (turbo_dec->iter_min < 1) {
2567                 rte_bbdev_log(ERR,
2568                                 "iter_min (%u) is less than 1",
2569                                 turbo_dec->iter_min);
2570                 return -1;
2571         }
2572         if (turbo_dec->iter_max <= 2) {
2573                 rte_bbdev_log(ERR,
2574                                 "iter_max (%u) is less than or equal to 2",
2575                                 turbo_dec->iter_max);
2576                 return -1;
2577         }
2578         if (turbo_dec->iter_min > turbo_dec->iter_max) {
2579                 rte_bbdev_log(ERR,
2580                                 "iter_min (%u) is greater than iter_max (%u)",
2581                                 turbo_dec->iter_min, turbo_dec->iter_max);
2582                 return -1;
2583         }
2584         if (turbo_dec->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
2585                         turbo_dec->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
2586                 rte_bbdev_log(ERR,
2587                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2588                                 turbo_dec->code_block_mode);
2589                 return -1;
2590         }
2591
2592         if (turbo_dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
2593                 tb = &turbo_dec->tb_params;
2594                 if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
2595                                 || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2596                                 && tb->c_neg > 0) {
2597                         rte_bbdev_log(ERR,
2598                                         "k_neg (%u) is out of range %u <= value <= %u",
2599                                         tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2600                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2601                         return -1;
2602                 }
2603                 if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
2604                                 || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2605                                 && tb->c > tb->c_neg) {
2606                         rte_bbdev_log(ERR,
2607                                         "k_pos (%u) is out of range %u <= value <= %u",
2608                                         tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2609                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2610                         return -1;
2611                 }
2612                 if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
2613                         rte_bbdev_log(ERR,
2614                                         "c_neg (%u) is out of range 0 <= value <= %u",
2615                                         tb->c_neg,
2616                                         RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
2617                 if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
2618                         rte_bbdev_log(ERR,
2619                                         "c (%u) is out of range 1 <= value <= %u",
2620                                         tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
2621                         return -1;
2622                 }
2623                 if (tb->cab > tb->c) {
2624                         rte_bbdev_log(ERR,
2625                                         "cab (%u) is greater than c (%u)",
2626                                         tb->cab, tb->c);
2627                         return -1;
2628                 }
2629                 if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2630                                 (tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE
2631                                                 || (tb->ea % 2))
2632                                 && tb->cab > 0) {
2633                         rte_bbdev_log(ERR,
2634                                         "ea (%u) is less than %u or it is not even",
2635                                         tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2636                         return -1;
2637                 }
2638                 if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2639                                 (tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE
2640                                                 || (tb->eb % 2))
2641                                 && tb->c > tb->cab) {
2642                         rte_bbdev_log(ERR,
2643                                         "eb (%u) is less than %u or it is not even",
2644                                         tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2645                 }
2646         } else {
2647                 cb = &turbo_dec->cb_params;
2648                 if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
2649                                 || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2650                         rte_bbdev_log(ERR,
2651                                         "k (%u) is out of range %u <= value <= %u",
2652                                         cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2653                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2654                         return -1;
2655                 }
2656                 if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2657                                 (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE ||
2658                                 (cb->e % 2))) {
2659                         rte_bbdev_log(ERR,
2660                                         "e (%u) is less than %u or it is not even",
2661                                         cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2662                         return -1;
2663                 }
2664         }
2665
2666         return 0;
2667 }
2668 #endif
2669
2670 /** Enqueue one decode operations for ACC100 device in CB mode */
2671 static inline int
2672 enqueue_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2673                 uint16_t total_enqueued_cbs)
2674 {
2675         union acc100_dma_desc *desc = NULL;
2676         int ret;
2677         uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
2678                 h_out_length, mbuf_total_left, seg_total_left;
2679         struct rte_mbuf *input, *h_output_head, *h_output,
2680                 *s_output_head, *s_output;
2681
2682 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2683         /* Validate op structure */
2684         if (validate_dec_op(op) == -1) {
2685                 rte_bbdev_log(ERR, "Turbo decoder validation failed");
2686                 return -EINVAL;
2687         }
2688 #endif
2689
2690         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2691                         & q->sw_ring_wrap_mask);
2692         desc = q->ring_addr + desc_idx;
2693         acc100_fcw_td_fill(op, &desc->req.fcw_td);
2694
2695         input = op->turbo_dec.input.data;
2696         h_output_head = h_output = op->turbo_dec.hard_output.data;
2697         s_output_head = s_output = op->turbo_dec.soft_output.data;
2698         in_offset = op->turbo_dec.input.offset;
2699         h_out_offset = op->turbo_dec.hard_output.offset;
2700         s_out_offset = op->turbo_dec.soft_output.offset;
2701         h_out_length = s_out_length = 0;
2702         mbuf_total_left = op->turbo_dec.input.length;
2703         seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
2704
2705 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2706         if (unlikely(input == NULL)) {
2707                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
2708                 return -EFAULT;
2709         }
2710 #endif
2711
2712         /* Set up DMA descriptor */
2713         desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
2714                         & q->sw_ring_wrap_mask);
2715
2716         ret = acc100_dma_desc_td_fill(op, &desc->req, &input, h_output,
2717                         s_output, &in_offset, &h_out_offset, &s_out_offset,
2718                         &h_out_length, &s_out_length, &mbuf_total_left,
2719                         &seg_total_left, 0);
2720
2721         if (unlikely(ret < 0))
2722                 return ret;
2723
2724         /* Hard output */
2725         mbuf_append(h_output_head, h_output, h_out_length);
2726
2727         /* Soft output */
2728         if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT))
2729                 mbuf_append(s_output_head, s_output, s_out_length);
2730
2731 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2732         rte_memdump(stderr, "FCW", &desc->req.fcw_td,
2733                         sizeof(desc->req.fcw_td) - 8);
2734         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2735         if (check_mbuf_total_left(mbuf_total_left) != 0)
2736                 return -EINVAL;
2737 #endif
2738
2739         /* One CB (one op) was successfully prepared to enqueue */
2740         return 1;
2741 }
2742
2743 static inline int
2744 harq_loopback(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2745                 uint16_t total_enqueued_cbs) {
2746         struct acc100_fcw_ld *fcw;
2747         union acc100_dma_desc *desc;
2748         int next_triplet = 1;
2749         struct rte_mbuf *hq_output_head, *hq_output;
2750         uint16_t harq_dma_length_in, harq_dma_length_out;
2751         uint16_t harq_in_length = op->ldpc_dec.harq_combined_input.length;
2752         if (harq_in_length == 0) {
2753                 rte_bbdev_log(ERR, "Loopback of invalid null size\n");
2754                 return -EINVAL;
2755         }
2756
2757         int h_comp = check_bit(op->ldpc_dec.op_flags,
2758                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION
2759                         ) ? 1 : 0;
2760         if (h_comp == 1) {
2761                 harq_in_length = harq_in_length * 8 / 6;
2762                 harq_in_length = RTE_ALIGN(harq_in_length, 64);
2763                 harq_dma_length_in = harq_in_length * 6 / 8;
2764         } else {
2765                 harq_in_length = RTE_ALIGN(harq_in_length, 64);
2766                 harq_dma_length_in = harq_in_length;
2767         }
2768         harq_dma_length_out = harq_dma_length_in;
2769
2770         bool ddr_mem_in = check_bit(op->ldpc_dec.op_flags,
2771                         RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE);
2772         union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
2773         uint16_t harq_index = (ddr_mem_in ?
2774                         op->ldpc_dec.harq_combined_input.offset :
2775                         op->ldpc_dec.harq_combined_output.offset)
2776                         / ACC100_HARQ_OFFSET;
2777
2778         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2779                         & q->sw_ring_wrap_mask);
2780         desc = q->ring_addr + desc_idx;
2781         fcw = &desc->req.fcw_ld;
2782         /* Set the FCW from loopback into DDR */
2783         memset(fcw, 0, sizeof(struct acc100_fcw_ld));
2784         fcw->FCWversion = ACC100_FCW_VER;
2785         fcw->qm = 2;
2786         fcw->Zc = 384;
2787         if (harq_in_length < 16 * ACC100_N_ZC_1)
2788                 fcw->Zc = 16;
2789         fcw->ncb = fcw->Zc * ACC100_N_ZC_1;
2790         fcw->rm_e = 2;
2791         fcw->hcin_en = 1;
2792         fcw->hcout_en = 1;
2793
2794         rte_bbdev_log(DEBUG, "Loopback IN %d Index %d offset %d length %d %d\n",
2795                         ddr_mem_in, harq_index,
2796                         harq_layout[harq_index].offset, harq_in_length,
2797                         harq_dma_length_in);
2798
2799         if (ddr_mem_in && (harq_layout[harq_index].offset > 0)) {
2800                 fcw->hcin_size0 = harq_layout[harq_index].size0;
2801                 fcw->hcin_offset = harq_layout[harq_index].offset;
2802                 fcw->hcin_size1 = harq_in_length - fcw->hcin_offset;
2803                 harq_dma_length_in = (fcw->hcin_size0 + fcw->hcin_size1);
2804                 if (h_comp == 1)
2805                         harq_dma_length_in = harq_dma_length_in * 6 / 8;
2806         } else {
2807                 fcw->hcin_size0 = harq_in_length;
2808         }
2809         harq_layout[harq_index].val = 0;
2810         rte_bbdev_log(DEBUG, "Loopback FCW Config %d %d %d\n",
2811                         fcw->hcin_size0, fcw->hcin_offset, fcw->hcin_size1);
2812         fcw->hcout_size0 = harq_in_length;
2813         fcw->hcin_decomp_mode = h_comp;
2814         fcw->hcout_comp_mode = h_comp;
2815         fcw->gain_i = 1;
2816         fcw->gain_h = 1;
2817
