baseband/acc100: support 4G CRC drop
[dpdk.git] / drivers / baseband / acc100 / rte_acc100_pmd.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2020 Intel Corporation
3  */
4
5 #include <unistd.h>
6
7 #include <rte_common.h>
8 #include <rte_log.h>
9 #include <rte_dev.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12 #include <rte_byteorder.h>
13 #include <rte_errno.h>
14 #include <rte_branch_prediction.h>
15 #include <rte_hexdump.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #ifdef RTE_BBDEV_OFFLOAD_COST
19 #include <rte_cycles.h>
20 #endif
21
22 #include <rte_bbdev.h>
23 #include <rte_bbdev_pmd.h>
24 #include "rte_acc100_pmd.h"
25
26 #ifdef RTE_LIBRTE_BBDEV_DEBUG
27 RTE_LOG_REGISTER_DEFAULT(acc100_logtype, DEBUG);
28 #else
29 RTE_LOG_REGISTER_DEFAULT(acc100_logtype, NOTICE);
30 #endif
31
32 /* Write to MMIO register address */
33 static inline void
34 mmio_write(void *addr, uint32_t value)
35 {
36         *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
37 }
38
39 /* Write a register of a ACC100 device */
40 static inline void
41 acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t value)
42 {
43         void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
44         mmio_write(reg_addr, value);
45         usleep(ACC100_LONG_WAIT);
46 }
47
48 /* Read a register of a ACC100 device */
49 static inline uint32_t
50 acc100_reg_read(struct acc100_device *d, uint32_t offset)
51 {
52
53         void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
54         uint32_t ret = *((volatile uint32_t *)(reg_addr));
55         return rte_le_to_cpu_32(ret);
56 }
57
58 /* Basic Implementation of Log2 for exact 2^N */
59 static inline uint32_t
60 log2_basic(uint32_t value)
61 {
62         return (value == 0) ? 0 : rte_bsf32(value);
63 }
64
65 /* Calculate memory alignment offset assuming alignment is 2^N */
66 static inline uint32_t
67 calc_mem_alignment_offset(void *unaligned_virt_mem, uint32_t alignment)
68 {
69         rte_iova_t unaligned_phy_mem = rte_malloc_virt2iova(unaligned_virt_mem);
70         return (uint32_t)(alignment -
71                         (unaligned_phy_mem & (alignment-1)));
72 }
73
74 /* Calculate the offset of the enqueue register */
75 static inline uint32_t
76 queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
77 {
78         if (pf_device)
79                 return ((vf_id << 12) + (qgrp_id << 7) + (aq_id << 3) +
80                                 HWPfQmgrIngressAq);
81         else
82                 return ((qgrp_id << 7) + (aq_id << 3) +
83                                 HWVfQmgrIngressAq);
84 }
85
86 enum {UL_4G = 0, UL_5G, DL_4G, DL_5G, NUM_ACC};
87
88 /* Return the accelerator enum for a Queue Group Index */
89 static inline int
90 accFromQgid(int qg_idx, const struct rte_acc100_conf *acc100_conf)
91 {
92         int accQg[ACC100_NUM_QGRPS];
93         int NumQGroupsPerFn[NUM_ACC];
94         int acc, qgIdx, qgIndex = 0;
95         for (qgIdx = 0; qgIdx < ACC100_NUM_QGRPS; qgIdx++)
96                 accQg[qgIdx] = 0;
97         NumQGroupsPerFn[UL_4G] = acc100_conf->q_ul_4g.num_qgroups;
98         NumQGroupsPerFn[UL_5G] = acc100_conf->q_ul_5g.num_qgroups;
99         NumQGroupsPerFn[DL_4G] = acc100_conf->q_dl_4g.num_qgroups;
100         NumQGroupsPerFn[DL_5G] = acc100_conf->q_dl_5g.num_qgroups;
101         for (acc = UL_4G;  acc < NUM_ACC; acc++)
102                 for (qgIdx = 0; qgIdx < NumQGroupsPerFn[acc]; qgIdx++)
103                         accQg[qgIndex++] = acc;
104         acc = accQg[qg_idx];
105         return acc;
106 }
107
108 /* Return the queue topology for a Queue Group Index */
109 static inline void
110 qtopFromAcc(struct rte_acc100_queue_topology **qtop, int acc_enum,
111                 struct rte_acc100_conf *acc100_conf)
112 {
113         struct rte_acc100_queue_topology *p_qtop;
114         p_qtop = NULL;
115         switch (acc_enum) {
116         case UL_4G:
117                 p_qtop = &(acc100_conf->q_ul_4g);
118                 break;
119         case UL_5G:
120                 p_qtop = &(acc100_conf->q_ul_5g);
121                 break;
122         case DL_4G:
123                 p_qtop = &(acc100_conf->q_dl_4g);
124                 break;
125         case DL_5G:
126                 p_qtop = &(acc100_conf->q_dl_5g);
127                 break;
128         default:
129                 /* NOTREACHED */
130                 rte_bbdev_log(ERR, "Unexpected error evaluating qtopFromAcc");
131                 break;
132         }
133         *qtop = p_qtop;
134 }
135
136 /* Return the AQ depth for a Queue Group Index */
137 static inline int
138 aqDepth(int qg_idx, struct rte_acc100_conf *acc100_conf)
139 {
140         struct rte_acc100_queue_topology *q_top = NULL;
141         int acc_enum = accFromQgid(qg_idx, acc100_conf);
142         qtopFromAcc(&q_top, acc_enum, acc100_conf);
143         if (unlikely(q_top == NULL))
144                 return 0;
145         return q_top->aq_depth_log2;
146 }
147
148 /* Return the AQ depth for a Queue Group Index */
149 static inline int
150 aqNum(int qg_idx, struct rte_acc100_conf *acc100_conf)
151 {
152         struct rte_acc100_queue_topology *q_top = NULL;
153         int acc_enum = accFromQgid(qg_idx, acc100_conf);
154         qtopFromAcc(&q_top, acc_enum, acc100_conf);
155         if (unlikely(q_top == NULL))
156                 return 0;
157         return q_top->num_aqs_per_groups;
158 }
159
160 static void
161 initQTop(struct rte_acc100_conf *acc100_conf)
162 {
163         acc100_conf->q_ul_4g.num_aqs_per_groups = 0;
164         acc100_conf->q_ul_4g.num_qgroups = 0;
165         acc100_conf->q_ul_4g.first_qgroup_index = -1;
166         acc100_conf->q_ul_5g.num_aqs_per_groups = 0;
167         acc100_conf->q_ul_5g.num_qgroups = 0;
168         acc100_conf->q_ul_5g.first_qgroup_index = -1;
169         acc100_conf->q_dl_4g.num_aqs_per_groups = 0;
170         acc100_conf->q_dl_4g.num_qgroups = 0;
171         acc100_conf->q_dl_4g.first_qgroup_index = -1;
172         acc100_conf->q_dl_5g.num_aqs_per_groups = 0;
173         acc100_conf->q_dl_5g.num_qgroups = 0;
174         acc100_conf->q_dl_5g.first_qgroup_index = -1;
175 }
176
177 static inline void
178 updateQtop(uint8_t acc, uint8_t qg, struct rte_acc100_conf *acc100_conf,
179                 struct acc100_device *d) {
180         uint32_t reg;
181         struct rte_acc100_queue_topology *q_top = NULL;
182         qtopFromAcc(&q_top, acc, acc100_conf);
183         if (unlikely(q_top == NULL))
184                 return;
185         uint16_t aq;
186         q_top->num_qgroups++;
187         if (q_top->first_qgroup_index == -1) {
188                 q_top->first_qgroup_index = qg;
189                 /* Can be optimized to assume all are enabled by default */
190                 reg = acc100_reg_read(d, queue_offset(d->pf_device,
191                                 0, qg, ACC100_NUM_AQS - 1));
192                 if (reg & ACC100_QUEUE_ENABLE) {
193                         q_top->num_aqs_per_groups = ACC100_NUM_AQS;
194                         return;
195                 }
196                 q_top->num_aqs_per_groups = 0;
197                 for (aq = 0; aq < ACC100_NUM_AQS; aq++) {
198                         reg = acc100_reg_read(d, queue_offset(d->pf_device,
199                                         0, qg, aq));
200                         if (reg & ACC100_QUEUE_ENABLE)
201                                 q_top->num_aqs_per_groups++;
202                 }
203         }
204 }
205
206 /* Fetch configuration enabled for the PF/VF using MMIO Read (slow) */
207 static inline void
208 fetch_acc100_config(struct rte_bbdev *dev)
209 {
210         struct acc100_device *d = dev->data->dev_private;
211         struct rte_acc100_conf *acc100_conf = &d->acc100_conf;
212         const struct acc100_registry_addr *reg_addr;
213         uint8_t acc, qg;
214         uint32_t reg, reg_aq, reg_len0, reg_len1;
215         uint32_t reg_mode;
216
217         /* No need to retrieve the configuration is already done */
218         if (d->configured)
219                 return;
220
221         /* Choose correct registry addresses for the device type */
222         if (d->pf_device)
223                 reg_addr = &pf_reg_addr;
224         else
225                 reg_addr = &vf_reg_addr;
226
227         d->ddr_size = (1 + acc100_reg_read(d, reg_addr->ddr_range)) << 10;
228
229         /* Single VF Bundle by VF */
230         acc100_conf->num_vf_bundles = 1;
231         initQTop(acc100_conf);
232
233         struct rte_acc100_queue_topology *q_top = NULL;
234         int qman_func_id[ACC100_NUM_ACCS] = {ACC100_ACCMAP_0, ACC100_ACCMAP_1,
235                         ACC100_ACCMAP_2, ACC100_ACCMAP_3, ACC100_ACCMAP_4};
236         reg = acc100_reg_read(d, reg_addr->qman_group_func);
237         for (qg = 0; qg < ACC100_NUM_QGRPS_PER_WORD; qg++) {
238                 reg_aq = acc100_reg_read(d,
239                                 queue_offset(d->pf_device, 0, qg, 0));
240                 if (reg_aq & ACC100_QUEUE_ENABLE) {
241                         uint32_t idx = (reg >> (qg * 4)) & 0x7;
242                         if (idx < ACC100_NUM_ACCS) {
243                                 acc = qman_func_id[idx];
244                                 updateQtop(acc, qg, acc100_conf, d);
245                         }
246                 }
247         }
248
249         /* Check the depth of the AQs*/
250         reg_len0 = acc100_reg_read(d, reg_addr->depth_log0_offset);
251         reg_len1 = acc100_reg_read(d, reg_addr->depth_log1_offset);
252         for (acc = 0; acc < NUM_ACC; acc++) {
253                 qtopFromAcc(&q_top, acc, acc100_conf);
254                 if (q_top->first_qgroup_index < ACC100_NUM_QGRPS_PER_WORD)
255                         q_top->aq_depth_log2 = (reg_len0 >>
256                                         (q_top->first_qgroup_index * 4))
257                                         & 0xF;
258                 else
259                         q_top->aq_depth_log2 = (reg_len1 >>
260                                         ((q_top->first_qgroup_index -
261                                         ACC100_NUM_QGRPS_PER_WORD) * 4))
262                                         & 0xF;
263         }
264
265         /* Read PF mode */
266         if (d->pf_device) {
267                 reg_mode = acc100_reg_read(d, HWPfHiPfMode);
268                 acc100_conf->pf_mode_en = (reg_mode == ACC100_PF_VAL) ? 1 : 0;
269         }
270
271         rte_bbdev_log_debug(
272                         "%s Config LLR SIGN IN/OUT %s %s QG %u %u %u %u AQ %u %u %u %u Len %u %u %u %u\n",
273                         (d->pf_device) ? "PF" : "VF",
274                         (acc100_conf->input_pos_llr_1_bit) ? "POS" : "NEG",
275                         (acc100_conf->output_pos_llr_1_bit) ? "POS" : "NEG",
276                         acc100_conf->q_ul_4g.num_qgroups,
277                         acc100_conf->q_dl_4g.num_qgroups,
278                         acc100_conf->q_ul_5g.num_qgroups,
279                         acc100_conf->q_dl_5g.num_qgroups,
280                         acc100_conf->q_ul_4g.num_aqs_per_groups,
281                         acc100_conf->q_dl_4g.num_aqs_per_groups,
282                         acc100_conf->q_ul_5g.num_aqs_per_groups,
283                         acc100_conf->q_dl_5g.num_aqs_per_groups,
284                         acc100_conf->q_ul_4g.aq_depth_log2,
285                         acc100_conf->q_dl_4g.aq_depth_log2,
286                         acc100_conf->q_ul_5g.aq_depth_log2,
287                         acc100_conf->q_dl_5g.aq_depth_log2);
288 }
289
290 static void
291 free_base_addresses(void **base_addrs, int size)
292 {
293         int i;
294         for (i = 0; i < size; i++)
295                 rte_free(base_addrs[i]);
296 }
297
298 static inline uint32_t
299 get_desc_len(void)
300 {
301         return sizeof(union acc100_dma_desc);
302 }
303
304 /* Allocate the 2 * 64MB block for the sw rings */
305 static int
306 alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc100_device *d,
307                 int socket)
308 {
309         uint32_t sw_ring_size = ACC100_SIZE_64MBYTE;
310         d->sw_rings_base = rte_zmalloc_socket(dev->device->driver->name,
311                         2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
312         if (d->sw_rings_base == NULL) {
313                 rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
314                                 dev->device->driver->name,
315                                 dev->data->dev_id);
316                 return -ENOMEM;
317         }
318         uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
319                         d->sw_rings_base, ACC100_SIZE_64MBYTE);
320         d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, next_64mb_align_offset);
321         d->sw_rings_iova = rte_malloc_virt2iova(d->sw_rings_base) +
322                         next_64mb_align_offset;
323         d->sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
324         d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
325
326         return 0;
327 }
328
329 /* Attempt to allocate minimised memory space for sw rings */
330 static void
331 alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d,
332                 uint16_t num_queues, int socket)
333 {
334         rte_iova_t sw_rings_base_iova, next_64mb_align_addr_iova;
335         uint32_t next_64mb_align_offset;
336         rte_iova_t sw_ring_iova_end_addr;
337         void *base_addrs[ACC100_SW_RING_MEM_ALLOC_ATTEMPTS];
338         void *sw_rings_base;
339         int i = 0;
340         uint32_t q_sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
341         uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
342
343         /* Find an aligned block of memory to store sw rings */
344         while (i < ACC100_SW_RING_MEM_ALLOC_ATTEMPTS) {
345                 /*
346                  * sw_ring allocated memory is guaranteed to be aligned to
347                  * q_sw_ring_size at the condition that the requested size is
348                  * less than the page size
349                  */
350                 sw_rings_base = rte_zmalloc_socket(
351                                 dev->device->driver->name,
352                                 dev_sw_ring_size, q_sw_ring_size, socket);
353
354                 if (sw_rings_base == NULL) {
355                         rte_bbdev_log(ERR,
356                                         "Failed to allocate memory for %s:%u",
357                                         dev->device->driver->name,
358                                         dev->data->dev_id);
359                         break;
360                 }
361
362                 sw_rings_base_iova = rte_malloc_virt2iova(sw_rings_base);
363                 next_64mb_align_offset = calc_mem_alignment_offset(
364                                 sw_rings_base, ACC100_SIZE_64MBYTE);
365                 next_64mb_align_addr_iova = sw_rings_base_iova +
366                                 next_64mb_align_offset;
367                 sw_ring_iova_end_addr = sw_rings_base_iova + dev_sw_ring_size;
368
369                 /* Check if the end of the sw ring memory block is before the
370                  * start of next 64MB aligned mem address
371                  */
372                 if (sw_ring_iova_end_addr < next_64mb_align_addr_iova) {
373                         d->sw_rings_iova = sw_rings_base_iova;
374                         d->sw_rings = sw_rings_base;
375                         d->sw_rings_base = sw_rings_base;
376                         d->sw_ring_size = q_sw_ring_size;
377                         d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
378                         break;
379                 }
380                 /* Store the address of the unaligned mem block */
381                 base_addrs[i] = sw_rings_base;
382                 i++;
383         }
384
385         /* Free all unaligned blocks of mem allocated in the loop */
386         free_base_addresses(base_addrs, i);
387 }
388
389 /*
390  * Find queue_id of a device queue based on details from the Info Ring.
391  * If a queue isn't found UINT16_MAX is returned.