2818         /* Set the prefix of descriptor. This could be done at polling */
2819         acc100_header_init(&desc->req);
2820
2821         /* Null LLR input for Decoder */
2822         desc->req.data_ptrs[next_triplet].address =
2823                         q->lb_in_addr_iova;
2824         desc->req.data_ptrs[next_triplet].blen = 2;
2825         desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
2826         desc->req.data_ptrs[next_triplet].last = 0;
2827         desc->req.data_ptrs[next_triplet].dma_ext = 0;
2828         next_triplet++;
2829
2830         /* HARQ Combine input from either Memory interface */
2831         if (!ddr_mem_in) {
2832                 next_triplet = acc100_dma_fill_blk_type_out(&desc->req,
2833                                 op->ldpc_dec.harq_combined_input.data,
2834                                 op->ldpc_dec.harq_combined_input.offset,
2835                                 harq_dma_length_in,
2836                                 next_triplet,
2837                                 ACC100_DMA_BLKID_IN_HARQ);
2838         } else {
2839                 desc->req.data_ptrs[next_triplet].address =
2840                                 op->ldpc_dec.harq_combined_input.offset;
2841                 desc->req.data_ptrs[next_triplet].blen =
2842                                 harq_dma_length_in;
2843                 desc->req.data_ptrs[next_triplet].blkid =
2844                                 ACC100_DMA_BLKID_IN_HARQ;
2845                 desc->req.data_ptrs[next_triplet].dma_ext = 1;
2846                 next_triplet++;
2847         }
2848         desc->req.data_ptrs[next_triplet - 1].last = 1;
2849         desc->req.m2dlen = next_triplet;
2850
2851         /* Dropped decoder hard output */
2852         desc->req.data_ptrs[next_triplet].address =
2853                         q->lb_out_addr_iova;
2854         desc->req.data_ptrs[next_triplet].blen = ACC100_BYTES_IN_WORD;
2855         desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARD;
2856         desc->req.data_ptrs[next_triplet].last = 0;
2857         desc->req.data_ptrs[next_triplet].dma_ext = 0;
2858         next_triplet++;
2859
2860         /* HARQ Combine output to either Memory interface */
2861         if (check_bit(op->ldpc_dec.op_flags,
2862                         RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE
2863                         )) {
2864                 desc->req.data_ptrs[next_triplet].address =
2865                                 op->ldpc_dec.harq_combined_output.offset;
2866                 desc->req.data_ptrs[next_triplet].blen =
2867                                 harq_dma_length_out;
2868                 desc->req.data_ptrs[next_triplet].blkid =
2869                                 ACC100_DMA_BLKID_OUT_HARQ;
2870                 desc->req.data_ptrs[next_triplet].dma_ext = 1;
2871                 next_triplet++;
2872         } else {
2873                 hq_output_head = op->ldpc_dec.harq_combined_output.data;
2874                 hq_output = op->ldpc_dec.harq_combined_output.data;
2875                 next_triplet = acc100_dma_fill_blk_type_out(
2876                                 &desc->req,
2877                                 op->ldpc_dec.harq_combined_output.data,
2878                                 op->ldpc_dec.harq_combined_output.offset,
2879                                 harq_dma_length_out,
2880                                 next_triplet,
2881                                 ACC100_DMA_BLKID_OUT_HARQ);
2882                 /* HARQ output */
2883                 mbuf_append(hq_output_head, hq_output, harq_dma_length_out);
2884                 op->ldpc_dec.harq_combined_output.length =
2885                                 harq_dma_length_out;
2886         }
2887         desc->req.data_ptrs[next_triplet - 1].last = 1;
2888         desc->req.d2mlen = next_triplet - desc->req.m2dlen;
2889         desc->req.op_addr = op;
2890
2891         /* One CB (one op) was successfully prepared to enqueue */
2892         return 1;
2893 }
2894
2895 /** Enqueue one decode operations for ACC100 device in CB mode */
2896 static inline int
2897 enqueue_ldpc_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2898                 uint16_t total_enqueued_cbs, bool same_op)
2899 {
2900         int ret;
2901         if (unlikely(check_bit(op->ldpc_dec.op_flags,
2902                         RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK))) {
2903                 ret = harq_loopback(q, op, total_enqueued_cbs);
2904                 return ret;
2905         }
2906
2907 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2908         /* Validate op structure */
2909         if (validate_ldpc_dec_op(op) == -1) {
2910                 rte_bbdev_log(ERR, "LDPC decoder validation failed");
2911                 return -EINVAL;
2912         }
2913 #endif
2914         union acc100_dma_desc *desc;
2915         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2916                         & q->sw_ring_wrap_mask);
2917         desc = q->ring_addr + desc_idx;
2918         struct rte_mbuf *input, *h_output_head, *h_output;
2919         uint32_t in_offset, h_out_offset, mbuf_total_left, h_out_length = 0;
2920         input = op->ldpc_dec.input.data;
2921         h_output_head = h_output = op->ldpc_dec.hard_output.data;
2922         in_offset = op->ldpc_dec.input.offset;
2923         h_out_offset = op->ldpc_dec.hard_output.offset;
2924         mbuf_total_left = op->ldpc_dec.input.length;
2925 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2926         if (unlikely(input == NULL)) {
2927                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
2928                 return -EFAULT;
2929         }
2930 #endif
2931         union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
2932
2933         if (same_op) {
2934                 union acc100_dma_desc *prev_desc;
2935                 desc_idx = ((q->sw_ring_head + total_enqueued_cbs - 1)
2936                                 & q->sw_ring_wrap_mask);
2937                 prev_desc = q->ring_addr + desc_idx;
2938                 uint8_t *prev_ptr = (uint8_t *) prev_desc;
2939                 uint8_t *new_ptr = (uint8_t *) desc;
2940                 /* Copy first 4 words and BDESCs */
2941                 rte_memcpy(new_ptr, prev_ptr, ACC100_5GUL_SIZE_0);
2942                 rte_memcpy(new_ptr + ACC100_5GUL_OFFSET_0,
2943                                 prev_ptr + ACC100_5GUL_OFFSET_0,
2944                                 ACC100_5GUL_SIZE_1);
2945                 desc->req.op_addr = prev_desc->req.op_addr;
2946                 /* Copy FCW */
2947                 rte_memcpy(new_ptr + ACC100_DESC_FCW_OFFSET,
2948                                 prev_ptr + ACC100_DESC_FCW_OFFSET,
2949                                 ACC100_FCW_LD_BLEN);
2950                 acc100_dma_desc_ld_update(op, &desc->req, input, h_output,
2951                                 &in_offset, &h_out_offset,
2952                                 &h_out_length, harq_layout);
2953         } else {
2954                 struct acc100_fcw_ld *fcw;
2955                 uint32_t seg_total_left;
2956                 fcw = &desc->req.fcw_ld;
2957                 acc100_fcw_ld_fill(op, fcw, harq_layout);
2958
2959                 /* Special handling when overusing mbuf */
2960                 if (fcw->rm_e < ACC100_MAX_E_MBUF)
2961                         seg_total_left = rte_pktmbuf_data_len(input)
2962                                         - in_offset;
2963                 else
2964                         seg_total_left = fcw->rm_e;
2965
2966                 ret = acc100_dma_desc_ld_fill(op, &desc->req, &input, h_output,
2967                                 &in_offset, &h_out_offset,
2968                                 &h_out_length, &mbuf_total_left,
2969                                 &seg_total_left, fcw);
2970                 if (unlikely(ret < 0))
2971                         return ret;
2972         }
2973
2974         /* Hard output */
2975         mbuf_append(h_output_head, h_output, h_out_length);
2976 #ifndef ACC100_EXT_MEM
2977         if (op->ldpc_dec.harq_combined_output.length > 0) {
2978                 /* Push the HARQ output into host memory */
2979                 struct rte_mbuf *hq_output_head, *hq_output;
2980                 hq_output_head = op->ldpc_dec.harq_combined_output.data;
2981                 hq_output = op->ldpc_dec.harq_combined_output.data;
2982                 mbuf_append(hq_output_head, hq_output,
2983                                 op->ldpc_dec.harq_combined_output.length);
2984         }
2985 #endif
2986
2987 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2988         rte_memdump(stderr, "FCW", &desc->req.fcw_ld,
2989                         sizeof(desc->req.fcw_ld) - 8);
2990         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2991 #endif
2992
2993         /* One CB (one op) was successfully prepared to enqueue */
2994         return 1;
2995 }
2996
2997
2998 /* Enqueue one decode operations for ACC100 device in TB mode */
2999 static inline int
3000 enqueue_ldpc_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
3001                 uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
3002 {
3003         union acc100_dma_desc *desc = NULL;
3004         int ret;
3005         uint8_t r, c;
3006         uint32_t in_offset, h_out_offset,
3007                 h_out_length, mbuf_total_left, seg_total_left;
3008         struct rte_mbuf *input, *h_output_head, *h_output;
3009         uint16_t current_enqueued_cbs = 0;
3010
3011 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3012         /* Validate op structure */
3013         if (validate_ldpc_dec_op(op) == -1) {
3014                 rte_bbdev_log(ERR, "LDPC decoder validation failed");
3015                 return -EINVAL;
3016         }
3017 #endif
3018
3019         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
3020                         & q->sw_ring_wrap_mask);
3021         desc = q->ring_addr + desc_idx;
3022         uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
3023         union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
3024         acc100_fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout);
3025
3026         input = op->ldpc_dec.input.data;
3027         h_output_head = h_output = op->ldpc_dec.hard_output.data;
3028         in_offset = op->ldpc_dec.input.offset;
3029         h_out_offset = op->ldpc_dec.hard_output.offset;
3030         h_out_length = 0;
3031         mbuf_total_left = op->ldpc_dec.input.length;
3032         c = op->ldpc_dec.tb_params.c;
3033         r = op->ldpc_dec.tb_params.r;
3034
3035         while (mbuf_total_left > 0 && r < c) {
3036
3037                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
3038
3039                 /* Set up DMA descriptor */
3040                 desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
3041                                 & q->sw_ring_wrap_mask);
3042                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
3043                 desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
3044                 ret = acc100_dma_desc_ld_fill(op, &desc->req, &input,
3045                                 h_output, &in_offset, &h_out_offset,
3046                                 &h_out_length,
3047                                 &mbuf_total_left, &seg_total_left,
3048                                 &desc->req.fcw_ld);
3049
3050                 if (unlikely(ret < 0))
3051                         return ret;
3052
3053                 /* Hard output */
3054                 mbuf_append(h_output_head, h_output, h_out_length);
3055
3056                 /* Set total number of CBs in TB */
3057                 desc->req.cbs_in_tb = cbs_in_tb;
3058 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3059                 rte_memdump(stderr, "FCW", &desc->req.fcw_td,
3060                                 sizeof(desc->req.fcw_td) - 8);
3061                 rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
3062 #endif
3063
3064                 if (seg_total_left == 0) {
3065                         /* Go to the next mbuf */
3066                         input = input->next;
3067                         in_offset = 0;
3068                         h_output = h_output->next;
3069                         h_out_offset = 0;
3070                 }
3071                 total_enqueued_cbs++;
3072                 current_enqueued_cbs++;
3073                 r++;
3074         }
3075
3076 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3077         if (check_mbuf_total_left(mbuf_total_left) != 0)
3078                 return -EINVAL;
3079 #endif
3080         /* Set SDone on last CB descriptor for TB mode */