392  */
393 static inline uint16_t
394 get_queue_id_from_ring_info(struct rte_bbdev_data *data,
395                 const union acc100_info_ring_data ring_data)
396 {
397         uint16_t queue_id;
398
399         for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
400                 struct acc100_queue *acc100_q =
401                                 data->queues[queue_id].queue_private;
402                 if (acc100_q != NULL && acc100_q->aq_id == ring_data.aq_id &&
403                                 acc100_q->qgrp_id == ring_data.qg_id &&
404                                 acc100_q->vf_id == ring_data.vf_id)
405                         return queue_id;
406         }
407
408         return UINT16_MAX;
409 }
410
411 /* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
412 static inline void
413 acc100_check_ir(struct acc100_device *acc100_dev)
414 {
415         volatile union acc100_info_ring_data *ring_data;
416         uint16_t info_ring_head = acc100_dev->info_ring_head;
417         if (acc100_dev->info_ring == NULL)
418                 return;
419
420         ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
421                         ACC100_INFO_RING_MASK);
422
423         while (ring_data->valid) {
424                 if ((ring_data->int_nb < ACC100_PF_INT_DMA_DL_DESC_IRQ) || (
425                                 ring_data->int_nb >
426                                 ACC100_PF_INT_DMA_DL5G_DESC_IRQ))
427                         rte_bbdev_log(WARNING, "InfoRing: ITR:%d Info:0x%x",
428                                 ring_data->int_nb, ring_data->detailed_info);
429                 /* Initialize Info Ring entry and move forward */
430                 ring_data->val = 0;
431                 info_ring_head++;
432                 ring_data = acc100_dev->info_ring +
433                                 (info_ring_head & ACC100_INFO_RING_MASK);
434         }
435 }
436
437 /* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
438 static inline void
439 acc100_pf_interrupt_handler(struct rte_bbdev *dev)
440 {
441         struct acc100_device *acc100_dev = dev->data->dev_private;
442         volatile union acc100_info_ring_data *ring_data;
443         struct acc100_deq_intr_details deq_intr_det;
444
445         ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
446                         ACC100_INFO_RING_MASK);
447
448         while (ring_data->valid) {
449
450                 rte_bbdev_log_debug(
451                                 "ACC100 PF Interrupt received, Info Ring data: 0x%x",
452                                 ring_data->val);
453
454                 switch (ring_data->int_nb) {
455                 case ACC100_PF_INT_DMA_DL_DESC_IRQ:
456                 case ACC100_PF_INT_DMA_UL_DESC_IRQ:
457                 case ACC100_PF_INT_DMA_UL5G_DESC_IRQ:
458                 case ACC100_PF_INT_DMA_DL5G_DESC_IRQ:
459                         deq_intr_det.queue_id = get_queue_id_from_ring_info(
460                                         dev->data, *ring_data);
461                         if (deq_intr_det.queue_id == UINT16_MAX) {
462                                 rte_bbdev_log(ERR,
463                                                 "Couldn't find queue: aq_id: %u, qg_id: %u, vf_id: %u",
464                                                 ring_data->aq_id,
465                                                 ring_data->qg_id,
466                                                 ring_data->vf_id);
467                                 return;
468                         }
469                         rte_bbdev_pmd_callback_process(dev,
470                                         RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
471                         break;
472                 default:
473                         rte_bbdev_pmd_callback_process(dev,
474                                         RTE_BBDEV_EVENT_ERROR, NULL);
475                         break;
476                 }
477
478                 /* Initialize Info Ring entry and move forward */
479                 ring_data->val = 0;
480                 ++acc100_dev->info_ring_head;
481                 ring_data = acc100_dev->info_ring +
482                                 (acc100_dev->info_ring_head &
483                                 ACC100_INFO_RING_MASK);
484         }
485 }
486
487 /* Checks VF Info Ring to find the interrupt cause and handles it accordingly */
488 static inline void
489 acc100_vf_interrupt_handler(struct rte_bbdev *dev)
490 {
491         struct acc100_device *acc100_dev = dev->data->dev_private;
492         volatile union acc100_info_ring_data *ring_data;
493         struct acc100_deq_intr_details deq_intr_det;
494
495         ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
496                         ACC100_INFO_RING_MASK);
497
498         while (ring_data->valid) {
499
500                 rte_bbdev_log_debug(
501                                 "ACC100 VF Interrupt received, Info Ring data: 0x%x",
502                                 ring_data->val);
503
504                 switch (ring_data->int_nb) {
505                 case ACC100_VF_INT_DMA_DL_DESC_IRQ:
506                 case ACC100_VF_INT_DMA_UL_DESC_IRQ:
507                 case ACC100_VF_INT_DMA_UL5G_DESC_IRQ:
508                 case ACC100_VF_INT_DMA_DL5G_DESC_IRQ:
509                         /* VFs are not aware of their vf_id - it's set to 0 in
510                          * queue structures.
511                          */
512                         ring_data->vf_id = 0;
513                         deq_intr_det.queue_id = get_queue_id_from_ring_info(
514                                         dev->data, *ring_data);
515                         if (deq_intr_det.queue_id == UINT16_MAX) {
516                                 rte_bbdev_log(ERR,
517                                                 "Couldn't find queue: aq_id: %u, qg_id: %u",
518                                                 ring_data->aq_id,
519                                                 ring_data->qg_id);
520                                 return;
521                         }
522                         rte_bbdev_pmd_callback_process(dev,
523                                         RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
524                         break;
525                 default:
526                         rte_bbdev_pmd_callback_process(dev,
527                                         RTE_BBDEV_EVENT_ERROR, NULL);
528                         break;
529                 }
530
531                 /* Initialize Info Ring entry and move forward */
532                 ring_data->valid = 0;
533                 ++acc100_dev->info_ring_head;
534                 ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head
535                                 & ACC100_INFO_RING_MASK);
536         }
537 }
538
539 /* Interrupt handler triggered by ACC100 dev for handling specific interrupt */
540 static void
541 acc100_dev_interrupt_handler(void *cb_arg)
542 {
543         struct rte_bbdev *dev = cb_arg;
544         struct acc100_device *acc100_dev = dev->data->dev_private;
545
546         /* Read info ring */
547         if (acc100_dev->pf_device)
548                 acc100_pf_interrupt_handler(dev);
549         else
550                 acc100_vf_interrupt_handler(dev);
551 }
552
553 /* Allocate and setup inforing */
554 static int
555 allocate_info_ring(struct rte_bbdev *dev)
556 {
557         struct acc100_device *d = dev->data->dev_private;
558         const struct acc100_registry_addr *reg_addr;
559         rte_iova_t info_ring_iova;
560         uint32_t phys_low, phys_high;
561
562         if (d->info_ring != NULL)
563                 return 0; /* Already configured */
564
565         /* Choose correct registry addresses for the device type */
566         if (d->pf_device)
567                 reg_addr = &pf_reg_addr;
568         else
569                 reg_addr = &vf_reg_addr;
570         /* Allocate InfoRing */
571         d->info_ring = rte_zmalloc_socket("Info Ring",
572                         ACC100_INFO_RING_NUM_ENTRIES *
573                         sizeof(*d->info_ring), RTE_CACHE_LINE_SIZE,
574                         dev->data->socket_id);
575         if (d->info_ring == NULL) {
576                 rte_bbdev_log(ERR,
577                                 "Failed to allocate Info Ring for %s:%u",
578                                 dev->device->driver->name,
579                                 dev->data->dev_id);
580                 return -ENOMEM;
581         }
582         info_ring_iova = rte_malloc_virt2iova(d->info_ring);
583
584         /* Setup Info Ring */
585         phys_high = (uint32_t)(info_ring_iova >> 32);
586         phys_low  = (uint32_t)(info_ring_iova);
587         acc100_reg_write(d, reg_addr->info_ring_hi, phys_high);
588         acc100_reg_write(d, reg_addr->info_ring_lo, phys_low);
589         acc100_reg_write(d, reg_addr->info_ring_en, ACC100_REG_IRQ_EN_ALL);
590         d->info_ring_head = (acc100_reg_read(d, reg_addr->info_ring_ptr) &
591                         0xFFF) / sizeof(union acc100_info_ring_data);
592         return 0;
593 }
594
595
596 /* Allocate 64MB memory used for all software rings */
597 static int
598 acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
599 {
600         uint32_t phys_low, phys_high, value;
601         struct acc100_device *d = dev->data->dev_private;
602         const struct acc100_registry_addr *reg_addr;
603         int ret;
604
605         if (d->pf_device && !d->acc100_conf.pf_mode_en) {
606                 rte_bbdev_log(NOTICE,
607                                 "%s has PF mode disabled. This PF can't be used.",
608                                 dev->data->name);
609                 return -ENODEV;
610         }
611
612         alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
613
614         /* If minimal memory space approach failed, then allocate
615          * the 2 * 64MB block for the sw rings
616          */
617         if (d->sw_rings == NULL)
618                 alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
619
620         if (d->sw_rings == NULL) {
621                 rte_bbdev_log(NOTICE,
622                                 "Failure allocating sw_rings memory");
623                 return -ENODEV;
624         }
625
626         /* Configure ACC100 with the base address for DMA descriptor rings
627          * Same descriptor rings used for UL and DL DMA Engines
628          * Note : Assuming only VF0 bundle is used for PF mode
629          */
630         phys_high = (uint32_t)(d->sw_rings_iova >> 32);
631         phys_low  = (uint32_t)(d->sw_rings_iova & ~(ACC100_SIZE_64MBYTE-1));
632
633         /* Choose correct registry addresses for the device type */
634         if (d->pf_device)
635                 reg_addr = &pf_reg_addr;
636         else
637                 reg_addr = &vf_reg_addr;
638
639         /* Read the populated cfg from ACC100 registers */
640         fetch_acc100_config(dev);
641
642         /* Release AXI from PF */
643         if (d->pf_device)
644                 acc100_reg_write(d, HWPfDmaAxiControl, 1);
645
646         acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
647         acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
648         acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
649         acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
650         acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
651         acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
652         acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
653         acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
654
655         /*
656          * Configure Ring Size to the max queue ring size
657          * (used for wrapping purpose)
658          */
659         value = log2_basic(d->sw_ring_size / 64);
660         acc100_reg_write(d, reg_addr->ring_size, value);
661
662         /* Configure tail pointer for use when SDONE enabled */
663         d->tail_ptrs = rte_zmalloc_socket(
664                         dev->device->driver->name,
665                         ACC100_NUM_QGRPS * ACC100_NUM_AQS * sizeof(uint32_t),
666                         RTE_CACHE_LINE_SIZE, socket_id);
667         if (d->tail_ptrs == NULL) {
668                 rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
669                                 dev->device->driver->name,
670                                 dev->data->dev_id);
671                 rte_free(d->sw_rings);
672                 return -ENOMEM;
673         }
674         d->tail_ptr_iova = rte_malloc_virt2iova(d->tail_ptrs);
675
676         phys_high = (uint32_t)(d->tail_ptr_iova >> 32);
677         phys_low  = (uint32_t)(d->tail_ptr_iova);
678         acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
679         acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
680         acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
681         acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
682         acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
683         acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
684         acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
685         acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
686
687         ret = allocate_info_ring(dev);
688         if (ret < 0) {
689                 rte_bbdev_log(ERR, "Failed to allocate info_ring for %s:%u",
690                                 dev->device->driver->name,
691                                 dev->data->dev_id);
692                 /* Continue */
693         }
694
695         d->harq_layout = rte_zmalloc_socket("HARQ Layout",
696                         ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout),
697                         RTE_CACHE_LINE_SIZE, dev->data->socket_id);
698         if (d->harq_layout == NULL) {
699                 rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
700                                 dev->device->driver->name,
701                                 dev->data->dev_id);
702                 rte_free(d->sw_rings);
703                 return -ENOMEM;
704         }
705
706         /* Mark as configured properly */
707         d->configured = true;
708
709         rte_bbdev_log_debug(
710                         "ACC100 (%s) configured  sw_rings = %p, sw_rings_iova = %#"
711                         PRIx64, dev->data->name, d->sw_rings, d->sw_rings_iova);
712
713         return 0;
714 }
715
716 static int
717 acc100_intr_enable(struct rte_bbdev *dev)
718 {
719         int ret;
720         struct acc100_device *d = dev->data->dev_private;
721
722         /* Only MSI are currently supported */
723         if (dev->intr_handle->type == RTE_INTR_HANDLE_VFIO_MSI ||
724                         dev->intr_handle->type == RTE_INTR_HANDLE_UIO) {
725
726                 ret = allocate_info_ring(dev);
727                 if (ret < 0) {
728                         rte_bbdev_log(ERR,
729                                         "Couldn't allocate info ring for device: %s",
730                                         dev->data->name);
731                         return ret;
732                 }
733
734                 ret = rte_intr_enable(dev->intr_handle);
735                 if (ret < 0) {
736                         rte_bbdev_log(ERR,
737                                         "Couldn't enable interrupts for device: %s",
738                                         dev->data->name);
739                         rte_free(d->info_ring);
740                         return ret;
741                 }
742                 ret = rte_intr_callback_register(dev->intr_handle,
743                                 acc100_dev_interrupt_handler, dev);
744                 if (ret < 0) {
745                         rte_bbdev_log(ERR,
746                                         "Couldn't register interrupt callback for device: %s",
747                                         dev->data->name);
748                         rte_free(d->info_ring);
749                         return ret;
750                 }
751
752                 return 0;
753         }
754
755         rte_bbdev_log(ERR, "ACC100 (%s) supports only VFIO MSI interrupts",
756                         dev->data->name);
757         return -ENOTSUP;
758 }
759
760 /* Free memory used for software rings */
761 static int
762 acc100_dev_close(struct rte_bbdev *dev)
763 {
764         struct acc100_device *d = dev->data->dev_private;
765         acc100_check_ir(d);
766         if (d->sw_rings_base != NULL) {
767                 rte_free(d->tail_ptrs);
768                 rte_free(d->info_ring);
769                 rte_free(d->sw_rings_base);
770                 d->sw_rings_base = NULL;
771         }
772         /* Ensure all in flight HW transactions are completed */
773         usleep(ACC100_LONG_WAIT);
774         return 0;
775 }
776
777 /**
778  * Report a ACC100 queue index which is free
779  * Return 0 to 16k for a valid queue_idx or -1 when no queue is available
780  * Note : Only supporting VF0 Bundle for PF mode
781  */
782 static int
783 acc100_find_free_queue_idx(struct rte_bbdev *dev,
784                 const struct rte_bbdev_queue_conf *conf)
785 {
786         struct acc100_device *d = dev->data->dev_private;
787         int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
788         int acc = op_2_acc[conf->op_type];
789         struct rte_acc100_queue_topology *qtop = NULL;
790
791         qtopFromAcc(&qtop, acc, &(d->acc100_conf));
792         if (qtop == NULL)
793                 return -1;
794         /* Identify matching QGroup Index which are sorted in priority order */
795         uint16_t group_idx = qtop->first_qgroup_index;
796         group_idx += conf->priority;
797         if (group_idx >= ACC100_NUM_QGRPS ||
798                         conf->priority >= qtop->num_qgroups) {
799                 rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
800                                 dev->data->name, conf->priority);
801                 return -1;
802         }
803         /* Find a free AQ_idx  */
804         uint16_t aq_idx;
805         for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
806                 if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
807                         /* Mark the Queue as assigned */
808                         d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
809                         /* Report the AQ Index */
810                         return (group_idx << ACC100_GRP_ID_SHIFT) + aq_idx;
811                 }
812         }
813         rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
814                         dev->data->name, conf->priority);
815         return -1;
816 }
817
818 /* Setup ACC100 queue */
819 static int
820 acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
821                 const struct rte_bbdev_queue_conf *conf)
822 {
823         struct acc100_device *d = dev->data->dev_private;
824         struct acc100_queue *q;
825         int16_t q_idx;
826
827         /* Allocate the queue data structure. */
828         q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
829                         RTE_CACHE_LINE_SIZE, conf->socket);
830         if (q == NULL) {
831                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
832                 return -ENOMEM;
833         }
834         if (d == NULL) {
835                 rte_bbdev_log(ERR, "Undefined device");
836                 return -ENODEV;
837         }
838
839         q->d = d;
840         q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
841         q->ring_addr_iova = d->sw_rings_iova + (d->sw_ring_size * queue_id);
842
843         /* Prepare the Ring with default descriptor format */
844         union acc100_dma_desc *desc = NULL;
845         unsigned int desc_idx, b_idx;
846         int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
847                 ACC100_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
848                 ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN));
849
850         for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
851                 desc = q->ring_addr + desc_idx;
852                 desc->req.word0 = ACC100_DMA_DESC_TYPE;
853                 desc->req.word1 = 0; /**< Timestamp */
854                 desc->req.word2 = 0;
855                 desc->req.word3 = 0;
856                 uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
857                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
858                 desc->req.data_ptrs[0].blen = fcw_len;
859                 desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
860                 desc->req.data_ptrs[0].last = 0;
861                 desc->req.data_ptrs[0].dma_ext = 0;
862                 for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS - 1;
863                                 b_idx++) {
864                         desc->req.data_ptrs[b_idx].blkid = ACC100_DMA_BLKID_IN;
865                         desc->req.data_ptrs[b_idx].last = 1;
866                         desc->req.data_ptrs[b_idx].dma_ext = 0;
867                         b_idx++;
868                         desc->req.data_ptrs[b_idx].blkid =
869                                         ACC100_DMA_BLKID_OUT_ENC;
870                         desc->req.data_ptrs[b_idx].last = 1;
871                         desc->req.data_ptrs[b_idx].dma_ext = 0;
872                 }
873                 /* Preset some fields of LDPC FCW */
874                 desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
875                 desc->req.fcw_ld.gain_i = 1;
876                 desc->req.fcw_ld.gain_h = 1;
877         }
878
879         q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
880                         RTE_CACHE_LINE_SIZE,
881                         RTE_CACHE_LINE_SIZE, conf->socket);
882         if (q->lb_in == NULL) {
883                 rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
884                 rte_free(q);
885                 return -ENOMEM;
886         }
887         q->lb_in_addr_iova = rte_malloc_virt2iova(q->lb_in);
888         q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
889                         RTE_CACHE_LINE_SIZE,
890                         RTE_CACHE_LINE_SIZE, conf->socket);
891         if (q->lb_out == NULL) {
892                 rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
893                 rte_free(q->lb_in);
894                 rte_free(q);
895                 return -ENOMEM;
896         }
897         q->lb_out_addr_iova = rte_malloc_virt2iova(q->lb_out);
898
899         /*
900          * Software queue ring wraps synchronously with the HW when it reaches
901          * the boundary of the maximum allocated queue size, no matter what the
902          * sw queue size is. This wrapping is guarded by setting the wrap_mask
903          * to represent the maximum queue size as allocated at the time when
904          * the device has been setup (in configure()).
905          *
906          * The queue depth is set to the queue size value (conf->queue_size).
907          * This limits the occupancy of the queue at any point of time, so that
908          * the queue does not get swamped with enqueue requests.
909          */
910         q->sw_ring_depth = conf->queue_size;
911         q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
912
913         q->op_type = conf->op_type;
914
915         q_idx = acc100_find_free_queue_idx(dev, conf);
916         if (q_idx == -1) {
917                 rte_free(q->lb_in);
918                 rte_free(q->lb_out);
919                 rte_free(q);
920                 return -1;
921         }
922
923         q->qgrp_id = (q_idx >> ACC100_GRP_ID_SHIFT) & 0xF;
924         q->vf_id = (q_idx >> ACC100_VF_ID_SHIFT)  & 0x3F;
925         q->aq_id = q_idx & 0xF;
926         q->aq_depth = (conf->op_type ==  RTE_BBDEV_OP_TURBO_DEC) ?
927                         (1 << d->acc100_conf.q_ul_4g.aq_depth_log2) :
928                         (1 << d->acc100_conf.q_dl_4g.aq_depth_log2);
929
930         q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
931                         queue_offset(d->pf_device,
932                                         q->vf_id, q->qgrp_id, q->aq_id));
933
934         rte_bbdev_log_debug(
935                         "Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p",
936                         dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
937                         q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
938
939         dev->data->queues[queue_id].queue_private = q;
940         return 0;
941 }
942
943 /* Release ACC100 queue */
944 static int
945 acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id)
946 {
947         struct acc100_device *d = dev->data->dev_private;
948         struct acc100_queue *q = dev->data->queues[q_id].queue_private;
949
950         if (q != NULL) {
951                 /* Mark the Queue as un-assigned */
952                 d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
953                                 (1 << q->aq_id));
954                 rte_free(q->lb_in);
955                 rte_free(q->lb_out);
956                 rte_free(q);
957                 dev->data->queues[q_id].queue_private = NULL;
958         }
959
960         return 0;
961 }
962
963 /* Get ACC100 device info */
964 static void
965 acc100_dev_info_get(struct rte_bbdev *dev,
966                 struct rte_bbdev_driver_info *dev_info)
967 {
968         struct acc100_device *d = dev->data->dev_private;
969
970         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
971                 {
972                         .type = RTE_BBDEV_OP_TURBO_DEC,
973                         .cap.turbo_dec = {
974                                 .capability_flags =
975                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
976                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
977                                         RTE_BBDEV_TURBO_HALF_ITERATION_EVEN |
978                                         RTE_BBDEV_TURBO_EARLY_TERMINATION |
979                                         RTE_BBDEV_TURBO_DEC_INTERRUPTS |
980                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
981                                         RTE_BBDEV_TURBO_MAP_DEC |
982                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
983                                         RTE_BBDEV_TURBO_DEC_CRC_24B_DROP |
984                                         RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,
985                                 .max_llr_modulus = INT8_MAX,
986                                 .num_buffers_src =
987                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
988                                 .num_buffers_hard_out =
989                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
990                                 .num_buffers_soft_out =
991                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
992                         }
993                 },
994                 {
995                         .type = RTE_BBDEV_OP_TURBO_ENC,
996                         .cap.turbo_enc = {
997                                 .capability_flags =
998                                         RTE_BBDEV_TURBO_CRC_24B_ATTACH |
999                                         RTE_BBDEV_TURBO_RV_INDEX_BYPASS |
1000                                         RTE_BBDEV_TURBO_RATE_MATCH |
1001                                         RTE_BBDEV_TURBO_ENC_INTERRUPTS |
1002                                         RTE_BBDEV_TURBO_ENC_SCATTER_GATHER,
1003                                 .num_buffers_src =
1004                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
1005                                 .num_buffers_dst =
1006                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
1007                         }
1008                 },
1009                 {
1010                         .type   = RTE_BBDEV_OP_LDPC_ENC,
1011                         .cap.ldpc_enc = {
1012                                 .capability_flags =
1013                                         RTE_BBDEV_LDPC_RATE_MATCH |
1014                                         RTE_BBDEV_LDPC_CRC_24B_ATTACH |
1015                                         RTE_BBDEV_LDPC_INTERLEAVER_BYPASS |
1016                                         RTE_BBDEV_LDPC_ENC_INTERRUPTS,
1017                                 .num_buffers_src =
1018                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1019                                 .num_buffers_dst =
1020                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1021                         }
1022                 },
1023                 {
1024                         .type   = RTE_BBDEV_OP_LDPC_DEC,
1025                         .cap.ldpc_dec = {
1026                         .capability_flags =
1027                                 RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
1028                                 RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
1029                                 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
1030                                 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
1031 #ifdef ACC100_EXT_MEM
1032                                 RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK |
1033                                 RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE |
1034                                 RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE |
1035 #endif
1036                                 RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
1037                                 RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS |
1038                                 RTE_BBDEV_LDPC_DECODE_BYPASS |
1039                                 RTE_BBDEV_LDPC_DEC_SCATTER_GATHER |
1040                                 RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION |
1041                                 RTE_BBDEV_LDPC_LLR_COMPRESSION |
1042                                 RTE_BBDEV_LDPC_DEC_INTERRUPTS,
1043                         .llr_size = 8,
1044                         .llr_decimals = 1,
1045                         .num_buffers_src =
1046                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1047                         .num_buffers_hard_out =
1048                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1049                         .num_buffers_soft_out = 0,
1050                         }
1051                 },
1052                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
1053         };
1054
1055         static struct rte_bbdev_queue_conf default_queue_conf;
1056         default_queue_conf.socket = dev->data->socket_id;
1057         default_queue_conf.queue_size = ACC100_MAX_QUEUE_DEPTH;
1058
1059         dev_info->driver_name = dev->device->driver->name;
1060
1061         /* Read and save the populated config from ACC100 registers */
1062         fetch_acc100_config(dev);
1063
1064         /* This isn't ideal because it reports the maximum number of queues but
1065          * does not provide info on how many can be uplink/downlink or different
1066          * priorities
1067          */
1068         dev_info->max_num_queues =
1069                         d->acc100_conf.q_dl_5g.num_aqs_per_groups *
1070                         d->acc100_conf.q_dl_5g.num_qgroups +
1071                         d->acc100_conf.q_ul_5g.num_aqs_per_groups *
1072                         d->acc100_conf.q_ul_5g.num_qgroups +
1073                         d->acc100_conf.q_dl_4g.num_aqs_per_groups *
1074                         d->acc100_conf.q_dl_4g.num_qgroups +
1075                         d->acc100_conf.q_ul_4g.num_aqs_per_groups *
1076                         d->acc100_conf.q_ul_4g.num_qgroups;
1077         dev_info->queue_size_lim = ACC100_MAX_QUEUE_DEPTH;
1078         dev_info->hardware_accelerated = true;
1079         dev_info->max_dl_queue_priority =
1080                         d->acc100_conf.q_dl_4g.num_qgroups - 1;
1081         dev_info->max_ul_queue_priority =
1082                         d->acc100_conf.q_ul_4g.num_qgroups - 1;
1083         dev_info->default_queue_conf = default_queue_conf;
1084         dev_info->cpu_flag_reqs = NULL;
1085         dev_info->min_alignment = 64;
1086         dev_info->capabilities = bbdev_capabilities;
1087 #ifdef ACC100_EXT_MEM
1088         dev_info->harq_buffer_size = d->ddr_size;
1089 #else
1090         dev_info->harq_buffer_size = 0;
1091 #endif
1092         acc100_check_ir(d);
1093 }
1094
1095 static int
1096 acc100_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
1097 {
1098         struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
1099
1100         if (dev->intr_handle->type != RTE_INTR_HANDLE_VFIO_MSI &&
1101                         dev->intr_handle->type != RTE_INTR_HANDLE_UIO)
1102                 return -ENOTSUP;
1103
1104         q->irq_enable = 1;
1105         return 0;
1106 }
1107
1108 static int
1109 acc100_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
1110 {
1111         struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
1112
1113         if (dev->intr_handle->type != RTE_INTR_HANDLE_VFIO_MSI &&
1114                         dev->intr_handle->type != RTE_INTR_HANDLE_UIO)
1115                 return -ENOTSUP;
1116
1117         q->irq_enable = 0;
1118         return 0;
1119 }
1120
1121 static const struct rte_bbdev_ops acc100_bbdev_ops = {
1122         .setup_queues = acc100_setup_queues,
1123         .intr_enable = acc100_intr_enable,
1124         .close = acc100_dev_close,
1125         .info_get = acc100_dev_info_get,
1126         .queue_setup = acc100_queue_setup,
1127         .queue_release = acc100_queue_release,
1128         .queue_intr_enable = acc100_queue_intr_enable,
1129         .queue_intr_disable = acc100_queue_intr_disable
1130 };
1131
1132 /* ACC100 PCI PF address map */
1133 static struct rte_pci_id pci_id_acc100_pf_map[] = {
1134         {
1135                 RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_PF_DEVICE_ID)
1136         },
1137         {.device_id = 0},
1138 };
1139
1140 /* ACC100 PCI VF address map */
1141 static struct rte_pci_id pci_id_acc100_vf_map[] = {
1142         {
1143                 RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_VF_DEVICE_ID)
1144         },
1145         {.device_id = 0},
1146 };
1147
1148 /* Read flag value 0/1 from bitmap */
1149 static inline bool
1150 check_bit(uint32_t bitmap, uint32_t bitmask)
1151 {
1152         return bitmap & bitmask;
1153 }
1154
1155 static inline char *
1156 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
1157 {
1158         if (unlikely(len > rte_pktmbuf_tailroom(m)))
1159                 return NULL;
1160
1161         char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
1162         m->data_len = (uint16_t)(m->data_len + len);
1163         m_head->pkt_len  = (m_head->pkt_len + len);
1164         return tail;
1165 }
1166
1167 /* Fill in a frame control word for turbo encoding. */
1168 static inline void
1169 acc100_fcw_te_fill(const struct rte_bbdev_enc_op *op, struct acc100_fcw_te *fcw)
1170 {
1171         fcw->code_block_mode = op->turbo_enc.code_block_mode;
1172         if (fcw->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1173                 fcw->k_neg = op->turbo_enc.tb_params.k_neg;
1174                 fcw->k_pos = op->turbo_enc.tb_params.k_pos;
1175                 fcw->c_neg = op->turbo_enc.tb_params.c_neg;
1176                 fcw->c = op->turbo_enc.tb_params.c;
1177                 fcw->ncb_neg = op->turbo_enc.tb_params.ncb_neg;
1178                 fcw->ncb_pos = op->turbo_enc.tb_params.ncb_pos;
1179
1180                 if (check_bit(op->turbo_enc.op_flags,
1181                                 RTE_BBDEV_TURBO_RATE_MATCH)) {
1182                         fcw->bypass_rm = 0;
1183                         fcw->cab = op->turbo_enc.tb_params.cab;
1184                         fcw->ea = op->turbo_enc.tb_params.ea;
1185                         fcw->eb = op->turbo_enc.tb_params.eb;
1186                 } else {
1187                         /* E is set to the encoding output size when RM is
1188                          * bypassed.
1189                          */
1190                         fcw->bypass_rm = 1;
1191                         fcw->cab = fcw->c_neg;
1192                         fcw->ea = 3 * fcw->k_neg + 12;
1193                         fcw->eb = 3 * fcw->k_pos + 12;
1194                 }
1195         } else { /* For CB mode */
1196                 fcw->k_pos = op->turbo_enc.cb_params.k;
1197                 fcw->ncb_pos = op->turbo_enc.cb_params.ncb;
1198
1199                 if (check_bit(op->turbo_enc.op_flags,
1200                                 RTE_BBDEV_TURBO_RATE_MATCH)) {
1201                         fcw->bypass_rm = 0;
1202                         fcw->eb = op->turbo_enc.cb_params.e;
1203                 } else {
1204                         /* E is set to the encoding output size when RM is
1205                          * bypassed.
1206                          */
1207                         fcw->bypass_rm = 1;
1208                         fcw->eb = 3 * fcw->k_pos + 12;
1209                 }
1210         }
1211
1212         fcw->bypass_rv_idx1 = check_bit(op->turbo_enc.op_flags,
1213                         RTE_BBDEV_TURBO_RV_INDEX_BYPASS);
1214         fcw->code_block_crc = check_bit(op->turbo_enc.op_flags,
1215                         RTE_BBDEV_TURBO_CRC_24B_ATTACH);
1216         fcw->rv_idx1 = op->turbo_enc.rv_index;
1217 }
1218
1219 /* Compute value of k0.
1220  * Based on 3GPP 38.212 Table 5.4.2.1-2
1221  * Starting position of different redundancy versions, k0
1222  */
1223 static inline uint16_t
1224 get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
1225 {
1226         if (rv_index == 0)
1227                 return 0;
1228         uint16_t n = (bg == 1 ? ACC100_N_ZC_1 : ACC100_N_ZC_2) * z_c;
1229         if (n_cb == n) {
1230                 if (rv_index == 1)
1231                         return (bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * z_c;
1232                 else if (rv_index == 2)
1233                         return (bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * z_c;
1234                 else
1235                         return (bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * z_c;
1236         }
1237         /* LBRM case - includes a division by N */
1238         if (rv_index == 1)
1239                 return (((bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * n_cb)
1240                                 / n) * z_c;
1241         else if (rv_index == 2)
1242                 return (((bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * n_cb)
1243                                 / n) * z_c;
1244         else
1245                 return (((bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * n_cb)
1246                                 / n) * z_c;
1247 }
1248
1249 /* Fill in a frame control word for LDPC encoding. */
1250 static inline void
1251 acc100_fcw_le_fill(const struct rte_bbdev_enc_op *op,
1252                 struct acc100_fcw_le *fcw, int num_cb)
1253 {
1254         fcw->qm = op->ldpc_enc.q_m;
1255         fcw->nfiller = op->ldpc_enc.n_filler;
1256         fcw->BG = (op->ldpc_enc.basegraph - 1);
1257         fcw->Zc = op->ldpc_enc.z_c;
1258         fcw->ncb = op->ldpc_enc.n_cb;
1259         fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_enc.basegraph,
1260                         op->ldpc_enc.rv_index);
1261         fcw->rm_e = op->ldpc_enc.cb_params.e;
1262         fcw->crc_select = check_bit(op->ldpc_enc.op_flags,
1263                         RTE_BBDEV_LDPC_CRC_24B_ATTACH);
1264         fcw->bypass_intlv = check_bit(op->ldpc_enc.op_flags,
1265                         RTE_BBDEV_LDPC_INTERLEAVER_BYPASS);
1266         fcw->mcb_count = num_cb;
1267 }
1268
1269 /* Fill in a frame control word for turbo decoding. */
1270 static inline void
1271 acc100_fcw_td_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_td *fcw)
1272 {
1273         /* Note : Early termination is always enabled for 4GUL */
1274         fcw->fcw_ver = 1;
1275         if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1276                 fcw->k_pos = op->turbo_dec.tb_params.k_pos;
1277         else
1278                 fcw->k_pos = op->turbo_dec.cb_params.k;
1279         fcw->turbo_crc_type = check_bit(op->turbo_dec.op_flags,
1280                         RTE_BBDEV_TURBO_CRC_TYPE_24B);
1281         fcw->bypass_sb_deint = 0;
1282         fcw->raw_decoder_input_on = 0;
1283         fcw->max_iter = op->turbo_dec.iter_max;
1284         fcw->half_iter_on = !check_bit(op->turbo_dec.op_flags,
1285                         RTE_BBDEV_TURBO_HALF_ITERATION_EVEN);
1286 }
1287
1288 /* Fill in a frame control word for LDPC decoding. */
1289 static inline void
1290 acc100_fcw_ld_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw,
1291                 union acc100_harq_layout_data *harq_layout)
1292 {
1293         uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset;
1294         uint16_t harq_index;
1295         uint32_t l;
1296         bool harq_prun = false;
1297
1298         fcw->qm = op->ldpc_dec.q_m;
1299         fcw->nfiller = op->ldpc_dec.n_filler;
1300         fcw->BG = (op->ldpc_dec.basegraph - 1);
1301         fcw->Zc = op->ldpc_dec.z_c;
1302         fcw->ncb = op->ldpc_dec.n_cb;
1303         fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_dec.basegraph,
1304                         op->ldpc_dec.rv_index);
1305         if (op->ldpc_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
1306                 fcw->rm_e = op->ldpc_dec.cb_params.e;
1307         else
1308                 fcw->rm_e = (op->ldpc_dec.tb_params.r <
1309                                 op->ldpc_dec.tb_params.cab) ?