3081         desc->req.sdone_enable = 1;
3082         desc->req.irq_enable = q->irq_enable;
3083
3084         return current_enqueued_cbs;
3085 }
3086
3087 /* Enqueue one decode operations for ACC100 device in TB mode */
3088 static inline int
3089 enqueue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
3090                 uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
3091 {
3092         union acc100_dma_desc *desc = NULL;
3093         int ret;
3094         uint8_t r, c;
3095         uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
3096                 h_out_length, mbuf_total_left, seg_total_left;
3097         struct rte_mbuf *input, *h_output_head, *h_output,
3098                 *s_output_head, *s_output;
3099         uint16_t current_enqueued_cbs = 0;
3100
3101 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3102         /* Validate op structure */
3103         if (validate_dec_op(op) == -1) {
3104                 rte_bbdev_log(ERR, "Turbo decoder validation failed");
3105                 return -EINVAL;
3106         }
3107 #endif
3108
3109         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
3110                         & q->sw_ring_wrap_mask);
3111         desc = q->ring_addr + desc_idx;
3112         uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
3113         acc100_fcw_td_fill(op, &desc->req.fcw_td);
3114
3115         input = op->turbo_dec.input.data;
3116         h_output_head = h_output = op->turbo_dec.hard_output.data;
3117         s_output_head = s_output = op->turbo_dec.soft_output.data;
3118         in_offset = op->turbo_dec.input.offset;
3119         h_out_offset = op->turbo_dec.hard_output.offset;
3120         s_out_offset = op->turbo_dec.soft_output.offset;
3121         h_out_length = s_out_length = 0;
3122         mbuf_total_left = op->turbo_dec.input.length;
3123         c = op->turbo_dec.tb_params.c;
3124         r = op->turbo_dec.tb_params.r;
3125
3126         while (mbuf_total_left > 0 && r < c) {
3127
3128                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
3129
3130                 /* Set up DMA descriptor */
3131                 desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
3132                                 & q->sw_ring_wrap_mask);
3133                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
3134                 desc->req.data_ptrs[0].blen = ACC100_FCW_TD_BLEN;
3135                 ret = acc100_dma_desc_td_fill(op, &desc->req, &input,
3136                                 h_output, s_output, &in_offset, &h_out_offset,
3137                                 &s_out_offset, &h_out_length, &s_out_length,
3138                                 &mbuf_total_left, &seg_total_left, r);
3139
3140                 if (unlikely(ret < 0))
3141                         return ret;
3142
3143                 /* Hard output */
3144                 mbuf_append(h_output_head, h_output, h_out_length);
3145
3146                 /* Soft output */
3147                 if (check_bit(op->turbo_dec.op_flags,
3148                                 RTE_BBDEV_TURBO_SOFT_OUTPUT))
3149                         mbuf_append(s_output_head, s_output, s_out_length);
3150
3151                 /* Set total number of CBs in TB */
3152                 desc->req.cbs_in_tb = cbs_in_tb;
3153 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3154                 rte_memdump(stderr, "FCW", &desc->req.fcw_td,
3155                                 sizeof(desc->req.fcw_td) - 8);
3156                 rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
3157 #endif
3158
3159                 if (seg_total_left == 0) {
3160                         /* Go to the next mbuf */
3161                         input = input->next;
3162                         in_offset = 0;
3163                         h_output = h_output->next;
3164                         h_out_offset = 0;
3165
3166                         if (check_bit(op->turbo_dec.op_flags,
3167                                         RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
3168                                 s_output = s_output->next;
3169                                 s_out_offset = 0;
3170                         }
3171                 }
3172
3173                 total_enqueued_cbs++;
3174                 current_enqueued_cbs++;
3175                 r++;
3176         }
3177
3178 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3179         if (check_mbuf_total_left(mbuf_total_left) != 0)
3180                 return -EINVAL;
3181 #endif
3182         /* Set SDone on last CB descriptor for TB mode */
3183         desc->req.sdone_enable = 1;
3184         desc->req.irq_enable = q->irq_enable;
3185
3186         return current_enqueued_cbs;
3187 }
3188
3189 /* Calculates number of CBs in processed encoder TB based on 'r' and input
3190  * length.
3191  */
3192 static inline uint8_t
3193 get_num_cbs_in_tb_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
3194 {
3195         uint8_t c, c_neg, r, crc24_bits = 0;
3196         uint16_t k, k_neg, k_pos;
3197         uint8_t cbs_in_tb = 0;
3198         int32_t length;
3199
3200         length = turbo_enc->input.length;
3201         r = turbo_enc->tb_params.r;
3202         c = turbo_enc->tb_params.c;
3203         c_neg = turbo_enc->tb_params.c_neg;
3204         k_neg = turbo_enc->tb_params.k_neg;
3205         k_pos = turbo_enc->tb_params.k_pos;
3206         crc24_bits = 0;
3207         if (check_bit(turbo_enc->op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
3208                 crc24_bits = 24;
3209         while (length > 0 && r < c) {
3210                 k = (r < c_neg) ? k_neg : k_pos;
3211                 length -= (k - crc24_bits) >> 3;
3212                 r++;
3213                 cbs_in_tb++;
3214         }
3215
3216         return cbs_in_tb;
3217 }
3218
3219 /* Calculates number of CBs in processed decoder TB based on 'r' and input
3220  * length.
3221  */
3222 static inline uint16_t
3223 get_num_cbs_in_tb_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
3224 {
3225         uint8_t c, c_neg, r = 0;
3226         uint16_t kw, k, k_neg, k_pos, cbs_in_tb = 0;
3227         int32_t length;
3228
3229         length = turbo_dec->input.length;
3230         r = turbo_dec->tb_params.r;
3231         c = turbo_dec->tb_params.c;
3232         c_neg = turbo_dec->tb_params.c_neg;
3233         k_neg = turbo_dec->tb_params.k_neg;
3234         k_pos = turbo_dec->tb_params.k_pos;
3235         while (length > 0 && r < c) {
3236                 k = (r < c_neg) ? k_neg : k_pos;
3237                 kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
3238                 length -= kw;
3239                 r++;
3240                 cbs_in_tb++;
3241         }
3242
3243         return cbs_in_tb;
3244 }
3245
3246 /* Calculates number of CBs in processed decoder TB based on 'r' and input
3247  * length.
3248  */
3249 static inline uint16_t
3250 get_num_cbs_in_tb_ldpc_dec(struct rte_bbdev_op_ldpc_dec *ldpc_dec)
3251 {
3252         uint16_t r, cbs_in_tb = 0;
3253         int32_t length = ldpc_dec->input.length;
3254         r = ldpc_dec->tb_params.r;
3255         while (length > 0 && r < ldpc_dec->tb_params.c) {
3256                 length -=  (r < ldpc_dec->tb_params.cab) ?
3257                                 ldpc_dec->tb_params.ea :
3258                                 ldpc_dec->tb_params.eb;
3259                 r++;
3260                 cbs_in_tb++;
3261         }
3262         return cbs_in_tb;
3263 }
3264
3265 /* Enqueue encode operations for ACC100 device in CB mode. */
3266 static uint16_t
3267 acc100_enqueue_enc_cb(struct rte_bbdev_queue_data *q_data,
3268                 struct rte_bbdev_enc_op **ops, uint16_t num)
3269 {
3270         struct acc100_queue *q = q_data->queue_private;
3271         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3272         uint16_t i;
3273         union acc100_dma_desc *desc;
3274         int ret;
3275
3276         for (i = 0; i < num; ++i) {
3277                 /* Check if there are available space for further processing */
3278                 if (unlikely(avail - 1 < 0))
3279                         break;
3280                 avail -= 1;
3281
3282                 ret = enqueue_enc_one_op_cb(q, ops[i], i);
3283                 if (ret < 0)
3284                         break;
3285         }
3286
3287         if (unlikely(i == 0))
3288                 return 0; /* Nothing to enqueue */
3289
3290         /* Set SDone in last CB in enqueued ops for CB mode*/
3291         desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3292                         & q->sw_ring_wrap_mask);
3293         desc->req.sdone_enable = 1;
3294         desc->req.irq_enable = q->irq_enable;
3295
3296         acc100_dma_enqueue(q, i, &q_data->queue_stats);
3297
3298         /* Update stats */
3299         q_data->queue_stats.enqueued_count += i;
3300         q_data->queue_stats.enqueue_err_count += num - i;
3301         return i;
3302 }
3303
3304 /* Check we can mux encode operations with common FCW */
3305 static inline bool
3306 check_mux(struct rte_bbdev_enc_op **ops, uint16_t num) {
3307         uint16_t i;
3308         if (num <= 1)
3309                 return false;
3310         for (i = 1; i < num; ++i) {
3311                 /* Only mux compatible code blocks */
3312                 if (memcmp((uint8_t *)(&ops[i]->ldpc_enc) + ACC100_ENC_OFFSET,
3313                                 (uint8_t *)(&ops[0]->ldpc_enc) +
3314                                 ACC100_ENC_OFFSET,
3315                                 ACC100_CMP_ENC_SIZE) != 0)
3316                         return false;
3317         }
3318         return true;
3319 }
3320
3321 /** Enqueue encode operations for ACC100 device in CB mode. */
3322 static inline uint16_t
3323 acc100_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
3324                 struct rte_bbdev_enc_op **ops, uint16_t num)
3325 {
3326         struct acc100_queue *q = q_data->queue_private;
3327         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3328         uint16_t i = 0;
3329         union acc100_dma_desc *desc;
3330         int ret, desc_idx = 0;
3331         int16_t enq, left = num;
3332
3333         while (left > 0) {
3334                 if (unlikely(avail < 1))
3335                         break;
3336                 avail--;
3337                 enq = RTE_MIN(left, ACC100_MUX_5GDL_DESC);
3338                 if (check_mux(&ops[i], enq)) {
3339                         ret = enqueue_ldpc_enc_n_op_cb(q, &ops[i],
3340                                         desc_idx, enq);
3341                         if (ret < 0)
3342                                 break;
3343                         i += enq;
3344                 } else {
3345                         ret = enqueue_ldpc_enc_one_op_cb(q, ops[i], desc_idx);
3346                         if (ret < 0)
3347                                 break;
3348                         i++;
3349                 }
3350                 desc_idx++;
3351                 left = num - i;
3352         }
3353
3354         if (unlikely(i == 0))
3355                 return 0; /* Nothing to enqueue */
3356
3357         /* Set SDone in last CB in enqueued ops for CB mode*/
3358         desc = q->ring_addr + ((q->sw_ring_head + desc_idx - 1)
3359                         & q->sw_ring_wrap_mask);
3360         desc->req.sdone_enable = 1;
3361         desc->req.irq_enable = q->irq_enable;
3362
3363         acc100_dma_enqueue(q, desc_idx, &q_data->queue_stats);
3364
3365         /* Update stats */
3366         q_data->queue_stats.enqueued_count += i;
3367         q_data->queue_stats.enqueue_err_count += num - i;
3368
3369         return i;
3370 }
3371
3372 /* Enqueue encode operations for ACC100 device in TB mode. */
3373 static uint16_t
3374 acc100_enqueue_enc_tb(struct rte_bbdev_queue_data *q_data,
3375                 struct rte_bbdev_enc_op **ops, uint16_t num)
3376 {
3377         struct acc100_queue *q = q_data->queue_private;
3378         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3379         uint16_t i, enqueued_cbs = 0;
3380         uint8_t cbs_in_tb;
3381         int ret;
3382
3383         for (i = 0; i < num; ++i) {
3384                 cbs_in_tb = get_num_cbs_in_tb_enc(&ops[i]->turbo_enc);
3385                 /* Check if there are available space for further processing */
3386                 if (unlikely(avail - cbs_in_tb < 0))
3387                         break;
3388                 avail -= cbs_in_tb;
3389
3390                 ret = enqueue_enc_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
3391                 if (ret < 0)
3392                         break;
3393                 enqueued_cbs += ret;
3394         }