1310                                                 op->ldpc_dec.tb_params.ea :
1311                                                 op->ldpc_dec.tb_params.eb;
1312
1313         fcw->hcin_en = check_bit(op->ldpc_dec.op_flags,
1314                         RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
1315         fcw->hcout_en = check_bit(op->ldpc_dec.op_flags,
1316                         RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
1317         fcw->crc_select = check_bit(op->ldpc_dec.op_flags,
1318                         RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
1319         fcw->bypass_dec = check_bit(op->ldpc_dec.op_flags,
1320                         RTE_BBDEV_LDPC_DECODE_BYPASS);
1321         fcw->bypass_intlv = check_bit(op->ldpc_dec.op_flags,
1322                         RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS);
1323         if (op->ldpc_dec.q_m == 1) {
1324                 fcw->bypass_intlv = 1;
1325                 fcw->qm = 2;
1326         }
1327         fcw->hcin_decomp_mode = check_bit(op->ldpc_dec.op_flags,
1328                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1329         fcw->hcout_comp_mode = check_bit(op->ldpc_dec.op_flags,
1330                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1331         fcw->llr_pack_mode = check_bit(op->ldpc_dec.op_flags,
1332                         RTE_BBDEV_LDPC_LLR_COMPRESSION);
1333         harq_index = op->ldpc_dec.harq_combined_output.offset /
1334                         ACC100_HARQ_OFFSET;
1335 #ifdef ACC100_EXT_MEM
1336         /* Limit cases when HARQ pruning is valid */
1337         harq_prun = ((op->ldpc_dec.harq_combined_output.offset %
1338                         ACC100_HARQ_OFFSET) == 0) &&
1339                         (op->ldpc_dec.harq_combined_output.offset <= UINT16_MAX
1340                         * ACC100_HARQ_OFFSET);
1341 #endif
1342         if (fcw->hcin_en > 0) {
1343                 harq_in_length = op->ldpc_dec.harq_combined_input.length;
1344                 if (fcw->hcin_decomp_mode > 0)
1345                         harq_in_length = harq_in_length * 8 / 6;
1346                 harq_in_length = RTE_ALIGN(harq_in_length, 64);
1347                 if ((harq_layout[harq_index].offset > 0) & harq_prun) {
1348                         rte_bbdev_log_debug("HARQ IN offset unexpected for now\n");
1349                         fcw->hcin_size0 = harq_layout[harq_index].size0;
1350                         fcw->hcin_offset = harq_layout[harq_index].offset;
1351                         fcw->hcin_size1 = harq_in_length -
1352                                         harq_layout[harq_index].offset;
1353                 } else {
1354                         fcw->hcin_size0 = harq_in_length;
1355                         fcw->hcin_offset = 0;
1356                         fcw->hcin_size1 = 0;
1357                 }
1358         } else {
1359                 fcw->hcin_size0 = 0;
1360                 fcw->hcin_offset = 0;
1361                 fcw->hcin_size1 = 0;
1362         }
1363
1364         fcw->itmax = op->ldpc_dec.iter_max;
1365         fcw->itstop = check_bit(op->ldpc_dec.op_flags,
1366                         RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
1367         fcw->synd_precoder = fcw->itstop;
1368         /*
1369          * These are all implicitly set
1370          * fcw->synd_post = 0;
1371          * fcw->so_en = 0;
1372          * fcw->so_bypass_rm = 0;
1373          * fcw->so_bypass_intlv = 0;
1374          * fcw->dec_convllr = 0;
1375          * fcw->hcout_convllr = 0;
1376          * fcw->hcout_size1 = 0;
1377          * fcw->so_it = 0;
1378          * fcw->hcout_offset = 0;
1379          * fcw->negstop_th = 0;
1380          * fcw->negstop_it = 0;
1381          * fcw->negstop_en = 0;
1382          * fcw->gain_i = 1;
1383          * fcw->gain_h = 1;
1384          */
1385         if (fcw->hcout_en > 0) {
1386                 parity_offset = (op->ldpc_dec.basegraph == 1 ? 20 : 8)
1387                         * op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
1388                 k0_p = (fcw->k0 > parity_offset) ?
1389                                 fcw->k0 - op->ldpc_dec.n_filler : fcw->k0;
1390                 ncb_p = fcw->ncb - op->ldpc_dec.n_filler;
1391                 l = k0_p + fcw->rm_e;
1392                 harq_out_length = (uint16_t) fcw->hcin_size0;
1393                 harq_out_length = RTE_MIN(RTE_MAX(harq_out_length, l), ncb_p);
1394                 harq_out_length = (harq_out_length + 0x3F) & 0xFFC0;
1395                 if ((k0_p > fcw->hcin_size0 + ACC100_HARQ_OFFSET_THRESHOLD) &&
1396                                 harq_prun) {
1397                         fcw->hcout_size0 = (uint16_t) fcw->hcin_size0;
1398                         fcw->hcout_offset = k0_p & 0xFFC0;
1399                         fcw->hcout_size1 = harq_out_length - fcw->hcout_offset;
1400                 } else {
1401                         fcw->hcout_size0 = harq_out_length;
1402                         fcw->hcout_size1 = 0;
1403                         fcw->hcout_offset = 0;
1404                 }
1405                 harq_layout[harq_index].offset = fcw->hcout_offset;
1406                 harq_layout[harq_index].size0 = fcw->hcout_size0;
1407         } else {
1408                 fcw->hcout_size0 = 0;
1409                 fcw->hcout_size1 = 0;
1410                 fcw->hcout_offset = 0;
1411         }
1412 }
1413
1414 /**
1415  * Fills descriptor with data pointers of one block type.
1416  *
1417  * @param desc
1418  *   Pointer to DMA descriptor.
1419  * @param input
1420  *   Pointer to pointer to input data which will be encoded. It can be changed
1421  *   and points to next segment in scatter-gather case.
1422  * @param offset
1423  *   Input offset in rte_mbuf structure. It is used for calculating the point
1424  *   where data is starting.
1425  * @param cb_len
1426  *   Length of currently processed Code Block
1427  * @param seg_total_left
1428  *   It indicates how many bytes still left in segment (mbuf) for further
1429  *   processing.
1430  * @param op_flags
1431  *   Store information about device capabilities
1432  * @param next_triplet
1433  *   Index for ACC100 DMA Descriptor triplet
1434  *
1435  * @return
1436  *   Returns index of next triplet on success, other value if lengths of
1437  *   pkt and processed cb do not match.
1438  *
1439  */
1440 static inline int
1441 acc100_dma_fill_blk_type_in(struct acc100_dma_req_desc *desc,
1442                 struct rte_mbuf **input, uint32_t *offset, uint32_t cb_len,
1443                 uint32_t *seg_total_left, int next_triplet)
1444 {
1445         uint32_t part_len;
1446         struct rte_mbuf *m = *input;
1447
1448         part_len = (*seg_total_left < cb_len) ? *seg_total_left : cb_len;
1449         cb_len -= part_len;
1450         *seg_total_left -= part_len;
1451
1452         desc->data_ptrs[next_triplet].address =
1453                         rte_pktmbuf_iova_offset(m, *offset);
1454         desc->data_ptrs[next_triplet].blen = part_len;
1455         desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
1456         desc->data_ptrs[next_triplet].last = 0;
1457         desc->data_ptrs[next_triplet].dma_ext = 0;
1458         *offset += part_len;
1459         next_triplet++;
1460
1461         while (cb_len > 0) {
1462                 if (next_triplet < ACC100_DMA_MAX_NUM_POINTERS &&
1463                                 m->next != NULL) {
1464
1465                         m = m->next;
1466                         *seg_total_left = rte_pktmbuf_data_len(m);
1467                         part_len = (*seg_total_left < cb_len) ?
1468                                         *seg_total_left :
1469                                         cb_len;
1470                         desc->data_ptrs[next_triplet].address =
1471                                         rte_pktmbuf_iova_offset(m, 0);
1472                         desc->data_ptrs[next_triplet].blen = part_len;
1473                         desc->data_ptrs[next_triplet].blkid =
1474                                         ACC100_DMA_BLKID_IN;
1475                         desc->data_ptrs[next_triplet].last = 0;
1476                         desc->data_ptrs[next_triplet].dma_ext = 0;
1477                         cb_len -= part_len;
1478                         *seg_total_left -= part_len;
1479                         /* Initializing offset for next segment (mbuf) */
1480                         *offset = part_len;
1481                         next_triplet++;
1482                 } else {
1483                         rte_bbdev_log(ERR,
1484                                 "Some data still left for processing: "
1485                                 "data_left: %u, next_triplet: %u, next_mbuf: %p",
1486                                 cb_len, next_triplet, m->next);
1487                         return -EINVAL;
1488                 }
1489         }
1490         /* Storing new mbuf as it could be changed in scatter-gather case*/
1491         *input = m;
1492
1493         return next_triplet;
1494 }
1495
1496 /* Fills descriptor with data pointers of one block type.
1497  * Returns index of next triplet on success, other value if lengths of
1498  * output data and processed mbuf do not match.
1499  */
1500 static inline int
1501 acc100_dma_fill_blk_type_out(struct acc100_dma_req_desc *desc,
1502                 struct rte_mbuf *output, uint32_t out_offset,
1503                 uint32_t output_len, int next_triplet, int blk_id)
1504 {
1505         desc->data_ptrs[next_triplet].address =
1506                         rte_pktmbuf_iova_offset(output, out_offset);
1507         desc->data_ptrs[next_triplet].blen = output_len;
1508         desc->data_ptrs[next_triplet].blkid = blk_id;
1509         desc->data_ptrs[next_triplet].last = 0;
1510         desc->data_ptrs[next_triplet].dma_ext = 0;
1511         next_triplet++;
1512
1513         return next_triplet;
1514 }
1515
1516 static inline void
1517 acc100_header_init(struct acc100_dma_req_desc *desc)
1518 {
1519         desc->word0 = ACC100_DMA_DESC_TYPE;
1520         desc->word1 = 0; /**< Timestamp could be disabled */
1521         desc->word2 = 0;
1522         desc->word3 = 0;
1523         desc->numCBs = 1;
1524 }
1525
1526 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1527 /* Check if any input data is unexpectedly left for processing */
1528 static inline int
1529 check_mbuf_total_left(uint32_t mbuf_total_left)
1530 {
1531         if (mbuf_total_left == 0)
1532                 return 0;
1533         rte_bbdev_log(ERR,
1534                 "Some date still left for processing: mbuf_total_left = %u",
1535                 mbuf_total_left);
1536         return -EINVAL;
1537 }
1538 #endif
1539
1540 static inline int
1541 acc100_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
1542                 struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1543                 struct rte_mbuf *output, uint32_t *in_offset,
1544                 uint32_t *out_offset, uint32_t *out_length,
1545                 uint32_t *mbuf_total_left, uint32_t *seg_total_left, uint8_t r)
1546 {
1547         int next_triplet = 1; /* FCW already done */
1548         uint32_t e, ea, eb, length;
1549         uint16_t k, k_neg, k_pos;
1550         uint8_t cab, c_neg;
1551
1552         desc->word0 = ACC100_DMA_DESC_TYPE;
1553         desc->word1 = 0; /**< Timestamp could be disabled */
1554         desc->word2 = 0;
1555         desc->word3 = 0;
1556         desc->numCBs = 1;
1557
1558         if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1559                 ea = op->turbo_enc.tb_params.ea;
1560                 eb = op->turbo_enc.tb_params.eb;
1561                 cab = op->turbo_enc.tb_params.cab;
1562                 k_neg = op->turbo_enc.tb_params.k_neg;
1563                 k_pos = op->turbo_enc.tb_params.k_pos;
1564                 c_neg = op->turbo_enc.tb_params.c_neg;
1565                 e = (r < cab) ? ea : eb;
1566                 k = (r < c_neg) ? k_neg : k_pos;
1567         } else {
1568                 e = op->turbo_enc.cb_params.e;
1569                 k = op->turbo_enc.cb_params.k;
1570         }
1571
1572         if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1573                 length = (k - 24) >> 3;
1574         else
1575                 length = k >> 3;
1576
1577         if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < length))) {
1578                 rte_bbdev_log(ERR,
1579                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1580                                 *mbuf_total_left, length);
1581                 return -1;
1582         }
1583
1584         next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
1585                         length, seg_total_left, next_triplet);
1586         if (unlikely(next_triplet < 0)) {
1587                 rte_bbdev_log(ERR,
1588                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1589                                 op);
1590                 return -1;
1591         }
1592         desc->data_ptrs[next_triplet - 1].last = 1;
1593         desc->m2dlen = next_triplet;
1594         *mbuf_total_left -= length;
1595
1596         /* Set output length */
1597         if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
1598                 /* Integer round up division by 8 */
1599                 *out_length = (e + 7) >> 3;
1600         else
1601                 *out_length = (k >> 3) * 3 + 2;
1602
1603         next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
1604                         *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
1605         if (unlikely(next_triplet < 0)) {
1606                 rte_bbdev_log(ERR,
1607                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1608                                 op);
1609                 return -1;
1610         }
1611         op->turbo_enc.output.length += *out_length;
1612         *out_offset += *out_length;
1613         desc->data_ptrs[next_triplet - 1].last = 1;
1614         desc->d2mlen = next_triplet - desc->m2dlen;
1615
1616         desc->op_addr = op;
1617
1618         return 0;
1619 }
1620
1621 static inline int
1622 acc100_dma_desc_le_fill(struct rte_bbdev_enc_op *op,
1623                 struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1624                 struct rte_mbuf *output, uint32_t *in_offset,
1625                 uint32_t *out_offset, uint32_t *out_length,
1626                 uint32_t *mbuf_total_left, uint32_t *seg_total_left)
1627 {
1628         int next_triplet = 1; /* FCW already done */
1629         uint16_t K, in_length_in_bits, in_length_in_bytes;
1630         struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
1631
1632         acc100_header_init(desc);
1633
1634         K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
1635         in_length_in_bits = K - enc->n_filler;
1636         if ((enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) ||
1637                         (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH))
1638                 in_length_in_bits -= 24;
1639         in_length_in_bytes = in_length_in_bits >> 3;
1640
1641         if (unlikely((*mbuf_total_left == 0) ||
1642                         (*mbuf_total_left < in_length_in_bytes))) {
1643                 rte_bbdev_log(ERR,
1644                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1645                                 *mbuf_total_left, in_length_in_bytes);
1646                 return -1;
1647         }
1648
1649         next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
1650                         in_length_in_bytes,
1651                         seg_total_left, next_triplet);
1652         if (unlikely(next_triplet < 0)) {
1653                 rte_bbdev_log(ERR,
1654                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1655                                 op);
1656                 return -1;
1657         }
1658         desc->data_ptrs[next_triplet - 1].last = 1;
1659         desc->m2dlen = next_triplet;
1660         *mbuf_total_left -= in_length_in_bytes;
1661
1662         /* Set output length */
1663         /* Integer round up division by 8 */
1664         *out_length = (enc->cb_params.e + 7) >> 3;
1665
1666         next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
1667                         *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
1668         op->ldpc_enc.output.length += *out_length;
1669         *out_offset += *out_length;
1670         desc->data_ptrs[next_triplet - 1].last = 1;
1671         desc->data_ptrs[next_triplet - 1].dma_ext = 0;
1672         desc->d2mlen = next_triplet - desc->m2dlen;
1673
1674         desc->op_addr = op;
1675
1676         return 0;
1677 }
1678
1679 static inline int
1680 acc100_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
1681                 struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1682                 struct rte_mbuf *h_output, struct rte_mbuf *s_output,
1683                 uint32_t *in_offset, uint32_t *h_out_offset,
1684                 uint32_t *s_out_offset, uint32_t *h_out_length,
1685                 uint32_t *s_out_length, uint32_t *mbuf_total_left,
1686                 uint32_t *seg_total_left, uint8_t r)
1687 {
1688         int next_triplet = 1; /* FCW already done */
1689         uint16_t k;
1690         uint16_t crc24_overlap = 0;
1691         uint32_t e, kw;
1692
1693         desc->word0 = ACC100_DMA_DESC_TYPE;
1694         desc->word1 = 0; /**< Timestamp could be disabled */
1695         desc->word2 = 0;
1696         desc->word3 = 0;
1697         desc->numCBs = 1;
1698
1699         if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1700                 k = (r < op->turbo_dec.tb_params.c_neg)
1701                         ? op->turbo_dec.tb_params.k_neg
1702                         : op->turbo_dec.tb_params.k_pos;
1703                 e = (r < op->turbo_dec.tb_params.cab)
1704                         ? op->turbo_dec.tb_params.ea
1705                         : op->turbo_dec.tb_params.eb;
1706         } else {
1707                 k = op->turbo_dec.cb_params.k;
1708                 e = op->turbo_dec.cb_params.e;
1709         }
1710
1711         if ((op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1712                         && !check_bit(op->turbo_dec.op_flags,
1713                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1714                 crc24_overlap = 24;
1715         if ((op->turbo_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
1716                         && check_bit(op->turbo_dec.op_flags,
1717                         RTE_BBDEV_TURBO_DEC_CRC_24B_DROP))
1718                 crc24_overlap = 24;
1719
1720         /* Calculates circular buffer size.