3395         if (unlikely(enqueued_cbs == 0))
3396                 return 0; /* Nothing to enqueue */
3397
3398         acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3399
3400         /* Update stats */
3401         q_data->queue_stats.enqueued_count += i;
3402         q_data->queue_stats.enqueue_err_count += num - i;
3403
3404         return i;
3405 }
3406
3407 /* Enqueue encode operations for ACC100 device. */
3408 static uint16_t
3409 acc100_enqueue_enc(struct rte_bbdev_queue_data *q_data,
3410                 struct rte_bbdev_enc_op **ops, uint16_t num)
3411 {
3412         if (unlikely(num == 0))
3413                 return 0;
3414         if (ops[0]->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3415                 return acc100_enqueue_enc_tb(q_data, ops, num);
3416         else
3417                 return acc100_enqueue_enc_cb(q_data, ops, num);
3418 }
3419
3420 /* Enqueue encode operations for ACC100 device. */
3421 static uint16_t
3422 acc100_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
3423                 struct rte_bbdev_enc_op **ops, uint16_t num)
3424 {
3425         if (unlikely(num == 0))
3426                 return 0;
3427         if (ops[0]->ldpc_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3428                 return acc100_enqueue_enc_tb(q_data, ops, num);
3429         else
3430                 return acc100_enqueue_ldpc_enc_cb(q_data, ops, num);
3431 }
3432
3433
3434 /* Enqueue decode operations for ACC100 device in CB mode */
3435 static uint16_t
3436 acc100_enqueue_dec_cb(struct rte_bbdev_queue_data *q_data,
3437                 struct rte_bbdev_dec_op **ops, uint16_t num)
3438 {
3439         struct acc100_queue *q = q_data->queue_private;
3440         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3441         uint16_t i;
3442         union acc100_dma_desc *desc;
3443         int ret;
3444
3445         for (i = 0; i < num; ++i) {
3446                 /* Check if there are available space for further processing */
3447                 if (unlikely(avail - 1 < 0))
3448                         break;
3449                 avail -= 1;
3450
3451                 ret = enqueue_dec_one_op_cb(q, ops[i], i);
3452                 if (ret < 0)
3453                         break;
3454         }
3455
3456         if (unlikely(i == 0))
3457                 return 0; /* Nothing to enqueue */
3458
3459         /* Set SDone in last CB in enqueued ops for CB mode*/
3460         desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3461                         & q->sw_ring_wrap_mask);
3462         desc->req.sdone_enable = 1;
3463         desc->req.irq_enable = q->irq_enable;
3464
3465         acc100_dma_enqueue(q, i, &q_data->queue_stats);
3466
3467         /* Update stats */
3468         q_data->queue_stats.enqueued_count += i;
3469         q_data->queue_stats.enqueue_err_count += num - i;
3470
3471         return i;
3472 }
3473
3474 /* Check we can mux encode operations with common FCW */
3475 static inline bool
3476 cmp_ldpc_dec_op(struct rte_bbdev_dec_op **ops) {
3477         /* Only mux compatible code blocks */
3478         if (memcmp((uint8_t *)(&ops[0]->ldpc_dec) + ACC100_DEC_OFFSET,
3479                         (uint8_t *)(&ops[1]->ldpc_dec) +
3480                         ACC100_DEC_OFFSET, ACC100_CMP_DEC_SIZE) != 0) {
3481                 return false;
3482         } else
3483                 return true;
3484 }
3485
3486
3487 /* Enqueue decode operations for ACC100 device in TB mode */
3488 static uint16_t
3489 acc100_enqueue_ldpc_dec_tb(struct rte_bbdev_queue_data *q_data,
3490                 struct rte_bbdev_dec_op **ops, uint16_t num)
3491 {
3492         struct acc100_queue *q = q_data->queue_private;
3493         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3494         uint16_t i, enqueued_cbs = 0;
3495         uint8_t cbs_in_tb;
3496         int ret;
3497
3498         for (i = 0; i < num; ++i) {
3499                 cbs_in_tb = get_num_cbs_in_tb_ldpc_dec(&ops[i]->ldpc_dec);
3500                 /* Check if there are available space for further processing */
3501                 if (unlikely(avail - cbs_in_tb < 0))
3502                         break;
3503                 avail -= cbs_in_tb;
3504
3505                 ret = enqueue_ldpc_dec_one_op_tb(q, ops[i],
3506                                 enqueued_cbs, cbs_in_tb);
3507                 if (ret < 0)
3508                         break;
3509                 enqueued_cbs += ret;
3510         }
3511
3512         acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3513
3514         /* Update stats */
3515         q_data->queue_stats.enqueued_count += i;
3516         q_data->queue_stats.enqueue_err_count += num - i;
3517         return i;
3518 }
3519
3520 /* Enqueue decode operations for ACC100 device in CB mode */
3521 static uint16_t
3522 acc100_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data,
3523                 struct rte_bbdev_dec_op **ops, uint16_t num)
3524 {
3525         struct acc100_queue *q = q_data->queue_private;
3526         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3527         uint16_t i;
3528         union acc100_dma_desc *desc;
3529         int ret;
3530         bool same_op = false;
3531         for (i = 0; i < num; ++i) {
3532                 /* Check if there are available space for further processing */
3533                 if (unlikely(avail < 1))
3534                         break;
3535                 avail -= 1;
3536
3537                 if (i > 0)
3538                         same_op = cmp_ldpc_dec_op(&ops[i-1]);
3539                 rte_bbdev_log(INFO, "Op %d %d %d %d %d %d %d %d %d %d %d %d\n",
3540                         i, ops[i]->ldpc_dec.op_flags, ops[i]->ldpc_dec.rv_index,
3541                         ops[i]->ldpc_dec.iter_max, ops[i]->ldpc_dec.iter_count,
3542                         ops[i]->ldpc_dec.basegraph, ops[i]->ldpc_dec.z_c,
3543                         ops[i]->ldpc_dec.n_cb, ops[i]->ldpc_dec.q_m,
3544                         ops[i]->ldpc_dec.n_filler, ops[i]->ldpc_dec.cb_params.e,
3545                         same_op);
3546                 ret = enqueue_ldpc_dec_one_op_cb(q, ops[i], i, same_op);
3547                 if (ret < 0)
3548                         break;
3549         }
3550
3551         if (unlikely(i == 0))
3552                 return 0; /* Nothing to enqueue */
3553
3554         /* Set SDone in last CB in enqueued ops for CB mode*/
3555         desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3556                         & q->sw_ring_wrap_mask);
3557
3558         desc->req.sdone_enable = 1;
3559         desc->req.irq_enable = q->irq_enable;
3560
3561         acc100_dma_enqueue(q, i, &q_data->queue_stats);
3562
3563         /* Update stats */
3564         q_data->queue_stats.enqueued_count += i;
3565         q_data->queue_stats.enqueue_err_count += num - i;
3566         return i;
3567 }
3568
3569
3570 /* Enqueue decode operations for ACC100 device in TB mode */
3571 static uint16_t
3572 acc100_enqueue_dec_tb(struct rte_bbdev_queue_data *q_data,
3573                 struct rte_bbdev_dec_op **ops, uint16_t num)
3574 {
3575         struct acc100_queue *q = q_data->queue_private;
3576         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3577         uint16_t i, enqueued_cbs = 0;
3578         uint8_t cbs_in_tb;
3579         int ret;
3580
3581         for (i = 0; i < num; ++i) {
3582                 cbs_in_tb = get_num_cbs_in_tb_dec(&ops[i]->turbo_dec);
3583                 /* Check if there are available space for further processing */
3584                 if (unlikely(avail - cbs_in_tb < 0))
3585                         break;
3586                 avail -= cbs_in_tb;
3587
3588                 ret = enqueue_dec_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
3589                 if (ret < 0)
3590                         break;
3591                 enqueued_cbs += ret;
3592         }
3593
3594         acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3595
3596         /* Update stats */
3597         q_data->queue_stats.enqueued_count += i;
3598         q_data->queue_stats.enqueue_err_count += num - i;
3599
3600         return i;
3601 }
3602
3603 /* Enqueue decode operations for ACC100 device. */
3604 static uint16_t
3605 acc100_enqueue_dec(struct rte_bbdev_queue_data *q_data,
3606                 struct rte_bbdev_dec_op **ops, uint16_t num)
3607 {
3608         if (unlikely(num == 0))
3609                 return 0;
3610         if (ops[0]->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3611                 return acc100_enqueue_dec_tb(q_data, ops, num);
3612         else
3613                 return acc100_enqueue_dec_cb(q_data, ops, num);
3614 }
3615
3616 /* Enqueue decode operations for ACC100 device. */
3617 static uint16_t
3618 acc100_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
3619                 struct rte_bbdev_dec_op **ops, uint16_t num)
3620 {
3621         struct acc100_queue *q = q_data->queue_private;
3622         int32_t aq_avail = q->aq_depth +
3623                         (q->aq_dequeued - q->aq_enqueued) / 128;
3624
3625         if (unlikely((aq_avail == 0) || (num == 0)))
3626                 return 0;
3627
3628         if (ops[0]->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3629                 return acc100_enqueue_ldpc_dec_tb(q_data, ops, num);
3630         else
3631                 return acc100_enqueue_ldpc_dec_cb(q_data, ops, num);
3632 }
3633
3634
3635 /* Dequeue one encode operations from ACC100 device in CB mode */
3636 static inline int
3637 dequeue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
3638                 uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
3639 {
3640         union acc100_dma_desc *desc, atom_desc;
3641         union acc100_dma_rsp_desc rsp;
3642         struct rte_bbdev_enc_op *op;
3643         int i;
3644
3645         desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
3646                         & q->sw_ring_wrap_mask);
3647         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3648                         __ATOMIC_RELAXED);
3649
3650         /* Check fdone bit */
3651         if (!(atom_desc.rsp.val & ACC100_FDONE))
3652                 return -1;
3653
3654         rsp.val = atom_desc.rsp.val;
3655         rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
3656
3657         /* Dequeue */
3658         op = desc->req.op_addr;
3659
3660         /* Clearing status, it will be set based on response */
3661         op->status = 0;
3662
3663         op->status |= ((rsp.input_err)
3664                         ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3665         op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3666         op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3667
3668         if (desc->req.last_desc_in_batch) {
3669                 (*aq_dequeued)++;
3670                 desc->req.last_desc_in_batch = 0;
3671         }
3672         desc->rsp.val = ACC100_DMA_DESC_TYPE;
3673         desc->rsp.add_info_0 = 0; /*Reserved bits */
3674         desc->rsp.add_info_1 = 0; /*Reserved bits */
3675
3676         /* Flag that the muxing cause loss of opaque data */
3677         op->opaque_data = (void *)-1;
3678         for (i = 0 ; i < desc->req.numCBs; i++)
3679                 ref_op[i] = op;
3680
3681         /* One CB (op) was successfully dequeued */
3682         return desc->req.numCBs;
3683 }
3684
3685 /* Dequeue one encode operations from ACC100 device in TB mode */
3686 static inline int
3687 dequeue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
3688                 uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
3689 {
3690         union acc100_dma_desc *desc, *last_desc, atom_desc;
3691         union acc100_dma_rsp_desc rsp;
3692         struct rte_bbdev_enc_op *op;
3693         uint8_t i = 0;
3694         uint16_t current_dequeued_cbs = 0, cbs_in_tb;
3695
3696         desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
3697                         & q->sw_ring_wrap_mask);
3698         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3699                         __ATOMIC_RELAXED);
3700
3701         /* Check fdone bit */
3702         if (!(atom_desc.rsp.val & ACC100_FDONE))
3703                 return -1;
3704
3705         /* Get number of CBs in dequeued TB */
3706         cbs_in_tb = desc->req.cbs_in_tb;
3707         /* Get last CB */
3708         last_desc = q->ring_addr + ((q->sw_ring_tail
3709                         + total_dequeued_cbs + cbs_in_tb - 1)
3710                         & q->sw_ring_wrap_mask);
3711         /* Check if last CB in TB is ready to dequeue (and thus
3712          * the whole TB) - checking sdone bit. If not return.