1721          * According to 3gpp 36.212 section 5.1.4.2
1722          *   Kw = 3 * Kpi,
1723          * where:
1724          *   Kpi = nCol * nRow
1725          * where nCol is 32 and nRow can be calculated from:
1726          *   D =< nCol * nRow
1727          * where D is the size of each output from turbo encoder block (k + 4).
1728          */
1729         kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1730
1731         if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < kw))) {
1732                 rte_bbdev_log(ERR,
1733                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1734                                 *mbuf_total_left, kw);
1735                 return -1;
1736         }
1737
1738         next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset, kw,
1739                         seg_total_left, next_triplet);
1740         if (unlikely(next_triplet < 0)) {
1741                 rte_bbdev_log(ERR,
1742                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1743                                 op);
1744                 return -1;
1745         }
1746         desc->data_ptrs[next_triplet - 1].last = 1;
1747         desc->m2dlen = next_triplet;
1748         *mbuf_total_left -= kw;
1749
1750         next_triplet = acc100_dma_fill_blk_type_out(
1751                         desc, h_output, *h_out_offset,
1752                         k >> 3, next_triplet,
1753                         ACC100_DMA_BLKID_OUT_HARD);
1754         if (unlikely(next_triplet < 0)) {
1755                 rte_bbdev_log(ERR,
1756                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1757                                 op);
1758                 return -1;
1759         }
1760
1761         *h_out_length = ((k - crc24_overlap) >> 3);
1762         op->turbo_dec.hard_output.length += *h_out_length;
1763         *h_out_offset += *h_out_length;
1764
1765         /* Soft output */
1766         if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
1767                 if (check_bit(op->turbo_dec.op_flags,
1768                                 RTE_BBDEV_TURBO_EQUALIZER))
1769                         *s_out_length = e;
1770                 else
1771                         *s_out_length = (k * 3) + 12;
1772
1773                 next_triplet = acc100_dma_fill_blk_type_out(desc, s_output,
1774                                 *s_out_offset, *s_out_length, next_triplet,
1775                                 ACC100_DMA_BLKID_OUT_SOFT);
1776                 if (unlikely(next_triplet < 0)) {
1777                         rte_bbdev_log(ERR,
1778                                         "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1779                                         op);
1780                         return -1;
1781                 }
1782
1783                 op->turbo_dec.soft_output.length += *s_out_length;
1784                 *s_out_offset += *s_out_length;
1785         }
1786
1787         desc->data_ptrs[next_triplet - 1].last = 1;
1788         desc->d2mlen = next_triplet - desc->m2dlen;
1789
1790         desc->op_addr = op;
1791
1792         return 0;
1793 }
1794
1795 static inline int
1796 acc100_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
1797                 struct acc100_dma_req_desc *desc,
1798                 struct rte_mbuf **input, struct rte_mbuf *h_output,
1799                 uint32_t *in_offset, uint32_t *h_out_offset,
1800                 uint32_t *h_out_length, uint32_t *mbuf_total_left,
1801                 uint32_t *seg_total_left,
1802                 struct acc100_fcw_ld *fcw)
1803 {
1804         struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1805         int next_triplet = 1; /* FCW already done */
1806         uint32_t input_length;
1807         uint16_t output_length, crc24_overlap = 0;
1808         uint16_t sys_cols, K, h_p_size, h_np_size;
1809         bool h_comp = check_bit(dec->op_flags,
1810                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1811
1812         acc100_header_init(desc);
1813
1814         if (check_bit(op->ldpc_dec.op_flags,
1815                         RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
1816                 crc24_overlap = 24;
1817
1818         /* Compute some LDPC BG lengths */
1819         input_length = dec->cb_params.e;
1820         if (check_bit(op->ldpc_dec.op_flags,
1821                         RTE_BBDEV_LDPC_LLR_COMPRESSION))
1822                 input_length = (input_length * 3 + 3) / 4;
1823         sys_cols = (dec->basegraph == 1) ? 22 : 10;
1824         K = sys_cols * dec->z_c;
1825         output_length = K - dec->n_filler - crc24_overlap;
1826
1827         if (unlikely((*mbuf_total_left == 0) ||
1828                         (*mbuf_total_left < input_length))) {
1829                 rte_bbdev_log(ERR,
1830                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1831                                 *mbuf_total_left, input_length);
1832                 return -1;
1833         }
1834
1835         next_triplet = acc100_dma_fill_blk_type_in(desc, input,
1836                         in_offset, input_length,
1837                         seg_total_left, next_triplet);
1838
1839         if (unlikely(next_triplet < 0)) {
1840                 rte_bbdev_log(ERR,
1841                                 "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1842                                 op);
1843                 return -1;
1844         }
1845
1846         if (check_bit(op->ldpc_dec.op_flags,
1847                                 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1848                 h_p_size = fcw->hcin_size0 + fcw->hcin_size1;
1849                 if (h_comp)
1850                         h_p_size = (h_p_size * 3 + 3) / 4;
1851                 desc->data_ptrs[next_triplet].address =
1852                                 dec->harq_combined_input.offset;
1853                 desc->data_ptrs[next_triplet].blen = h_p_size;
1854                 desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN_HARQ;
1855                 desc->data_ptrs[next_triplet].dma_ext = 1;
1856 #ifndef ACC100_EXT_MEM
1857                 acc100_dma_fill_blk_type_out(
1858                                 desc,
1859                                 op->ldpc_dec.harq_combined_input.data,
1860                                 op->ldpc_dec.harq_combined_input.offset,
1861                                 h_p_size,
1862                                 next_triplet,
1863                                 ACC100_DMA_BLKID_IN_HARQ);
1864 #endif
1865                 next_triplet++;
1866         }
1867
1868         desc->data_ptrs[next_triplet - 1].last = 1;
1869         desc->m2dlen = next_triplet;
1870         *mbuf_total_left -= input_length;
1871
1872         next_triplet = acc100_dma_fill_blk_type_out(desc, h_output,
1873                         *h_out_offset, output_length >> 3, next_triplet,
1874                         ACC100_DMA_BLKID_OUT_HARD);
1875
1876         if (check_bit(op->ldpc_dec.op_flags,
1877                                 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1878                 /* Pruned size of the HARQ */
1879                 h_p_size = fcw->hcout_size0 + fcw->hcout_size1;
1880                 /* Non-Pruned size of the HARQ */
1881                 h_np_size = fcw->hcout_offset > 0 ?
1882                                 fcw->hcout_offset + fcw->hcout_size1 :
1883                                 h_p_size;
1884                 if (h_comp) {
1885                         h_np_size = (h_np_size * 3 + 3) / 4;
1886                         h_p_size = (h_p_size * 3 + 3) / 4;
1887                 }
1888                 dec->harq_combined_output.length = h_np_size;
1889                 desc->data_ptrs[next_triplet].address =
1890                                 dec->harq_combined_output.offset;
1891                 desc->data_ptrs[next_triplet].blen = h_p_size;
1892                 desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARQ;
1893                 desc->data_ptrs[next_triplet].dma_ext = 1;
1894 #ifndef ACC100_EXT_MEM
1895                 acc100_dma_fill_blk_type_out(
1896                                 desc,
1897                                 dec->harq_combined_output.data,
1898                                 dec->harq_combined_output.offset,
1899                                 h_p_size,
1900                                 next_triplet,
1901                                 ACC100_DMA_BLKID_OUT_HARQ);
1902 #endif
1903                 next_triplet++;
1904         }
1905
1906         *h_out_length = output_length >> 3;
1907         dec->hard_output.length += *h_out_length;
1908         *h_out_offset += *h_out_length;
1909         desc->data_ptrs[next_triplet - 1].last = 1;
1910         desc->d2mlen = next_triplet - desc->m2dlen;
1911
1912         desc->op_addr = op;
1913
1914         return 0;
1915 }
1916
1917 static inline void
1918 acc100_dma_desc_ld_update(struct rte_bbdev_dec_op *op,
1919                 struct acc100_dma_req_desc *desc,
1920                 struct rte_mbuf *input, struct rte_mbuf *h_output,
1921                 uint32_t *in_offset, uint32_t *h_out_offset,
1922                 uint32_t *h_out_length,
1923                 union acc100_harq_layout_data *harq_layout)
1924 {
1925         int next_triplet = 1; /* FCW already done */
1926         desc->data_ptrs[next_triplet].address =
1927                         rte_pktmbuf_iova_offset(input, *in_offset);
1928         next_triplet++;
1929
1930         if (check_bit(op->ldpc_dec.op_flags,
1931                                 RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1932                 struct rte_bbdev_op_data hi = op->ldpc_dec.harq_combined_input;
1933                 desc->data_ptrs[next_triplet].address = hi.offset;
1934 #ifndef ACC100_EXT_MEM
1935                 desc->data_ptrs[next_triplet].address =
1936                                 rte_pktmbuf_iova_offset(hi.data, hi.offset);
1937 #endif
1938                 next_triplet++;
1939         }
1940
1941         desc->data_ptrs[next_triplet].address =
1942                         rte_pktmbuf_iova_offset(h_output, *h_out_offset);
1943         *h_out_length = desc->data_ptrs[next_triplet].blen;
1944         next_triplet++;
1945
1946         if (check_bit(op->ldpc_dec.op_flags,
1947                                 RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1948                 desc->data_ptrs[next_triplet].address =
1949                                 op->ldpc_dec.harq_combined_output.offset;
1950                 /* Adjust based on previous operation */
1951                 struct rte_bbdev_dec_op *prev_op = desc->op_addr;
1952                 op->ldpc_dec.harq_combined_output.length =
1953                                 prev_op->ldpc_dec.harq_combined_output.length;
1954                 int16_t hq_idx = op->ldpc_dec.harq_combined_output.offset /
1955                                 ACC100_HARQ_OFFSET;
1956                 int16_t prev_hq_idx =
1957                                 prev_op->ldpc_dec.harq_combined_output.offset
1958                                 / ACC100_HARQ_OFFSET;
1959                 harq_layout[hq_idx].val = harq_layout[prev_hq_idx].val;
1960 #ifndef ACC100_EXT_MEM
1961                 struct rte_bbdev_op_data ho =
1962                                 op->ldpc_dec.harq_combined_output;
1963                 desc->data_ptrs[next_triplet].address =
1964                                 rte_pktmbuf_iova_offset(ho.data, ho.offset);
1965 #endif
1966                 next_triplet++;
1967         }
1968
1969         op->ldpc_dec.hard_output.length += *h_out_length;
1970         desc->op_addr = op;
1971 }
1972
1973
1974 /* Enqueue a number of operations to HW and update software rings */
1975 static inline void
1976 acc100_dma_enqueue(struct acc100_queue *q, uint16_t n,
1977                 struct rte_bbdev_stats *queue_stats)
1978 {
1979         union acc100_enqueue_reg_fmt enq_req;
1980 #ifdef RTE_BBDEV_OFFLOAD_COST
1981         uint64_t start_time = 0;
1982         queue_stats->acc_offload_cycles = 0;
1983 #else
1984         RTE_SET_USED(queue_stats);
1985 #endif
1986
1987         enq_req.val = 0;
1988         /* Setting offset, 100b for 256 DMA Desc */
1989         enq_req.addr_offset = ACC100_DESC_OFFSET;
1990
1991         /* Split ops into batches */
1992         do {
1993                 union acc100_dma_desc *desc;
1994                 uint16_t enq_batch_size;
1995                 uint64_t offset;
1996                 rte_iova_t req_elem_addr;
1997
1998                 enq_batch_size = RTE_MIN(n, MAX_ENQ_BATCH_SIZE);
1999
2000                 /* Set flag on last descriptor in a batch */
2001                 desc = q->ring_addr + ((q->sw_ring_head + enq_batch_size - 1) &
2002                                 q->sw_ring_wrap_mask);
2003                 desc->req.last_desc_in_batch = 1;
2004
2005                 /* Calculate the 1st descriptor's address */
2006                 offset = ((q->sw_ring_head & q->sw_ring_wrap_mask) *
2007                                 sizeof(union acc100_dma_desc));
2008                 req_elem_addr = q->ring_addr_iova + offset;
2009
2010                 /* Fill enqueue struct */
2011                 enq_req.num_elem = enq_batch_size;
2012                 /* low 6 bits are not needed */
2013                 enq_req.req_elem_addr = (uint32_t)(req_elem_addr >> 6);
2014
2015 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2016                 rte_memdump(stderr, "Req sdone", desc, sizeof(*desc));
2017 #endif
2018                 rte_bbdev_log_debug(
2019                                 "Enqueue %u reqs (phys %#"PRIx64") to reg %p",
2020                                 enq_batch_size,
2021                                 req_elem_addr,
2022                                 (void *)q->mmio_reg_enqueue);
2023
2024                 rte_wmb();
2025
2026 #ifdef RTE_BBDEV_OFFLOAD_COST
2027                 /* Start time measurement for enqueue function offload. */
2028                 start_time = rte_rdtsc_precise();
2029 #endif
2030                 rte_bbdev_log(DEBUG, "Debug : MMIO Enqueue");
2031                 mmio_write(q->mmio_reg_enqueue, enq_req.val);
2032
2033 #ifdef RTE_BBDEV_OFFLOAD_COST
2034                 queue_stats->acc_offload_cycles +=
2035                                 rte_rdtsc_precise() - start_time;
2036 #endif
2037
2038                 q->aq_enqueued++;
2039                 q->sw_ring_head += enq_batch_size;
2040                 n -= enq_batch_size;
2041
2042         } while (n);
2043
2044
2045 }
2046
2047 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2048 /* Validates turbo encoder parameters */
2049 static inline int
2050 validate_enc_op(struct rte_bbdev_enc_op *op)
2051 {
2052         struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
2053         struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
2054         struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
2055         uint16_t kw, kw_neg, kw_pos;
2056
2057         if (op->mempool == NULL) {
2058                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2059                 return -1;
2060         }
2061         if (turbo_enc->input.data == NULL) {
2062                 rte_bbdev_log(ERR, "Invalid input pointer");
2063                 return -1;
2064         }
2065         if (turbo_enc->output.data == NULL) {
2066                 rte_bbdev_log(ERR, "Invalid output pointer");
2067                 return -1;
2068         }
2069         if (turbo_enc->rv_index > 3) {
2070                 rte_bbdev_log(ERR,
2071                                 "rv_index (%u) is out of range 0 <= value <= 3",
2072                                 turbo_enc->rv_index);
2073                 return -1;
2074         }
2075         if (turbo_enc->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
2076                         turbo_enc->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
2077                 rte_bbdev_log(ERR,
2078                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2079                                 turbo_enc->code_block_mode);
2080                 return -1;
2081         }
2082
2083         if (turbo_enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
2084                 tb = &turbo_enc->tb_params;
2085                 if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
2086                                 || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2087                                 && tb->c_neg > 0) {
2088                         rte_bbdev_log(ERR,
2089                                         "k_neg (%u) is out of range %u <= value <= %u",
2090                                         tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2091                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2092                         return -1;
2093                 }
2094                 if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
2095                                 || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2096                         rte_bbdev_log(ERR,
2097                                         "k_pos (%u) is out of range %u <= value <= %u",
2098                                         tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2099                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2100                         return -1;
2101                 }
2102                 if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
2103                         rte_bbdev_log(ERR,
2104                                         "c_neg (%u) is out of range 0 <= value <= %u",
2105                                         tb->c_neg,
2106                                         RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
2107                 if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
2108                         rte_bbdev_log(ERR,
2109                                         "c (%u) is out of range 1 <= value <= %u",
2110                                         tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
2111                         return -1;
2112                 }
2113                 if (tb->cab > tb->c) {
2114                         rte_bbdev_log(ERR,
2115                                         "cab (%u) is greater than c (%u)",
2116                                         tb->cab, tb->c);
2117                         return -1;
2118                 }
2119                 if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
2120                                 && tb->r < tb->cab) {
2121                         rte_bbdev_log(ERR,
2122                                         "ea (%u) is less than %u or it is not even",
2123                                         tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2124                         return -1;
2125                 }
2126                 if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