3713          */
3714         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
3715                         __ATOMIC_RELAXED);
3716         if (!(atom_desc.rsp.val & ACC100_SDONE))
3717                 return -1;
3718
3719         /* Dequeue */
3720         op = desc->req.op_addr;
3721
3722         /* Clearing status, it will be set based on response */
3723         op->status = 0;
3724
3725         while (i < cbs_in_tb) {
3726                 desc = q->ring_addr + ((q->sw_ring_tail
3727                                 + total_dequeued_cbs)
3728                                 & q->sw_ring_wrap_mask);
3729                 atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3730                                 __ATOMIC_RELAXED);
3731                 rsp.val = atom_desc.rsp.val;
3732                 rte_bbdev_log_debug("Resp. desc %p: %x", desc,
3733                                 rsp.val);
3734
3735                 op->status |= ((rsp.input_err)
3736                                 ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3737                 op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3738                 op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3739
3740                 if (desc->req.last_desc_in_batch) {
3741                         (*aq_dequeued)++;
3742                         desc->req.last_desc_in_batch = 0;
3743                 }
3744                 desc->rsp.val = ACC100_DMA_DESC_TYPE;
3745                 desc->rsp.add_info_0 = 0;
3746                 desc->rsp.add_info_1 = 0;
3747                 total_dequeued_cbs++;
3748                 current_dequeued_cbs++;
3749                 i++;
3750         }
3751
3752         *ref_op = op;
3753
3754         return current_dequeued_cbs;
3755 }
3756
3757 /* Dequeue one decode operation from ACC100 device in CB mode */
3758 static inline int
3759 dequeue_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
3760                 struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3761                 uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3762 {
3763         union acc100_dma_desc *desc, atom_desc;
3764         union acc100_dma_rsp_desc rsp;
3765         struct rte_bbdev_dec_op *op;
3766
3767         desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3768                         & q->sw_ring_wrap_mask);
3769         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3770                         __ATOMIC_RELAXED);
3771
3772         /* Check fdone bit */
3773         if (!(atom_desc.rsp.val & ACC100_FDONE))
3774                 return -1;
3775
3776         rsp.val = atom_desc.rsp.val;
3777         rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
3778
3779         /* Dequeue */
3780         op = desc->req.op_addr;
3781
3782         /* Clearing status, it will be set based on response */
3783         op->status = 0;
3784         op->status |= ((rsp.input_err)
3785                         ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3786         op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3787         op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3788         if (op->status != 0) {
3789                 q_data->queue_stats.dequeue_err_count++;
3790                 acc100_check_ir(q->d);
3791         }
3792
3793         /* CRC invalid if error exists */
3794         if (!op->status)
3795                 op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3796         op->turbo_dec.iter_count = (uint8_t) rsp.iter_cnt / 2;
3797         /* Check if this is the last desc in batch (Atomic Queue) */
3798         if (desc->req.last_desc_in_batch) {
3799                 (*aq_dequeued)++;
3800                 desc->req.last_desc_in_batch = 0;
3801         }
3802         desc->rsp.val = ACC100_DMA_DESC_TYPE;
3803         desc->rsp.add_info_0 = 0;
3804         desc->rsp.add_info_1 = 0;
3805         *ref_op = op;
3806
3807         /* One CB (op) was successfully dequeued */
3808         return 1;
3809 }
3810
3811 /* Dequeue one decode operations from ACC100 device in CB mode */
3812 static inline int
3813 dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
3814                 struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3815                 uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3816 {
3817         union acc100_dma_desc *desc, atom_desc;
3818         union acc100_dma_rsp_desc rsp;
3819         struct rte_bbdev_dec_op *op;
3820
3821         desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3822                         & q->sw_ring_wrap_mask);
3823         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3824                         __ATOMIC_RELAXED);
3825
3826         /* Check fdone bit */
3827         if (!(atom_desc.rsp.val & ACC100_FDONE))
3828                 return -1;
3829
3830         rsp.val = atom_desc.rsp.val;
3831
3832         /* Dequeue */
3833         op = desc->req.op_addr;
3834
3835         /* Clearing status, it will be set based on response */
3836         op->status = 0;
3837         op->status |= rsp.input_err << RTE_BBDEV_DATA_ERROR;
3838         op->status |= rsp.dma_err << RTE_BBDEV_DRV_ERROR;
3839         op->status |= rsp.fcw_err << RTE_BBDEV_DRV_ERROR;
3840         if (op->status != 0)
3841                 q_data->queue_stats.dequeue_err_count++;
3842
3843         op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3844         if (op->ldpc_dec.hard_output.length > 0 && !rsp.synd_ok)
3845                 op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
3846         op->ldpc_dec.iter_count = (uint8_t) rsp.iter_cnt;
3847
3848         if (op->status & (1 << RTE_BBDEV_DRV_ERROR))
3849                 acc100_check_ir(q->d);
3850
3851         /* Check if this is the last desc in batch (Atomic Queue) */
3852         if (desc->req.last_desc_in_batch) {
3853                 (*aq_dequeued)++;
3854                 desc->req.last_desc_in_batch = 0;
3855         }
3856
3857         desc->rsp.val = ACC100_DMA_DESC_TYPE;
3858         desc->rsp.add_info_0 = 0;
3859         desc->rsp.add_info_1 = 0;
3860
3861         *ref_op = op;
3862
3863         /* One CB (op) was successfully dequeued */
3864         return 1;
3865 }
3866
3867 /* Dequeue one decode operations from ACC100 device in TB mode. */
3868 static inline int
3869 dequeue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3870                 uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3871 {
3872         union acc100_dma_desc *desc, *last_desc, atom_desc;
3873         union acc100_dma_rsp_desc rsp;
3874         struct rte_bbdev_dec_op *op;
3875         uint8_t cbs_in_tb = 1, cb_idx = 0;
3876
3877         desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3878                         & q->sw_ring_wrap_mask);
3879         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3880                         __ATOMIC_RELAXED);
3881
3882         /* Check fdone bit */
3883         if (!(atom_desc.rsp.val & ACC100_FDONE))
3884                 return -1;
3885
3886         /* Dequeue */
3887         op = desc->req.op_addr;
3888
3889         /* Get number of CBs in dequeued TB */
3890         cbs_in_tb = desc->req.cbs_in_tb;
3891         /* Get last CB */
3892         last_desc = q->ring_addr + ((q->sw_ring_tail
3893                         + dequeued_cbs + cbs_in_tb - 1)
3894                         & q->sw_ring_wrap_mask);
3895         /* Check if last CB in TB is ready to dequeue (and thus
3896          * the whole TB) - checking sdone bit. If not return.
3897          */
3898         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
3899                         __ATOMIC_RELAXED);
3900         if (!(atom_desc.rsp.val & ACC100_SDONE))
3901                 return -1;
3902
3903         /* Clearing status, it will be set based on response */
3904         op->status = 0;
3905
3906         /* Read remaining CBs if exists */
3907         while (cb_idx < cbs_in_tb) {
3908                 desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3909                                 & q->sw_ring_wrap_mask);
3910                 atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3911                                 __ATOMIC_RELAXED);
3912                 rsp.val = atom_desc.rsp.val;
3913                 rte_bbdev_log_debug("Resp. desc %p: %x", desc,
3914                                 rsp.val);
3915
3916                 op->status |= ((rsp.input_err)
3917                                 ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3918                 op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3919                 op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3920
3921                 /* CRC invalid if error exists */
3922                 if (!op->status)
3923                         op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3924                 op->turbo_dec.iter_count = RTE_MAX((uint8_t) rsp.iter_cnt,
3925                                 op->turbo_dec.iter_count);
3926
3927                 /* Check if this is the last desc in batch (Atomic Queue) */
3928                 if (desc->req.last_desc_in_batch) {
3929                         (*aq_dequeued)++;
3930                         desc->req.last_desc_in_batch = 0;
3931                 }
3932                 desc->rsp.val = ACC100_DMA_DESC_TYPE;
3933                 desc->rsp.add_info_0 = 0;
3934                 desc->rsp.add_info_1 = 0;
3935                 dequeued_cbs++;
3936                 cb_idx++;
3937         }
3938
3939         *ref_op = op;
3940
3941         return cb_idx;
3942 }
3943
3944 /* Dequeue encode operations from ACC100 device. */
3945 static uint16_t
3946 acc100_dequeue_enc(struct rte_bbdev_queue_data *q_data,
3947                 struct rte_bbdev_enc_op **ops, uint16_t num)
3948 {
3949         struct acc100_queue *q = q_data->queue_private;
3950         uint16_t dequeue_num;
3951         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
3952         uint32_t aq_dequeued = 0;
3953         uint16_t i, dequeued_cbs = 0;
3954         struct rte_bbdev_enc_op *op;
3955         int ret;
3956
3957 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3958         if (unlikely(ops == NULL || q == NULL)) {
3959                 rte_bbdev_log_debug("Unexpected undefined pointer");
3960                 return 0;
3961         }
3962 #endif
3963
3964         dequeue_num = (avail < num) ? avail : num;
3965
3966         for (i = 0; i < dequeue_num; ++i) {
3967                 op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3968                         & q->sw_ring_wrap_mask))->req.op_addr;
3969                 if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3970                         ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs,
3971                                         &aq_dequeued);
3972                 else
3973                         ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs,
3974                                         &aq_dequeued);
3975
3976                 if (ret < 0)
3977                         break;
3978                 dequeued_cbs += ret;
3979         }
3980
3981         q->aq_dequeued += aq_dequeued;
3982         q->sw_ring_tail += dequeued_cbs;
3983
3984         /* Update enqueue stats */
3985         q_data->queue_stats.dequeued_count += i;
3986
3987         return i;
3988 }
3989
3990 /* Dequeue LDPC encode operations from ACC100 device. */
3991 static uint16_t
3992 acc100_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
3993                 struct rte_bbdev_enc_op **ops, uint16_t num)
3994 {
3995         struct acc100_queue *q = q_data->queue_private;
3996         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
3997         uint32_t aq_dequeued = 0;
3998         uint16_t dequeue_num, i, dequeued_cbs = 0, dequeued_descs = 0;
3999         int ret;
4000
4001 #ifdef RTE_LIBRTE_BBDEV_DEBUG
4002         if (unlikely(ops == 0 && q == NULL))
4003                 return 0;
4004 #endif
4005
4006         dequeue_num = RTE_MIN(avail, num);
4007
4008         for (i = 0; i < dequeue_num; i++) {
4009                 ret = dequeue_enc_one_op_cb(q, &ops[dequeued_cbs],
4010                                 dequeued_descs, &aq_dequeued);
4011                 if (ret < 0)
4012                         break;
4013                 dequeued_cbs += ret;
4014                 dequeued_descs++;
4015                 if (dequeued_cbs >= num)
4016                         break;
4017         }
4018
4019         q->aq_dequeued += aq_dequeued;
4020         q->sw_ring_tail += dequeued_descs;
4021
4022         /* Update enqueue stats */
4023         q_data->queue_stats.dequeued_count += dequeued_cbs;
4024
4025         return dequeued_cbs;
4026 }
4027
4028
4029 /* Dequeue decode operations from ACC100 device. */
4030 static uint16_t
4031 acc100_dequeue_dec(struct rte_bbdev_queue_data *q_data,
4032                 struct rte_bbdev_dec_op **ops, uint16_t num)
4033 {
4034         struct acc100_queue *q = q_data->queue_private;
4035         uint16_t dequeue_num;
4036         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4037         uint32_t aq_dequeued = 0;
4038         uint16_t i;
4039         uint16_t dequeued_cbs = 0;
4040         struct rte_bbdev_dec_op *op;
4041         int ret;
4042
4043 #ifdef RTE_LIBRTE_BBDEV_DEBUG
4044         if (unlikely(ops == 0 && q == NULL))
4045                 return 0;
4046 #endif
4047
4048         dequeue_num = (avail < num) ? avail : num;
4049
4050         for (i = 0; i < dequeue_num; ++i) {
4051                 op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
4052                         & q->sw_ring_wrap_mask))->req.op_addr;
4053                 if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
4054                         ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
4055                                         &aq_dequeued);
4056                 else
4057                         ret = dequeue_dec_one_op_cb(q_data, q, &ops[i],
4058                                         dequeued_cbs, &aq_dequeued);
4059
4060                 if (ret < 0)
4061                         break;
4062                 dequeued_cbs += ret;
4063         }
4064
4065         q->aq_dequeued += aq_dequeued;
4066         q->sw_ring_tail += dequeued_cbs;
4067
4068         /* Update enqueue stats */
4069         q_data->queue_stats.dequeued_count += i;
4070
4071         return i;
4072 }
4073
4074 /* Dequeue decode operations from ACC100 device. */
4075 static uint16_t
4076 acc100_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
4077                 struct rte_bbdev_dec_op **ops, uint16_t num)
4078 {
4079         struct acc100_queue *q = q_data->queue_private;
4080         uint16_t dequeue_num;
4081         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4082         uint32_t aq_dequeued = 0;
4083         uint16_t i;
4084         uint16_t dequeued_cbs = 0;
4085         struct rte_bbdev_dec_op *op;
4086         int ret;
4087
4088 #ifdef RTE_LIBRTE_BBDEV_DEBUG
4089         if (unlikely(ops == 0 && q == NULL))
4090                 return 0;
4091 #endif
4092
4093         dequeue_num = RTE_MIN(avail, num);
4094
4095         for (i = 0; i < dequeue_num; ++i) {
4096                 op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
4097                         & q->sw_ring_wrap_mask))->req.op_addr;
4098                 if (op->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
4099                         ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
4100                                         &aq_dequeued);
4101                 else
4102                         ret = dequeue_ldpc_dec_one_op_cb(
4103                                         q_data, q, &ops[i], dequeued_cbs,
4104                                         &aq_dequeued);
4105
4106                 if (ret < 0)
4107                         break;
4108                 dequeued_cbs += ret;
4109         }
4110
4111         q->aq_dequeued += aq_dequeued;
4112         q->sw_ring_tail += dequeued_cbs;
4113
4114         /* Update enqueue stats */
4115         q_data->queue_stats.dequeued_count += i;
4116
4117         return i;
4118 }
4119
4120 /* Initialization Function */
4121 static void
4122 acc100_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
4123 {
4124         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
4125
4126         dev->dev_ops = &acc100_bbdev_ops;
4127         dev->enqueue_enc_ops = acc100_enqueue_enc;
4128         dev->enqueue_dec_ops = acc100_enqueue_dec;
4129         dev->dequeue_enc_ops = acc100_dequeue_enc;
4130         dev->dequeue_dec_ops = acc100_dequeue_dec;
4131         dev->enqueue_ldpc_enc_ops = acc100_enqueue_ldpc_enc;
4132         dev->enqueue_ldpc_dec_ops = acc100_enqueue_ldpc_dec;
4133         dev->dequeue_ldpc_enc_ops = acc100_dequeue_ldpc_enc;
4134         dev->dequeue_ldpc_dec_ops = acc100_dequeue_ldpc_dec;
4135
4136         ((struct acc100_device *) dev->data->dev_private)->pf_device =
4137                         !strcmp(drv->driver.name,
4138                                         RTE_STR(ACC100PF_DRIVER_NAME));
4139         ((struct acc100_device *) dev->data->dev_private)->mmio_base =
4140                         pci_dev->mem_resource[0].addr;
4141
4142         rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"",
4143                         drv->driver.name, dev->data->name,
4144                         (void *)pci_dev->mem_resource[0].addr,
4145                         pci_dev->mem_resource[0].phys_addr);
4146 }
4147
4148 static int acc100_pci_probe(struct rte_pci_driver *pci_drv,
4149         struct rte_pci_device *pci_dev)
4150 {
4151         struct rte_bbdev *bbdev = NULL;
4152         char dev_name[RTE_BBDEV_NAME_MAX_LEN];
4153
4154         if (pci_dev == NULL) {
4155                 rte_bbdev_log(ERR, "NULL PCI device");
4156                 return -EINVAL;
4157         }
4158
4159         rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
4160
4161         /* Allocate memory to be used privately by drivers */
4162         bbdev = rte_bbdev_allocate(pci_dev->device.name);
4163         if (bbdev == NULL)
4164                 return -ENODEV;
4165
4166         /* allocate device private memory */
4167         bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
4168                         sizeof(struct acc100_device), RTE_CACHE_LINE_SIZE,
4169                         pci_dev->device.numa_node);
4170
4171         if (bbdev->data->dev_private == NULL) {
4172                 rte_bbdev_log(CRIT,
4173                                 "Allocate of %zu bytes for device \"%s\" failed",
4174                                 sizeof(struct acc100_device), dev_name);
4175                                 rte_bbdev_release(bbdev);
4176                         return -ENOMEM;
4177         }
4178
4179         /* Fill HW specific part of device structure */
4180         bbdev->device = &pci_dev->device;
4181         bbdev->intr_handle = &pci_dev->intr_handle;
4182         bbdev->data->socket_id = pci_dev->device.numa_node;
4183
4184         /* Invoke ACC100 device initialization function */
4185         acc100_bbdev_init(bbdev, pci_drv);
4186
4187         rte_bbdev_log_debug("Initialised bbdev %s (id = %u)",
4188                         dev_name, bbdev->data->dev_id);
4189         return 0;
4190 }
4191
4192 static int acc100_pci_remove(struct rte_pci_device *pci_dev)
4193 {
4194         struct rte_bbdev *bbdev;
4195         int ret;
4196         uint8_t dev_id;
4197
4198         if (pci_dev == NULL)
4199                 return -EINVAL;
4200
4201         /* Find device */
4202         bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
4203         if (bbdev == NULL) {
4204                 rte_bbdev_log(CRIT,
4205                                 "Couldn't find HW dev \"%s\" to uninitialise it",
4206                                 pci_dev->device.name);
4207                 return -ENODEV;
4208         }
4209         dev_id = bbdev->data->dev_id;
4210
4211         /* free device private memory before close */
4212         rte_free(bbdev->data->dev_private);
4213
4214         /* Close device */
4215         ret = rte_bbdev_close(dev_id);
4216         if (ret < 0)
4217                 rte_bbdev_log(ERR,
4218                                 "Device %i failed to close during uninit: %i",
4219                                 dev_id, ret);
4220
4221         /* release bbdev from library */
4222         rte_bbdev_release(bbdev);
4223
4224         rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
4225
4226         return 0;
4227 }
4228
4229 static struct rte_pci_driver acc100_pci_pf_driver = {
4230                 .probe = acc100_pci_probe,
4231                 .remove = acc100_pci_remove,
4232                 .id_table = pci_id_acc100_pf_map,
4233                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING
4234 };
4235
4236 static struct rte_pci_driver acc100_pci_vf_driver = {
4237                 .probe = acc100_pci_probe,
4238                 .remove = acc100_pci_remove,
4239                 .id_table = pci_id_acc100_vf_map,
4240                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING
4241 };
4242
4243 RTE_PMD_REGISTER_PCI(ACC100PF_DRIVER_NAME, acc100_pci_pf_driver);
4244 RTE_PMD_REGISTER_PCI_TABLE(ACC100PF_DRIVER_NAME, pci_id_acc100_pf_map);
4245 RTE_PMD_REGISTER_PCI(ACC100VF_DRIVER_NAME, acc100_pci_vf_driver);
4246 RTE_PMD_REGISTER_PCI_TABLE(ACC100VF_DRIVER_NAME, pci_id_acc100_vf_map);
4247
4248 /*
4249  * Workaround implementation to fix the power on status of some 5GUL engines
4250  * This requires DMA permission if ported outside DPDK
4251  * It consists in resolving the state of these engines by running a
4252  * dummy operation and resetting the engines to ensure state are reliably
4253  * defined.