2127                                 && tb->c > tb->cab) {
2128                         rte_bbdev_log(ERR,
2129                                         "eb (%u) is less than %u or it is not even",
2130                                         tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2131                         return -1;
2132                 }
2133
2134                 kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
2135                                         RTE_BBDEV_TURBO_C_SUBBLOCK);
2136                 if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
2137                         rte_bbdev_log(ERR,
2138                                         "ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
2139                                         tb->ncb_neg, tb->k_neg, kw_neg);
2140                         return -1;
2141                 }
2142
2143                 kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
2144                                         RTE_BBDEV_TURBO_C_SUBBLOCK);
2145                 if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
2146                         rte_bbdev_log(ERR,
2147                                         "ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
2148                                         tb->ncb_pos, tb->k_pos, kw_pos);
2149                         return -1;
2150                 }
2151                 if (tb->r > (tb->c - 1)) {
2152                         rte_bbdev_log(ERR,
2153                                         "r (%u) is greater than c - 1 (%u)",
2154                                         tb->r, tb->c - 1);
2155                         return -1;
2156                 }
2157         } else {
2158                 cb = &turbo_enc->cb_params;
2159                 if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
2160                                 || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2161                         rte_bbdev_log(ERR,
2162                                         "k (%u) is out of range %u <= value <= %u",
2163                                         cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2164                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2165                         return -1;
2166                 }
2167
2168                 if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
2169                         rte_bbdev_log(ERR,
2170                                         "e (%u) is less than %u or it is not even",
2171                                         cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2172                         return -1;
2173                 }
2174
2175                 kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
2176                 if (cb->ncb < cb->k || cb->ncb > kw) {
2177                         rte_bbdev_log(ERR,
2178                                         "ncb (%u) is out of range (%u) k <= value <= (%u) kw",
2179                                         cb->ncb, cb->k, kw);
2180                         return -1;
2181                 }
2182         }
2183
2184         return 0;
2185 }
2186 /* Validates LDPC encoder parameters */
2187 static inline int
2188 validate_ldpc_enc_op(struct rte_bbdev_enc_op *op)
2189 {
2190         struct rte_bbdev_op_ldpc_enc *ldpc_enc = &op->ldpc_enc;
2191
2192         if (op->mempool == NULL) {
2193                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2194                 return -1;
2195         }
2196         if (ldpc_enc->input.data == NULL) {
2197                 rte_bbdev_log(ERR, "Invalid input pointer");
2198                 return -1;
2199         }
2200         if (ldpc_enc->output.data == NULL) {
2201                 rte_bbdev_log(ERR, "Invalid output pointer");
2202                 return -1;
2203         }
2204         if (ldpc_enc->input.length >
2205                         RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) {
2206                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
2207                                 ldpc_enc->input.length,
2208                                 RTE_BBDEV_LDPC_MAX_CB_SIZE);
2209                 return -1;
2210         }
2211         if ((ldpc_enc->basegraph > 2) || (ldpc_enc->basegraph == 0)) {
2212                 rte_bbdev_log(ERR,
2213                                 "BG (%u) is out of range 1 <= value <= 2",
2214                                 ldpc_enc->basegraph);
2215                 return -1;
2216         }
2217         if (ldpc_enc->rv_index > 3) {
2218                 rte_bbdev_log(ERR,
2219                                 "rv_index (%u) is out of range 0 <= value <= 3",
2220                                 ldpc_enc->rv_index);
2221                 return -1;
2222         }
2223         if (ldpc_enc->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
2224                 rte_bbdev_log(ERR,
2225                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2226                                 ldpc_enc->code_block_mode);
2227                 return -1;
2228         }
2229         int K = (ldpc_enc->basegraph == 1 ? 22 : 10) * ldpc_enc->z_c;
2230         if (ldpc_enc->n_filler >= K) {
2231                 rte_bbdev_log(ERR,
2232                                 "K and F are not compatible %u %u",
2233                                 K, ldpc_enc->n_filler);
2234                 return -1;
2235         }
2236         return 0;
2237 }
2238
2239 /* Validates LDPC decoder parameters */
2240 static inline int
2241 validate_ldpc_dec_op(struct rte_bbdev_dec_op *op)
2242 {
2243         struct rte_bbdev_op_ldpc_dec *ldpc_dec = &op->ldpc_dec;
2244
2245         if (op->mempool == NULL) {
2246                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2247                 return -1;
2248         }
2249         if ((ldpc_dec->basegraph > 2) || (ldpc_dec->basegraph == 0)) {
2250                 rte_bbdev_log(ERR,
2251                                 "BG (%u) is out of range 1 <= value <= 2",
2252                                 ldpc_dec->basegraph);
2253                 return -1;
2254         }
2255         if (ldpc_dec->iter_max == 0) {
2256                 rte_bbdev_log(ERR,
2257                                 "iter_max (%u) is equal to 0",
2258                                 ldpc_dec->iter_max);
2259                 return -1;
2260         }
2261         if (ldpc_dec->rv_index > 3) {
2262                 rte_bbdev_log(ERR,
2263                                 "rv_index (%u) is out of range 0 <= value <= 3",
2264                                 ldpc_dec->rv_index);
2265                 return -1;
2266         }
2267         if (ldpc_dec->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
2268                 rte_bbdev_log(ERR,
2269                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2270                                 ldpc_dec->code_block_mode);
2271                 return -1;
2272         }
2273         int K = (ldpc_dec->basegraph == 1 ? 22 : 10) * ldpc_dec->z_c;
2274         if (ldpc_dec->n_filler >= K) {
2275                 rte_bbdev_log(ERR,
2276                                 "K and F are not compatible %u %u",
2277                                 K, ldpc_dec->n_filler);
2278                 return -1;
2279         }
2280         return 0;
2281 }
2282 #endif
2283
2284 /* Enqueue one encode operations for ACC100 device in CB mode */
2285 static inline int
2286 enqueue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2287                 uint16_t total_enqueued_cbs)
2288 {
2289         union acc100_dma_desc *desc = NULL;
2290         int ret;
2291         uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2292                 seg_total_left;
2293         struct rte_mbuf *input, *output_head, *output;
2294
2295 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2296         /* Validate op structure */
2297         if (validate_enc_op(op) == -1) {
2298                 rte_bbdev_log(ERR, "Turbo encoder validation failed");
2299                 return -EINVAL;
2300         }
2301 #endif
2302
2303         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2304                         & q->sw_ring_wrap_mask);
2305         desc = q->ring_addr + desc_idx;
2306         acc100_fcw_te_fill(op, &desc->req.fcw_te);
2307
2308         input = op->turbo_enc.input.data;
2309         output_head = output = op->turbo_enc.output.data;
2310         in_offset = op->turbo_enc.input.offset;
2311         out_offset = op->turbo_enc.output.offset;
2312         out_length = 0;
2313         mbuf_total_left = op->turbo_enc.input.length;
2314         seg_total_left = rte_pktmbuf_data_len(op->turbo_enc.input.data)
2315                         - in_offset;
2316
2317         ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
2318                         &in_offset, &out_offset, &out_length, &mbuf_total_left,
2319                         &seg_total_left, 0);
2320
2321         if (unlikely(ret < 0))
2322                 return ret;
2323
2324         mbuf_append(output_head, output, out_length);
2325
2326 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2327         rte_memdump(stderr, "FCW", &desc->req.fcw_te,
2328                         sizeof(desc->req.fcw_te) - 8);
2329         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2330         if (check_mbuf_total_left(mbuf_total_left) != 0)
2331                 return -EINVAL;
2332 #endif
2333         /* One CB (one op) was successfully prepared to enqueue */
2334         return 1;
2335 }
2336
2337 /* Enqueue one encode operations for ACC100 device in CB mode */
2338 static inline int
2339 enqueue_ldpc_enc_n_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ops,
2340                 uint16_t total_enqueued_cbs, int16_t num)
2341 {
2342         union acc100_dma_desc *desc = NULL;
2343         uint32_t out_length;
2344         struct rte_mbuf *output_head, *output;
2345         int i, next_triplet;
2346         uint16_t  in_length_in_bytes;
2347         struct rte_bbdev_op_ldpc_enc *enc = &ops[0]->ldpc_enc;
2348
2349 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2350         /* Validate op structure */
2351         if (validate_ldpc_enc_op(ops[0]) == -1) {
2352                 rte_bbdev_log(ERR, "LDPC encoder validation failed");
2353                 return -EINVAL;
2354         }
2355 #endif
2356
2357         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2358                         & q->sw_ring_wrap_mask);
2359         desc = q->ring_addr + desc_idx;
2360         acc100_fcw_le_fill(ops[0], &desc->req.fcw_le, num);
2361
2362         /** This could be done at polling */
2363         acc100_header_init(&desc->req);
2364         desc->req.numCBs = num;
2365
2366         in_length_in_bytes = ops[0]->ldpc_enc.input.data->data_len;
2367         out_length = (enc->cb_params.e + 7) >> 3;
2368         desc->req.m2dlen = 1 + num;
2369         desc->req.d2mlen = num;
2370         next_triplet = 1;
2371
2372         for (i = 0; i < num; i++) {
2373                 desc->req.data_ptrs[next_triplet].address =
2374                         rte_pktmbuf_iova_offset(ops[i]->ldpc_enc.input.data, 0);
2375                 desc->req.data_ptrs[next_triplet].blen = in_length_in_bytes;
2376                 next_triplet++;
2377                 desc->req.data_ptrs[next_triplet].address =
2378                                 rte_pktmbuf_iova_offset(
2379                                 ops[i]->ldpc_enc.output.data, 0);
2380                 desc->req.data_ptrs[next_triplet].blen = out_length;
2381                 next_triplet++;
2382                 ops[i]->ldpc_enc.output.length = out_length;
2383                 output_head = output = ops[i]->ldpc_enc.output.data;
2384                 mbuf_append(output_head, output, out_length);
2385                 output->data_len = out_length;
2386         }
2387
2388         desc->req.op_addr = ops[0];
2389
2390 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2391         rte_memdump(stderr, "FCW", &desc->req.fcw_le,
2392                         sizeof(desc->req.fcw_le) - 8);
2393         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2394 #endif
2395
2396         /* One CB (one op) was successfully prepared to enqueue */
2397         return num;
2398 }
2399
2400 /* Enqueue one encode operations for ACC100 device in CB mode */
2401 static inline int
2402 enqueue_ldpc_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2403                 uint16_t total_enqueued_cbs)
2404 {
2405         union acc100_dma_desc *desc = NULL;
2406         int ret;
2407         uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2408                 seg_total_left;
2409         struct rte_mbuf *input, *output_head, *output;
2410
2411 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2412         /* Validate op structure */
2413         if (validate_ldpc_enc_op(op) == -1) {
2414                 rte_bbdev_log(ERR, "LDPC encoder validation failed");
2415                 return -EINVAL;
2416         }
2417 #endif
2418
2419         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2420                         & q->sw_ring_wrap_mask);
2421         desc = q->ring_addr + desc_idx;
2422         acc100_fcw_le_fill(op, &desc->req.fcw_le, 1);
2423
2424         input = op->ldpc_enc.input.data;
2425         output_head = output = op->ldpc_enc.output.data;
2426         in_offset = op->ldpc_enc.input.offset;
2427         out_offset = op->ldpc_enc.output.offset;
2428         out_length = 0;
2429         mbuf_total_left = op->ldpc_enc.input.length;
2430         seg_total_left = rte_pktmbuf_data_len(op->ldpc_enc.input.data)
2431                         - in_offset;
2432
2433         ret = acc100_dma_desc_le_fill(op, &desc->req, &input, output,
2434                         &in_offset, &out_offset, &out_length, &mbuf_total_left,
2435                         &seg_total_left);
2436
2437         if (unlikely(ret < 0))
2438                 return ret;
2439
2440         mbuf_append(output_head, output, out_length);
2441
2442 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2443         rte_memdump(stderr, "FCW", &desc->req.fcw_le,
2444                         sizeof(desc->req.fcw_le) - 8);
2445         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2446
2447         if (check_mbuf_total_left(mbuf_total_left) != 0)
2448                 return -EINVAL;
2449 #endif
2450         /* One CB (one op) was successfully prepared to enqueue */
2451         return 1;
2452 }
2453
2454
2455 /* Enqueue one encode operations for ACC100 device in TB mode. */
2456 static inline int
2457 enqueue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2458                 uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
2459 {
2460         union acc100_dma_desc *desc = NULL;
2461         int ret;
2462         uint8_t r, c;
2463         uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2464                 seg_total_left;
2465         struct rte_mbuf *input, *output_head, *output;
2466         uint16_t current_enqueued_cbs = 0;
2467
2468 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2469         /* Validate op structure */
2470         if (validate_enc_op(op) == -1) {
2471                 rte_bbdev_log(ERR, "Turbo encoder validation failed");
2472                 return -EINVAL;
2473         }
2474 #endif
2475
2476         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2477                         & q->sw_ring_wrap_mask);
2478         desc = q->ring_addr + desc_idx;
2479         uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
2480         acc100_fcw_te_fill(op, &desc->req.fcw_te);
2481
2482         input = op->turbo_enc.input.data;
2483         output_head = output = op->turbo_enc.output.data;
2484         in_offset = op->turbo_enc.input.offset;
2485         out_offset = op->turbo_enc.output.offset;
2486         out_length = 0;
2487         mbuf_total_left = op->turbo_enc.input.length;
2488
2489         c = op->turbo_enc.tb_params.c;
2490         r = op->turbo_enc.tb_params.r;
2491
2492         while (mbuf_total_left > 0 && r < c) {
2493                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
2494                 /* Set up DMA descriptor */
2495                 desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
2496                                 & q->sw_ring_wrap_mask);
2497                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
2498                 desc->req.data_ptrs[0].blen = ACC100_FCW_TE_BLEN;
2499
2500                 ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
2501                                 &in_offset, &out_offset, &out_length,
2502                                 &mbuf_total_left, &seg_total_left, r);
2503                 if (unlikely(ret < 0))
2504                         return ret;
2505                 mbuf_append(output_head, output, out_length);
2506
2507                 /* Set total number of CBs in TB */
2508                 desc->req.cbs_in_tb = cbs_in_tb;
2509 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2510                 rte_memdump(stderr, "FCW", &desc->req.fcw_te,
2511                                 sizeof(desc->req.fcw_te) - 8);
2512                 rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2513 #endif
2514
2515                 if (seg_total_left == 0) {
2516                         /* Go to the next mbuf */
2517                         input = input->next;
2518                         in_offset = 0;
2519                         output = output->next;
2520                         out_offset = 0;
2521                 }
2522
2523                 total_enqueued_cbs++;
2524                 current_enqueued_cbs++;
2525                 r++;
2526         }
2527
2528 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2529         if (check_mbuf_total_left(mbuf_total_left) != 0)
2530                 return -EINVAL;
2531 #endif
2532
2533         /* Set SDone on last CB descriptor for TB mode. */
2534         desc->req.sdone_enable = 1;
2535         desc->req.irq_enable = q->irq_enable;
2536
2537         return current_enqueued_cbs;
2538 }
2539
2540 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2541 /* Validates turbo decoder parameters */
2542 static inline int
2543 validate_dec_op(struct rte_bbdev_dec_op *op)
2544 {
2545         struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
2546         struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
2547         struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
2548
2549         if (op->mempool == NULL) {
2550                 rte_bbdev_log(ERR, "Invalid mempool pointer");
2551                 return -1;
2552         }
2553         if (turbo_dec->input.data == NULL) {
2554                 rte_bbdev_log(ERR, "Invalid input pointer");
2555                 return -1;
2556         }
2557         if (turbo_dec->hard_output.data == NULL) {
2558                 rte_bbdev_log(ERR, "Invalid hard_output pointer");
2559                 return -1;
2560         }