4254  */
4255 static void
4256 poweron_cleanup(struct rte_bbdev *bbdev, struct acc100_device *d,
4257                 struct rte_acc100_conf *conf)
4258 {
4259         int i, template_idx, qg_idx;
4260         uint32_t address, status, value;
4261         printf("Need to clear power-on 5GUL status in internal memory\n");
4262         /* Reset LDPC Cores */
4263         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4264                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4265                                 ACC100_ENGINE_OFFSET * i, ACC100_RESET_HI);
4266         usleep(ACC100_LONG_WAIT);
4267         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4268                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4269                                 ACC100_ENGINE_OFFSET * i, ACC100_RESET_LO);
4270         usleep(ACC100_LONG_WAIT);
4271         /* Prepare dummy workload */
4272         alloc_2x64mb_sw_rings_mem(bbdev, d, 0);
4273         /* Set base addresses */
4274         uint32_t phys_high = (uint32_t)(d->sw_rings_iova >> 32);
4275         uint32_t phys_low  = (uint32_t)(d->sw_rings_iova &
4276                         ~(ACC100_SIZE_64MBYTE-1));
4277         acc100_reg_write(d, HWPfDmaFec5GulDescBaseHiRegVf, phys_high);
4278         acc100_reg_write(d, HWPfDmaFec5GulDescBaseLoRegVf, phys_low);
4279
4280         /* Descriptor for a dummy 5GUL code block processing*/
4281         union acc100_dma_desc *desc = NULL;
4282         desc = d->sw_rings;
4283         desc->req.data_ptrs[0].address = d->sw_rings_iova +
4284                         ACC100_DESC_FCW_OFFSET;
4285         desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
4286         desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
4287         desc->req.data_ptrs[0].last = 0;
4288         desc->req.data_ptrs[0].dma_ext = 0;
4289         desc->req.data_ptrs[1].address = d->sw_rings_iova + 512;
4290         desc->req.data_ptrs[1].blkid = ACC100_DMA_BLKID_IN;
4291         desc->req.data_ptrs[1].last = 1;
4292         desc->req.data_ptrs[1].dma_ext = 0;
4293         desc->req.data_ptrs[1].blen = 44;
4294         desc->req.data_ptrs[2].address = d->sw_rings_iova + 1024;
4295         desc->req.data_ptrs[2].blkid = ACC100_DMA_BLKID_OUT_ENC;
4296         desc->req.data_ptrs[2].last = 1;
4297         desc->req.data_ptrs[2].dma_ext = 0;
4298         desc->req.data_ptrs[2].blen = 5;
4299         /* Dummy FCW */
4300         desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
4301         desc->req.fcw_ld.qm = 1;
4302         desc->req.fcw_ld.nfiller = 30;
4303         desc->req.fcw_ld.BG = 2 - 1;
4304         desc->req.fcw_ld.Zc = 7;
4305         desc->req.fcw_ld.ncb = 350;
4306         desc->req.fcw_ld.rm_e = 4;
4307         desc->req.fcw_ld.itmax = 10;
4308         desc->req.fcw_ld.gain_i = 1;
4309         desc->req.fcw_ld.gain_h = 1;
4310
4311         int engines_to_restart[ACC100_SIG_UL_5G_LAST + 1] = {0};
4312         int num_failed_engine = 0;
4313         /* Detect engines in undefined state */
4314         for (template_idx = ACC100_SIG_UL_5G;
4315                         template_idx <= ACC100_SIG_UL_5G_LAST;
4316                         template_idx++) {
4317                 /* Check engine power-on status */
4318                 address = HwPfFecUl5gIbDebugReg +
4319                                 ACC100_ENGINE_OFFSET * template_idx;
4320                 status = (acc100_reg_read(d, address) >> 4) & 0xF;
4321                 if (status == 0) {
4322                         engines_to_restart[num_failed_engine] = template_idx;
4323                         num_failed_engine++;
4324                 }
4325         }
4326
4327         int numQqsAcc = conf->q_ul_5g.num_qgroups;
4328         int numQgs = conf->q_ul_5g.num_qgroups;
4329         value = 0;
4330         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4331                 value |= (1 << qg_idx);
4332         /* Force each engine which is in unspecified state */
4333         for (i = 0; i < num_failed_engine; i++) {
4334                 int failed_engine = engines_to_restart[i];
4335                 printf("Force engine %d\n", failed_engine);
4336                 for (template_idx = ACC100_SIG_UL_5G;
4337                                 template_idx <= ACC100_SIG_UL_5G_LAST;
4338                                 template_idx++) {
4339                         address = HWPfQmgrGrpTmplateReg4Indx
4340                                         + ACC100_BYTES_IN_WORD * template_idx;
4341                         if (template_idx == failed_engine)
4342                                 acc100_reg_write(d, address, value);
4343                         else
4344                                 acc100_reg_write(d, address, 0);
4345                 }
4346                 /* Reset descriptor header */
4347                 desc->req.word0 = ACC100_DMA_DESC_TYPE;
4348                 desc->req.word1 = 0;
4349                 desc->req.word2 = 0;
4350                 desc->req.word3 = 0;
4351                 desc->req.numCBs = 1;
4352                 desc->req.m2dlen = 2;
4353                 desc->req.d2mlen = 1;
4354                 /* Enqueue the code block for processing */
4355                 union acc100_enqueue_reg_fmt enq_req;
4356                 enq_req.val = 0;
4357                 enq_req.addr_offset = ACC100_DESC_OFFSET;
4358                 enq_req.num_elem = 1;
4359                 enq_req.req_elem_addr = 0;
4360                 rte_wmb();
4361                 acc100_reg_write(d, HWPfQmgrIngressAq + 0x100, enq_req.val);
4362                 usleep(ACC100_LONG_WAIT * 100);
4363                 if (desc->req.word0 != 2)
4364                         printf("DMA Response %#"PRIx32"\n", desc->req.word0);
4365         }
4366
4367         /* Reset LDPC Cores */
4368         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4369                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4370                                 ACC100_ENGINE_OFFSET * i,
4371                                 ACC100_RESET_HI);
4372         usleep(ACC100_LONG_WAIT);
4373         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4374                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4375                                 ACC100_ENGINE_OFFSET * i,
4376                                 ACC100_RESET_LO);
4377         usleep(ACC100_LONG_WAIT);
4378         acc100_reg_write(d, HWPfHi5GHardResetReg, ACC100_RESET_HARD);
4379         usleep(ACC100_LONG_WAIT);
4380         int numEngines = 0;
4381         /* Check engine power-on status again */
4382         for (template_idx = ACC100_SIG_UL_5G;
4383                         template_idx <= ACC100_SIG_UL_5G_LAST;
4384                         template_idx++) {
4385                 address = HwPfFecUl5gIbDebugReg +
4386                                 ACC100_ENGINE_OFFSET * template_idx;
4387                 status = (acc100_reg_read(d, address) >> 4) & 0xF;
4388                 address = HWPfQmgrGrpTmplateReg4Indx
4389                                 + ACC100_BYTES_IN_WORD * template_idx;
4390                 if (status == 1) {
4391                         acc100_reg_write(d, address, value);
4392                         numEngines++;
4393                 } else
4394                         acc100_reg_write(d, address, 0);
4395         }
4396         printf("Number of 5GUL engines %d\n", numEngines);
4397
4398         if (d->sw_rings_base != NULL)
4399                 rte_free(d->sw_rings_base);
4400         usleep(ACC100_LONG_WAIT);
4401 }
4402
4403 /* Initial configuration of a ACC100 device prior to running configure() */
4404 int
4405 rte_acc100_configure(const char *dev_name, struct rte_acc100_conf *conf)
4406 {
4407         rte_bbdev_log(INFO, "rte_acc100_configure");
4408         uint32_t value, address, status;
4409         int qg_idx, template_idx, vf_idx, acc, i;
4410         struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
4411
4412         /* Compile time checks */
4413         RTE_BUILD_BUG_ON(sizeof(struct acc100_dma_req_desc) != 256);
4414         RTE_BUILD_BUG_ON(sizeof(union acc100_dma_desc) != 256);
4415         RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_td) != 24);
4416         RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_te) != 32);
4417
4418         if (bbdev == NULL) {
4419                 rte_bbdev_log(ERR,
4420                 "Invalid dev_name (%s), or device is not yet initialised",
4421                 dev_name);
4422                 return -ENODEV;
4423         }
4424         struct acc100_device *d = bbdev->data->dev_private;
4425
4426         /* Store configuration */
4427         rte_memcpy(&d->acc100_conf, conf, sizeof(d->acc100_conf));
4428
4429         /* PCIe Bridge configuration */
4430         acc100_reg_write(d, HwPfPcieGpexBridgeControl, ACC100_CFG_PCI_BRIDGE);
4431         for (i = 1; i < ACC100_GPEX_AXIMAP_NUM; i++)
4432                 acc100_reg_write(d,
4433                                 HwPfPcieGpexAxiAddrMappingWindowPexBaseHigh
4434                                 + i * 16, 0);
4435
4436         /* Prevent blocking AXI read on BRESP for AXI Write */
4437         address = HwPfPcieGpexAxiPioControl;
4438         value = ACC100_CFG_PCI_AXI;
4439         acc100_reg_write(d, address, value);
4440
4441         /* 5GDL PLL phase shift */
4442         acc100_reg_write(d, HWPfChaDl5gPllPhshft0, 0x1);
4443
4444         /* Explicitly releasing AXI as this may be stopped after PF FLR/BME */
4445         address = HWPfDmaAxiControl;
4446         value = 1;
4447         acc100_reg_write(d, address, value);
4448
4449         /* DDR Configuration */
4450         address = HWPfDdrBcTim6;
4451         value = acc100_reg_read(d, address);
4452         value &= 0xFFFFFFFB; /* Bit 2 */
4453 #ifdef ACC100_DDR_ECC_ENABLE
4454         value |= 0x4;
4455 #endif
4456         acc100_reg_write(d, address, value);
4457         address = HWPfDdrPhyDqsCountNum;
4458 #ifdef ACC100_DDR_ECC_ENABLE
4459         value = 9;
4460 #else
4461         value = 8;
4462 #endif
4463         acc100_reg_write(d, address, value);
4464
4465         /* Set default descriptor signature */
4466         address = HWPfDmaDescriptorSignatuture;
4467         value = 0;
4468         acc100_reg_write(d, address, value);
4469
4470         /* Enable the Error Detection in DMA */
4471         value = ACC100_CFG_DMA_ERROR;
4472         address = HWPfDmaErrorDetectionEn;
4473         acc100_reg_write(d, address, value);
4474
4475         /* AXI Cache configuration */
4476         value = ACC100_CFG_AXI_CACHE;
4477         address = HWPfDmaAxcacheReg;
4478         acc100_reg_write(d, address, value);
4479
4480         /* Default DMA Configuration (Qmgr Enabled) */
4481         address = HWPfDmaConfig0Reg;
4482         value = 0;
4483         acc100_reg_write(d, address, value);
4484         address = HWPfDmaQmanen;