2561         if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT) &&
2562                         turbo_dec->soft_output.data == NULL) {
2563                 rte_bbdev_log(ERR, "Invalid soft_output pointer");
2564                 return -1;
2565         }
2566         if (turbo_dec->rv_index > 3) {
2567                 rte_bbdev_log(ERR,
2568                                 "rv_index (%u) is out of range 0 <= value <= 3",
2569                                 turbo_dec->rv_index);
2570                 return -1;
2571         }
2572         if (turbo_dec->iter_min < 1) {
2573                 rte_bbdev_log(ERR,
2574                                 "iter_min (%u) is less than 1",
2575                                 turbo_dec->iter_min);
2576                 return -1;
2577         }
2578         if (turbo_dec->iter_max <= 2) {
2579                 rte_bbdev_log(ERR,
2580                                 "iter_max (%u) is less than or equal to 2",
2581                                 turbo_dec->iter_max);
2582                 return -1;
2583         }
2584         if (turbo_dec->iter_min > turbo_dec->iter_max) {
2585                 rte_bbdev_log(ERR,
2586                                 "iter_min (%u) is greater than iter_max (%u)",
2587                                 turbo_dec->iter_min, turbo_dec->iter_max);
2588                 return -1;
2589         }
2590         if (turbo_dec->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
2591                         turbo_dec->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
2592                 rte_bbdev_log(ERR,
2593                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
2594                                 turbo_dec->code_block_mode);
2595                 return -1;
2596         }
2597
2598         if (turbo_dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
2599                 tb = &turbo_dec->tb_params;
2600                 if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
2601                                 || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2602                                 && tb->c_neg > 0) {
2603                         rte_bbdev_log(ERR,
2604                                         "k_neg (%u) is out of range %u <= value <= %u",
2605                                         tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2606                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2607                         return -1;
2608                 }
2609                 if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
2610                                 || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2611                                 && tb->c > tb->c_neg) {
2612                         rte_bbdev_log(ERR,
2613                                         "k_pos (%u) is out of range %u <= value <= %u",
2614                                         tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2615                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2616                         return -1;
2617                 }
2618                 if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
2619                         rte_bbdev_log(ERR,
2620                                         "c_neg (%u) is out of range 0 <= value <= %u",
2621                                         tb->c_neg,
2622                                         RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
2623                 if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
2624                         rte_bbdev_log(ERR,
2625                                         "c (%u) is out of range 1 <= value <= %u",
2626                                         tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
2627                         return -1;
2628                 }
2629                 if (tb->cab > tb->c) {
2630                         rte_bbdev_log(ERR,
2631                                         "cab (%u) is greater than c (%u)",
2632                                         tb->cab, tb->c);
2633                         return -1;
2634                 }
2635                 if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2636                                 (tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE
2637                                                 || (tb->ea % 2))
2638                                 && tb->cab > 0) {
2639                         rte_bbdev_log(ERR,
2640                                         "ea (%u) is less than %u or it is not even",
2641                                         tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2642                         return -1;
2643                 }
2644                 if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2645                                 (tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE
2646                                                 || (tb->eb % 2))
2647                                 && tb->c > tb->cab) {
2648                         rte_bbdev_log(ERR,
2649                                         "eb (%u) is less than %u or it is not even",
2650                                         tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2651                 }
2652         } else {
2653                 cb = &turbo_dec->cb_params;
2654                 if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
2655                                 || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2656                         rte_bbdev_log(ERR,
2657                                         "k (%u) is out of range %u <= value <= %u",
2658                                         cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2659                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
2660                         return -1;
2661                 }
2662                 if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2663                                 (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE ||
2664                                 (cb->e % 2))) {
2665                         rte_bbdev_log(ERR,
2666                                         "e (%u) is less than %u or it is not even",
2667                                         cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2668                         return -1;
2669                 }
2670         }
2671
2672         return 0;
2673 }
2674 #endif
2675
2676 /** Enqueue one decode operations for ACC100 device in CB mode */
2677 static inline int
2678 enqueue_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2679                 uint16_t total_enqueued_cbs)
2680 {
2681         union acc100_dma_desc *desc = NULL;
2682         int ret;
2683         uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
2684                 h_out_length, mbuf_total_left, seg_total_left;
2685         struct rte_mbuf *input, *h_output_head, *h_output,
2686                 *s_output_head, *s_output;
2687
2688 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2689         /* Validate op structure */
2690         if (validate_dec_op(op) == -1) {
2691                 rte_bbdev_log(ERR, "Turbo decoder validation failed");
2692                 return -EINVAL;
2693         }
2694 #endif
2695
2696         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2697                         & q->sw_ring_wrap_mask);
2698         desc = q->ring_addr + desc_idx;
2699         acc100_fcw_td_fill(op, &desc->req.fcw_td);
2700
2701         input = op->turbo_dec.input.data;
2702         h_output_head = h_output = op->turbo_dec.hard_output.data;
2703         s_output_head = s_output = op->turbo_dec.soft_output.data;
2704         in_offset = op->turbo_dec.input.offset;
2705         h_out_offset = op->turbo_dec.hard_output.offset;
2706         s_out_offset = op->turbo_dec.soft_output.offset;
2707         h_out_length = s_out_length = 0;
2708         mbuf_total_left = op->turbo_dec.input.length;
2709         seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
2710
2711 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2712         if (unlikely(input == NULL)) {
2713                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
2714                 return -EFAULT;
2715         }
2716 #endif
2717
2718         /* Set up DMA descriptor */
2719         desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
2720                         & q->sw_ring_wrap_mask);
2721
2722         ret = acc100_dma_desc_td_fill(op, &desc->req, &input, h_output,
2723                         s_output, &in_offset, &h_out_offset, &s_out_offset,
2724                         &h_out_length, &s_out_length, &mbuf_total_left,
2725                         &seg_total_left, 0);
2726
2727         if (unlikely(ret < 0))
2728                 return ret;
2729
2730         /* Hard output */
2731         mbuf_append(h_output_head, h_output, h_out_length);
2732
2733         /* Soft output */
2734         if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT))
2735                 mbuf_append(s_output_head, s_output, s_out_length);
2736
2737 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2738         rte_memdump(stderr, "FCW", &desc->req.fcw_td,
2739                         sizeof(desc->req.fcw_td) - 8);
2740         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2741         if (check_mbuf_total_left(mbuf_total_left) != 0)
2742                 return -EINVAL;
2743 #endif
2744
2745         /* One CB (one op) was successfully prepared to enqueue */
2746         return 1;
2747 }
2748
2749 static inline int
2750 harq_loopback(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2751                 uint16_t total_enqueued_cbs) {
2752         struct acc100_fcw_ld *fcw;
2753         union acc100_dma_desc *desc;
2754         int next_triplet = 1;
2755         struct rte_mbuf *hq_output_head, *hq_output;
2756         uint16_t harq_dma_length_in, harq_dma_length_out;
2757         uint16_t harq_in_length = op->ldpc_dec.harq_combined_input.length;
2758         if (harq_in_length == 0) {
2759                 rte_bbdev_log(ERR, "Loopback of invalid null size\n");
2760                 return -EINVAL;
2761         }
2762
2763         int h_comp = check_bit(op->ldpc_dec.op_flags,
2764                         RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION
2765                         ) ? 1 : 0;
2766         if (h_comp == 1) {
2767                 harq_in_length = harq_in_length * 8 / 6;
2768                 harq_in_length = RTE_ALIGN(harq_in_length, 64);
2769                 harq_dma_length_in = harq_in_length * 6 / 8;
2770         } else {
2771                 harq_in_length = RTE_ALIGN(harq_in_length, 64);
2772                 harq_dma_length_in = harq_in_length;
2773         }
2774         harq_dma_length_out = harq_dma_length_in;
2775
2776         bool ddr_mem_in = check_bit(op->ldpc_dec.op_flags,
2777                         RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE);
2778         union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
2779         uint16_t harq_index = (ddr_mem_in ?
2780                         op->ldpc_dec.harq_combined_input.offset :
2781                         op->ldpc_dec.harq_combined_output.offset)
2782                         / ACC100_HARQ_OFFSET;
2783
2784         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2785                         & q->sw_ring_wrap_mask);
2786         desc = q->ring_addr + desc_idx;
2787         fcw = &desc->req.fcw_ld;
2788         /* Set the FCW from loopback into DDR */
2789         memset(fcw, 0, sizeof(struct acc100_fcw_ld));
2790         fcw->FCWversion = ACC100_FCW_VER;
2791         fcw->qm = 2;
2792         fcw->Zc = 384;
2793         if (harq_in_length < 16 * ACC100_N_ZC_1)
2794                 fcw->Zc = 16;
2795         fcw->ncb = fcw->Zc * ACC100_N_ZC_1;
2796         fcw->rm_e = 2;
2797         fcw->hcin_en = 1;
2798         fcw->hcout_en = 1;
2799
2800         rte_bbdev_log(DEBUG, "Loopback IN %d Index %d offset %d length %d %d\n",
2801                         ddr_mem_in, harq_index,
2802                         harq_layout[harq_index].offset, harq_in_length,
2803                         harq_dma_length_in);
2804
2805         if (ddr_mem_in && (harq_layout[harq_index].offset > 0)) {
2806                 fcw->hcin_size0 = harq_layout[harq_index].size0;
2807                 fcw->hcin_offset = harq_layout[harq_index].offset;
2808                 fcw->hcin_size1 = harq_in_length - fcw->hcin_offset;
2809                 harq_dma_length_in = (fcw->hcin_size0 + fcw->hcin_size1);
2810                 if (h_comp == 1)
2811                         harq_dma_length_in = harq_dma_length_in * 6 / 8;
2812         } else {
2813                 fcw->hcin_size0 = harq_in_length;
2814         }
2815         harq_layout[harq_index].val = 0;
2816         rte_bbdev_log(DEBUG, "Loopback FCW Config %d %d %d\n",
2817                         fcw->hcin_size0, fcw->hcin_offset, fcw->hcin_size1);
2818         fcw->hcout_size0 = harq_in_length;
2819         fcw->hcin_decomp_mode = h_comp;
2820         fcw->hcout_comp_mode = h_comp;
2821         fcw->gain_i = 1;
2822         fcw->gain_h = 1;
2823
2824         /* Set the prefix of descriptor. This could be done at polling */
2825         acc100_header_init(&desc->req);
2826
2827         /* Null LLR input for Decoder */
2828         desc->req.data_ptrs[next_triplet].address =
2829                         q->lb_in_addr_iova;
2830         desc->req.data_ptrs[next_triplet].blen = 2;
2831         desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
2832         desc->req.data_ptrs[next_triplet].last = 0;
2833         desc->req.data_ptrs[next_triplet].dma_ext = 0;
2834         next_triplet++;
2835
2836         /* HARQ Combine input from either Memory interface */
2837         if (!ddr_mem_in) {
2838                 next_triplet = acc100_dma_fill_blk_type_out(&desc->req,
2839                                 op->ldpc_dec.harq_combined_input.data,
2840                                 op->ldpc_dec.harq_combined_input.offset,
2841                                 harq_dma_length_in,
2842                                 next_triplet,
2843                                 ACC100_DMA_BLKID_IN_HARQ);
2844         } else {
2845                 desc->req.data_ptrs[next_triplet].address =
2846                                 op->ldpc_dec.harq_combined_input.offset;
2847                 desc->req.data_ptrs[next_triplet].blen =
2848                                 harq_dma_length_in;
2849                 desc->req.data_ptrs[next_triplet].blkid =
2850                                 ACC100_DMA_BLKID_IN_HARQ;
2851                 desc->req.data_ptrs[next_triplet].dma_ext = 1;
2852                 next_triplet++;
2853         }
2854         desc->req.data_ptrs[next_triplet - 1].last = 1;
2855         desc->req.m2dlen = next_triplet;
2856
2857         /* Dropped decoder hard output */
2858         desc->req.data_ptrs[next_triplet].address =
2859                         q->lb_out_addr_iova;
2860         desc->req.data_ptrs[next_triplet].blen = ACC100_BYTES_IN_WORD;
2861         desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARD;
2862         desc->req.data_ptrs[next_triplet].last = 0;
2863         desc->req.data_ptrs[next_triplet].dma_ext = 0;
2864         next_triplet++;
2865
2866         /* HARQ Combine output to either Memory interface */
2867         if (check_bit(op->ldpc_dec.op_flags,
2868                         RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE
2869                         )) {
2870                 desc->req.data_ptrs[next_triplet].address =
2871                                 op->ldpc_dec.harq_combined_output.offset;
2872                 desc->req.data_ptrs[next_triplet].blen =
2873                                 harq_dma_length_out;
2874                 desc->req.data_ptrs[next_triplet].blkid =
2875                                 ACC100_DMA_BLKID_OUT_HARQ;
2876                 desc->req.data_ptrs[next_triplet].dma_ext = 1;
2877                 next_triplet++;
2878         } else {
2879                 hq_output_head = op->ldpc_dec.harq_combined_output.data;
2880                 hq_output = op->ldpc_dec.harq_combined_output.data;
2881                 next_triplet = acc100_dma_fill_blk_type_out(
2882                                 &desc->req,
2883                                 op->ldpc_dec.harq_combined_output.data,
2884                                 op->ldpc_dec.harq_combined_output.offset,
2885                                 harq_dma_length_out,
2886                                 next_triplet,
2887                                 ACC100_DMA_BLKID_OUT_HARQ);
2888                 /* HARQ output */
2889                 mbuf_append(hq_output_head, hq_output, harq_dma_length_out);
2890                 op->ldpc_dec.harq_combined_output.length =
2891                                 harq_dma_length_out;
2892         }
2893         desc->req.data_ptrs[next_triplet - 1].last = 1;
2894         desc->req.d2mlen = next_triplet - desc->req.m2dlen;
2895         desc->req.op_addr = op;
2896
2897         /* One CB (one op) was successfully prepared to enqueue */
2898         return 1;
2899 }
2900
2901 /** Enqueue one decode operations for ACC100 device in CB mode */
2902 static inline int
2903 enqueue_ldpc_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2904                 uint16_t total_enqueued_cbs, bool same_op)
2905 {
2906         int ret;
2907         if (unlikely(check_bit(op->ldpc_dec.op_flags,
2908                         RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK))) {
2909                 ret = harq_loopback(q, op, total_enqueued_cbs);
2910                 return ret;
2911         }
2912
2913 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2914         /* Validate op structure */
2915         if (validate_ldpc_dec_op(op) == -1) {
2916                 rte_bbdev_log(ERR, "LDPC decoder validation failed");
2917                 return -EINVAL;
2918         }
2919 #endif
2920         union acc100_dma_desc *desc;
2921         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2922                         & q->sw_ring_wrap_mask);
2923         desc = q->ring_addr + desc_idx;
2924         struct rte_mbuf *input, *h_output_head, *h_output;
2925         uint32_t in_offset, h_out_offset, mbuf_total_left, h_out_length = 0;
2926         input = op->ldpc_dec.input.data;
2927         h_output_head = h_output = op->ldpc_dec.hard_output.data;
2928         in_offset = op->ldpc_dec.input.offset;
2929         h_out_offset = op->ldpc_dec.hard_output.offset;
2930         mbuf_total_left = op->ldpc_dec.input.length;
2931 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2932         if (unlikely(input == NULL)) {
2933                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
2934                 return -EFAULT;
2935         }
2936 #endif
2937         union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
2938
2939         if (same_op) {