4485         value = 0;
4486         acc100_reg_write(d, address, value);
4487
4488         /* Default RLIM/ALEN configuration */
4489         address = HWPfDmaConfig1Reg;
4490         value = (1 << 31) + (23 << 8) + (1 << 6) + 7;
4491         acc100_reg_write(d, address, value);
4492
4493         /* Configure DMA Qmanager addresses */
4494         address = HWPfDmaQmgrAddrReg;
4495         value = HWPfQmgrEgressQueuesTemplate;
4496         acc100_reg_write(d, address, value);
4497
4498         /* ===== Qmgr Configuration ===== */
4499         /* Configuration of the AQueue Depth QMGR_GRP_0_DEPTH_LOG2 for UL */
4500         int totalQgs = conf->q_ul_4g.num_qgroups +
4501                         conf->q_ul_5g.num_qgroups +
4502                         conf->q_dl_4g.num_qgroups +
4503                         conf->q_dl_5g.num_qgroups;
4504         for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4505                 address = HWPfQmgrDepthLog2Grp +
4506                 ACC100_BYTES_IN_WORD * qg_idx;
4507                 value = aqDepth(qg_idx, conf);
4508                 acc100_reg_write(d, address, value);
4509                 address = HWPfQmgrTholdGrp +
4510                 ACC100_BYTES_IN_WORD * qg_idx;
4511                 value = (1 << 16) + (1 << (aqDepth(qg_idx, conf) - 1));
4512                 acc100_reg_write(d, address, value);
4513         }
4514
4515         /* Template Priority in incremental order */
4516         for (template_idx = 0; template_idx < ACC100_NUM_TMPL;
4517                         template_idx++) {
4518                 address = HWPfQmgrGrpTmplateReg0Indx +
4519                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4520                 value = ACC100_TMPL_PRI_0;
4521                 acc100_reg_write(d, address, value);
4522                 address = HWPfQmgrGrpTmplateReg1Indx +
4523                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4524                 value = ACC100_TMPL_PRI_1;
4525                 acc100_reg_write(d, address, value);
4526                 address = HWPfQmgrGrpTmplateReg2indx +
4527                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4528                 value = ACC100_TMPL_PRI_2;
4529                 acc100_reg_write(d, address, value);
4530                 address = HWPfQmgrGrpTmplateReg3Indx +
4531                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4532                 value = ACC100_TMPL_PRI_3;
4533                 acc100_reg_write(d, address, value);
4534         }
4535
4536         address = HWPfQmgrGrpPriority;
4537         value = ACC100_CFG_QMGR_HI_P;
4538         acc100_reg_write(d, address, value);
4539
4540         /* Template Configuration */
4541         for (template_idx = 0; template_idx < ACC100_NUM_TMPL;
4542                         template_idx++) {
4543                 value = 0;
4544                 address = HWPfQmgrGrpTmplateReg4Indx
4545                                 + ACC100_BYTES_IN_WORD * template_idx;
4546                 acc100_reg_write(d, address, value);
4547         }
4548         /* 4GUL */
4549         int numQgs = conf->q_ul_4g.num_qgroups;
4550         int numQqsAcc = 0;
4551         value = 0;
4552         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4553                 value |= (1 << qg_idx);
4554         for (template_idx = ACC100_SIG_UL_4G;
4555                         template_idx <= ACC100_SIG_UL_4G_LAST;
4556                         template_idx++) {
4557                 address = HWPfQmgrGrpTmplateReg4Indx
4558                                 + ACC100_BYTES_IN_WORD * template_idx;
4559                 acc100_reg_write(d, address, value);
4560         }
4561         /* 5GUL */
4562         numQqsAcc += numQgs;
4563         numQgs  = conf->q_ul_5g.num_qgroups;
4564         value = 0;
4565         int numEngines = 0;
4566         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4567                 value |= (1 << qg_idx);
4568         for (template_idx = ACC100_SIG_UL_5G;
4569                         template_idx <= ACC100_SIG_UL_5G_LAST;
4570                         template_idx++) {
4571                 /* Check engine power-on status */
4572                 address = HwPfFecUl5gIbDebugReg +
4573                                 ACC100_ENGINE_OFFSET * template_idx;
4574                 status = (acc100_reg_read(d, address) >> 4) & 0xF;
4575                 address = HWPfQmgrGrpTmplateReg4Indx
4576                                 + ACC100_BYTES_IN_WORD * template_idx;
4577                 if (status == 1) {
4578                         acc100_reg_write(d, address, value);
4579                         numEngines++;
4580                 } else
4581                         acc100_reg_write(d, address, 0);
4582 #if RTE_ACC100_SINGLE_FEC == 1
4583                 value = 0;
4584 #endif
4585         }
4586         printf("Number of 5GUL engines %d\n", numEngines);
4587         /* 4GDL */
4588         numQqsAcc += numQgs;
4589         numQgs  = conf->q_dl_4g.num_qgroups;
4590         value = 0;
4591         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4592                 value |= (1 << qg_idx);
4593         for (template_idx = ACC100_SIG_DL_4G;
4594                         template_idx <= ACC100_SIG_DL_4G_LAST;
4595                         template_idx++) {
4596                 address = HWPfQmgrGrpTmplateReg4Indx
4597                                 + ACC100_BYTES_IN_WORD * template_idx;
4598                 acc100_reg_write(d, address, value);
4599 #if RTE_ACC100_SINGLE_FEC == 1
4600                         value = 0;
4601 #endif
4602         }
4603         /* 5GDL */
4604         numQqsAcc += numQgs;
4605         numQgs  = conf->q_dl_5g.num_qgroups;
4606         value = 0;
4607         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4608                 value |= (1 << qg_idx);
4609         for (template_idx = ACC100_SIG_DL_5G;
4610                         template_idx <= ACC100_SIG_DL_5G_LAST;
4611                         template_idx++) {
4612                 address = HWPfQmgrGrpTmplateReg4Indx
4613                                 + ACC100_BYTES_IN_WORD * template_idx;
4614                 acc100_reg_write(d, address, value);
4615 #if RTE_ACC100_SINGLE_FEC == 1
4616                 value = 0;
4617 #endif
4618         }
4619
4620         /* Queue Group Function mapping */
4621         int qman_func_id[5] = {0, 2, 1, 3, 4};
4622         address = HWPfQmgrGrpFunction0;
4623         value = 0;
4624         for (qg_idx = 0; qg_idx < 8; qg_idx++) {
4625                 acc = accFromQgid(qg_idx, conf);
4626                 value |= qman_func_id[acc]<<(qg_idx * 4);
4627         }
4628         acc100_reg_write(d, address, value);
4629
4630         /* Configuration of the Arbitration QGroup depth to 1 */
4631         for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4632                 address = HWPfQmgrArbQDepthGrp +
4633                 ACC100_BYTES_IN_WORD * qg_idx;
4634                 value = 0;
4635                 acc100_reg_write(d, address, value);
4636         }
4637
4638         /* Enabling AQueues through the Queue hierarchy*/
4639         for (vf_idx = 0; vf_idx < ACC100_NUM_VFS; vf_idx++) {
4640                 for (qg_idx = 0; qg_idx < ACC100_NUM_QGRPS; qg_idx++) {
4641                         value = 0;
4642                         if (vf_idx < conf->num_vf_bundles &&
4643                                         qg_idx < totalQgs)
4644                                 value = (1 << aqNum(qg_idx, conf)) - 1;
4645                         address = HWPfQmgrAqEnableVf
4646                                         + vf_idx * ACC100_BYTES_IN_WORD;
4647                         value += (qg_idx << 16);
4648                         acc100_reg_write(d, address, value);
4649                 }
4650         }
4651
4652         /* This pointer to ARAM (256kB) is shifted by 2 (4B per register) */
4653         uint32_t aram_address = 0;
4654         for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4655                 for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
4656                         address = HWPfQmgrVfBaseAddr + vf_idx
4657                                         * ACC100_BYTES_IN_WORD + qg_idx
4658                                         * ACC100_BYTES_IN_WORD * 64;
4659                         value = aram_address;
4660                         acc100_reg_write(d, address, value);
4661                         /* Offset ARAM Address for next memory bank
4662                          * - increment of 4B
4663                          */
4664                         aram_address += aqNum(qg_idx, conf) *
4665                                         (1 << aqDepth(qg_idx, conf));
4666                 }
4667         }
4668
4669         if (aram_address > ACC100_WORDS_IN_ARAM_SIZE) {
4670                 rte_bbdev_log(ERR, "ARAM Configuration not fitting %d %d\n",
4671                                 aram_address, ACC100_WORDS_IN_ARAM_SIZE);
4672                 return -EINVAL;
4673         }
4674
4675         /* ==== HI Configuration ==== */
4676
4677         /* Prevent Block on Transmit Error */
4678         address = HWPfHiBlockTransmitOnErrorEn;
4679         value = 0;
4680         acc100_reg_write(d, address, value);
4681         /* Prevents to drop MSI */
4682         address = HWPfHiMsiDropEnableReg;
4683         value = 0;
4684         acc100_reg_write(d, address, value);
4685         /* Set the PF Mode register */
4686         address = HWPfHiPfMode;
4687         value = (conf->pf_mode_en) ? ACC100_PF_VAL : 0;
4688         acc100_reg_write(d, address, value);
4689         /* Enable Error Detection in HW */
4690         address = HWPfDmaErrorDetectionEn;
4691         value = 0x3D7;
4692         acc100_reg_write(d, address, value);
4693
4694         /* QoS overflow init */
4695         value = 1;
4696         address = HWPfQosmonAEvalOverflow0;
4697         acc100_reg_write(d, address, value);
4698         address = HWPfQosmonBEvalOverflow0;
4699         acc100_reg_write(d, address, value);
4700
4701         /* HARQ DDR Configuration */
4702         unsigned int ddrSizeInMb = 512; /* Fixed to 512 MB per VF for now */
4703         for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
4704                 address = HWPfDmaVfDdrBaseRw + vf_idx
4705                                 * 0x10;
4706                 value = ((vf_idx * (ddrSizeInMb / 64)) << 16) +
4707                                 (ddrSizeInMb - 1);
4708                 acc100_reg_write(d, address, value);
4709         }
4710         usleep(ACC100_LONG_WAIT);
4711
4712         /* Workaround in case some 5GUL engines are in an unexpected state */
4713         if (numEngines < (ACC100_SIG_UL_5G_LAST + 1))
4714                 poweron_cleanup(bbdev, d, conf);
4715
4716         rte_bbdev_log_debug("PF Tip configuration complete for %s", dev_name);
4717         return 0;
4718 }