2940                 union acc100_dma_desc *prev_desc;
2941                 desc_idx = ((q->sw_ring_head + total_enqueued_cbs - 1)
2942                                 & q->sw_ring_wrap_mask);
2943                 prev_desc = q->ring_addr + desc_idx;
2944                 uint8_t *prev_ptr = (uint8_t *) prev_desc;
2945                 uint8_t *new_ptr = (uint8_t *) desc;
2946                 /* Copy first 4 words and BDESCs */
2947                 rte_memcpy(new_ptr, prev_ptr, ACC100_5GUL_SIZE_0);
2948                 rte_memcpy(new_ptr + ACC100_5GUL_OFFSET_0,
2949                                 prev_ptr + ACC100_5GUL_OFFSET_0,
2950                                 ACC100_5GUL_SIZE_1);
2951                 desc->req.op_addr = prev_desc->req.op_addr;
2952                 /* Copy FCW */
2953                 rte_memcpy(new_ptr + ACC100_DESC_FCW_OFFSET,
2954                                 prev_ptr + ACC100_DESC_FCW_OFFSET,
2955                                 ACC100_FCW_LD_BLEN);
2956                 acc100_dma_desc_ld_update(op, &desc->req, input, h_output,
2957                                 &in_offset, &h_out_offset,
2958                                 &h_out_length, harq_layout);
2959         } else {
2960                 struct acc100_fcw_ld *fcw;
2961                 uint32_t seg_total_left;
2962                 fcw = &desc->req.fcw_ld;
2963                 acc100_fcw_ld_fill(op, fcw, harq_layout);
2964
2965                 /* Special handling when overusing mbuf */
2966                 if (fcw->rm_e < ACC100_MAX_E_MBUF)
2967                         seg_total_left = rte_pktmbuf_data_len(input)
2968                                         - in_offset;
2969                 else
2970                         seg_total_left = fcw->rm_e;
2971
2972                 ret = acc100_dma_desc_ld_fill(op, &desc->req, &input, h_output,
2973                                 &in_offset, &h_out_offset,
2974                                 &h_out_length, &mbuf_total_left,
2975                                 &seg_total_left, fcw);
2976                 if (unlikely(ret < 0))
2977                         return ret;
2978         }
2979
2980         /* Hard output */
2981         mbuf_append(h_output_head, h_output, h_out_length);
2982 #ifndef ACC100_EXT_MEM
2983         if (op->ldpc_dec.harq_combined_output.length > 0) {
2984                 /* Push the HARQ output into host memory */
2985                 struct rte_mbuf *hq_output_head, *hq_output;
2986                 hq_output_head = op->ldpc_dec.harq_combined_output.data;
2987                 hq_output = op->ldpc_dec.harq_combined_output.data;
2988                 mbuf_append(hq_output_head, hq_output,
2989                                 op->ldpc_dec.harq_combined_output.length);
2990         }
2991 #endif
2992
2993 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2994         rte_memdump(stderr, "FCW", &desc->req.fcw_ld,
2995                         sizeof(desc->req.fcw_ld) - 8);
2996         rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2997 #endif
2998
2999         /* One CB (one op) was successfully prepared to enqueue */
3000         return 1;
3001 }
3002
3003
3004 /* Enqueue one decode operations for ACC100 device in TB mode */
3005 static inline int
3006 enqueue_ldpc_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
3007                 uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
3008 {
3009         union acc100_dma_desc *desc = NULL;
3010         int ret;
3011         uint8_t r, c;
3012         uint32_t in_offset, h_out_offset,
3013                 h_out_length, mbuf_total_left, seg_total_left;
3014         struct rte_mbuf *input, *h_output_head, *h_output;
3015         uint16_t current_enqueued_cbs = 0;
3016
3017 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3018         /* Validate op structure */
3019         if (validate_ldpc_dec_op(op) == -1) {
3020                 rte_bbdev_log(ERR, "LDPC decoder validation failed");
3021                 return -EINVAL;
3022         }
3023 #endif
3024
3025         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
3026                         & q->sw_ring_wrap_mask);
3027         desc = q->ring_addr + desc_idx;
3028         uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
3029         union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
3030         acc100_fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout);
3031
3032         input = op->ldpc_dec.input.data;
3033         h_output_head = h_output = op->ldpc_dec.hard_output.data;
3034         in_offset = op->ldpc_dec.input.offset;
3035         h_out_offset = op->ldpc_dec.hard_output.offset;
3036         h_out_length = 0;
3037         mbuf_total_left = op->ldpc_dec.input.length;
3038         c = op->ldpc_dec.tb_params.c;
3039         r = op->ldpc_dec.tb_params.r;
3040
3041         while (mbuf_total_left > 0 && r < c) {
3042
3043                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
3044
3045                 /* Set up DMA descriptor */
3046                 desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
3047                                 & q->sw_ring_wrap_mask);
3048                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
3049                 desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
3050                 ret = acc100_dma_desc_ld_fill(op, &desc->req, &input,
3051                                 h_output, &in_offset, &h_out_offset,
3052                                 &h_out_length,
3053                                 &mbuf_total_left, &seg_total_left,
3054                                 &desc->req.fcw_ld);
3055
3056                 if (unlikely(ret < 0))
3057                         return ret;
3058
3059                 /* Hard output */
3060                 mbuf_append(h_output_head, h_output, h_out_length);
3061
3062                 /* Set total number of CBs in TB */
3063                 desc->req.cbs_in_tb = cbs_in_tb;
3064 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3065                 rte_memdump(stderr, "FCW", &desc->req.fcw_td,
3066                                 sizeof(desc->req.fcw_td) - 8);
3067                 rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
3068 #endif
3069
3070                 if (seg_total_left == 0) {
3071                         /* Go to the next mbuf */
3072                         input = input->next;
3073                         in_offset = 0;
3074                         h_output = h_output->next;
3075                         h_out_offset = 0;
3076                 }
3077                 total_enqueued_cbs++;
3078                 current_enqueued_cbs++;
3079                 r++;
3080         }
3081
3082 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3083         if (check_mbuf_total_left(mbuf_total_left) != 0)
3084                 return -EINVAL;
3085 #endif
3086         /* Set SDone on last CB descriptor for TB mode */
3087         desc->req.sdone_enable = 1;
3088         desc->req.irq_enable = q->irq_enable;
3089
3090         return current_enqueued_cbs;
3091 }
3092
3093 /* Enqueue one decode operations for ACC100 device in TB mode */
3094 static inline int
3095 enqueue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
3096                 uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
3097 {
3098         union acc100_dma_desc *desc = NULL;
3099         int ret;
3100         uint8_t r, c;
3101         uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
3102                 h_out_length, mbuf_total_left, seg_total_left;
3103         struct rte_mbuf *input, *h_output_head, *h_output,
3104                 *s_output_head, *s_output;
3105         uint16_t current_enqueued_cbs = 0;
3106
3107 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3108         /* Validate op structure */
3109         if (validate_dec_op(op) == -1) {
3110                 rte_bbdev_log(ERR, "Turbo decoder validation failed");
3111                 return -EINVAL;
3112         }
3113 #endif
3114
3115         uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
3116                         & q->sw_ring_wrap_mask);
3117         desc = q->ring_addr + desc_idx;
3118         uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
3119         acc100_fcw_td_fill(op, &desc->req.fcw_td);
3120
3121         input = op->turbo_dec.input.data;
3122         h_output_head = h_output = op->turbo_dec.hard_output.data;
3123         s_output_head = s_output = op->turbo_dec.soft_output.data;
3124         in_offset = op->turbo_dec.input.offset;
3125         h_out_offset = op->turbo_dec.hard_output.offset;
3126         s_out_offset = op->turbo_dec.soft_output.offset;
3127         h_out_length = s_out_length = 0;
3128         mbuf_total_left = op->turbo_dec.input.length;
3129         c = op->turbo_dec.tb_params.c;
3130         r = op->turbo_dec.tb_params.r;
3131
3132         while (mbuf_total_left > 0 && r < c) {
3133
3134                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
3135
3136                 /* Set up DMA descriptor */
3137                 desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
3138                                 & q->sw_ring_wrap_mask);
3139                 desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
3140                 desc->req.data_ptrs[0].blen = ACC100_FCW_TD_BLEN;
3141                 ret = acc100_dma_desc_td_fill(op, &desc->req, &input,
3142                                 h_output, s_output, &in_offset, &h_out_offset,
3143                                 &s_out_offset, &h_out_length, &s_out_length,
3144                                 &mbuf_total_left, &seg_total_left, r);
3145
3146                 if (unlikely(ret < 0))
3147                         return ret;
3148
3149                 /* Hard output */
3150                 mbuf_append(h_output_head, h_output, h_out_length);
3151
3152                 /* Soft output */
3153                 if (check_bit(op->turbo_dec.op_flags,
3154                                 RTE_BBDEV_TURBO_SOFT_OUTPUT))
3155                         mbuf_append(s_output_head, s_output, s_out_length);
3156
3157                 /* Set total number of CBs in TB */
3158                 desc->req.cbs_in_tb = cbs_in_tb;
3159 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3160                 rte_memdump(stderr, "FCW", &desc->req.fcw_td,
3161                                 sizeof(desc->req.fcw_td) - 8);
3162                 rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
3163 #endif
3164
3165                 if (seg_total_left == 0) {
3166                         /* Go to the next mbuf */
3167                         input = input->next;
3168                         in_offset = 0;
3169                         h_output = h_output->next;
3170                         h_out_offset = 0;
3171
3172                         if (check_bit(op->turbo_dec.op_flags,
3173                                         RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
3174                                 s_output = s_output->next;
3175                                 s_out_offset = 0;
3176                         }
3177                 }
3178
3179                 total_enqueued_cbs++;
3180                 current_enqueued_cbs++;
3181                 r++;
3182         }
3183
3184 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3185         if (check_mbuf_total_left(mbuf_total_left) != 0)
3186                 return -EINVAL;
3187 #endif
3188         /* Set SDone on last CB descriptor for TB mode */
3189         desc->req.sdone_enable = 1;
3190         desc->req.irq_enable = q->irq_enable;
3191
3192         return current_enqueued_cbs;
3193 }
3194
3195 /* Calculates number of CBs in processed encoder TB based on 'r' and input
3196  * length.
3197  */
3198 static inline uint8_t
3199 get_num_cbs_in_tb_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
3200 {
3201         uint8_t c, c_neg, r, crc24_bits = 0;
3202         uint16_t k, k_neg, k_pos;
3203         uint8_t cbs_in_tb = 0;
3204         int32_t length;
3205
3206         length = turbo_enc->input.length;
3207         r = turbo_enc->tb_params.r;
3208         c = turbo_enc->tb_params.c;
3209         c_neg = turbo_enc->tb_params.c_neg;
3210         k_neg = turbo_enc->tb_params.k_neg;
3211         k_pos = turbo_enc->tb_params.k_pos;
3212         crc24_bits = 0;
3213         if (check_bit(turbo_enc->op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
3214                 crc24_bits = 24;
3215         while (length > 0 && r < c) {
3216                 k = (r < c_neg) ? k_neg : k_pos;
3217                 length -= (k - crc24_bits) >> 3;
3218                 r++;
3219                 cbs_in_tb++;
3220         }
3221
3222         return cbs_in_tb;
3223 }
3224
3225 /* Calculates number of CBs in processed decoder TB based on 'r' and input
3226  * length.
3227  */
3228 static inline uint16_t
3229 get_num_cbs_in_tb_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
3230 {
3231         uint8_t c, c_neg, r = 0;
3232         uint16_t kw, k, k_neg, k_pos, cbs_in_tb = 0;
3233         int32_t length;
3234
3235         length = turbo_dec->input.length;
3236         r = turbo_dec->tb_params.r;
3237         c = turbo_dec->tb_params.c;
3238         c_neg = turbo_dec->tb_params.c_neg;
3239         k_neg = turbo_dec->tb_params.k_neg;
3240         k_pos = turbo_dec->tb_params.k_pos;
3241         while (length > 0 && r < c) {
3242                 k = (r < c_neg) ? k_neg : k_pos;
3243                 kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
3244                 length -= kw;
3245                 r++;
3246                 cbs_in_tb++;
3247         }
3248
3249         return cbs_in_tb;
3250 }
3251
3252 /* Calculates number of CBs in processed decoder TB based on 'r' and input
3253  * length.
3254  */
3255 static inline uint16_t
3256 get_num_cbs_in_tb_ldpc_dec(struct rte_bbdev_op_ldpc_dec *ldpc_dec)
3257 {
3258         uint16_t r, cbs_in_tb = 0;
3259         int32_t length = ldpc_dec->input.length;
3260         r = ldpc_dec->tb_params.r;
3261         while (length > 0 && r < ldpc_dec->tb_params.c) {
3262                 length -=  (r < ldpc_dec->tb_params.cab) ?
3263                                 ldpc_dec->tb_params.ea :
3264                                 ldpc_dec->tb_params.eb;
3265                 r++;
3266                 cbs_in_tb++;
3267         }
3268         return cbs_in_tb;
3269 }
3270
3271 /* Enqueue encode operations for ACC100 device in CB mode. */
3272 static uint16_t
3273 acc100_enqueue_enc_cb(struct rte_bbdev_queue_data *q_data,
3274                 struct rte_bbdev_enc_op **ops, uint16_t num)
3275 {
3276         struct acc100_queue *q = q_data->queue_private;
3277         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3278         uint16_t i;
3279         union acc100_dma_desc *desc;
3280         int ret;
3281
3282         for (i = 0; i < num; ++i) {
3283                 /* Check if there are available space for further processing */
3284                 if (unlikely(avail - 1 < 0))
3285                         break;
3286                 avail -= 1;
3287
3288                 ret = enqueue_enc_one_op_cb(q, ops[i], i);
3289                 if (ret < 0)
3290                         break;
3291         }
3292
3293         if (unlikely(i == 0))
3294                 return 0; /* Nothing to enqueue */
3295
3296         /* Set SDone in last CB in enqueued ops for CB mode*/
3297         desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3298                         & q->sw_ring_wrap_mask);
3299         desc->req.sdone_enable = 1;
3300         desc->req.irq_enable = q->irq_enable;
3301
3302         acc100_dma_enqueue(q, i, &q_data->queue_stats);
3303
3304         /* Update stats */
3305         q_data->queue_stats.enqueued_count += i;
3306         q_data->queue_stats.enqueue_err_count += num - i;
3307         return i;
3308 }
3309
3310 /* Check we can mux encode operations with common FCW */
3311 static inline bool
3312 check_mux(struct rte_bbdev_enc_op **ops, uint16_t num) {
3313         uint16_t i;
3314         if (num <= 1)
3315                 return false;
3316         for (i = 1; i < num; ++i) {
3317                 /* Only mux compatible code blocks */
3318                 if (memcmp((uint8_t *)(&ops[i]->ldpc_enc) + ACC100_ENC_OFFSET,
3319                                 (uint8_t *)(&ops[0]->ldpc_enc) +
3320                                 ACC100_ENC_OFFSET,
3321                                 ACC100_CMP_ENC_SIZE) != 0)
3322                         return false;
3323         }
3324         return true;
3325 }
3326
3327 /** Enqueue encode operations for ACC100 device in CB mode. */
3328 static inline uint16_t
3329 acc100_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
3330                 struct rte_bbdev_enc_op **ops, uint16_t num)
3331 {
3332         struct acc100_queue *q = q_data->queue_private;
3333         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3334         uint16_t i = 0;
3335         union acc100_dma_desc *desc;
3336         int ret, desc_idx = 0;
3337         int16_t enq, left = num;
3338
3339         while (left > 0) {
3340                 if (unlikely(avail < 1))
3341                         break;
3342                 avail--;
3343                 enq = RTE_MIN(left, ACC100_MUX_5GDL_DESC);
3344                 if (check_mux(&ops[i], enq)) {
3345                         ret = enqueue_ldpc_enc_n_op_cb(q, &ops[i],
3346                                         desc_idx, enq);
3347                         if (ret < 0)
3348                                 break;
3349                         i += enq;
3350                 } else {
3351                         ret = enqueue_ldpc_enc_one_op_cb(q, ops[i], desc_idx);
3352                         if (ret < 0)
3353                                 break;
3354                         i++;
3355                 }
3356                 desc_idx++;
3357                 left = num - i;
3358         }
3359
3360         if (unlikely(i == 0))
3361                 return 0; /* Nothing to enqueue */
3362
3363         /* Set SDone in last CB in enqueued ops for CB mode*/
3364         desc = q->ring_addr + ((q->sw_ring_head + desc_idx - 1)
3365                         & q->sw_ring_wrap_mask);
3366         desc->req.sdone_enable = 1;
3367         desc->req.irq_enable = q->irq_enable;
3368
3369         acc100_dma_enqueue(q, desc_idx, &q_data->queue_stats);
3370
3371         /* Update stats */
3372         q_data->queue_stats.enqueued_count += i;
3373         q_data->queue_stats.enqueue_err_count += num - i;
3374
3375         return i;
3376 }
3377
3378 /* Enqueue encode operations for ACC100 device in TB mode. */
3379 static uint16_t
3380 acc100_enqueue_enc_tb(struct rte_bbdev_queue_data *q_data,
3381                 struct rte_bbdev_enc_op **ops, uint16_t num)
3382 {
3383         struct acc100_queue *q = q_data->queue_private;
3384         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3385         uint16_t i, enqueued_cbs = 0;
3386         uint8_t cbs_in_tb;
3387         int ret;
3388
3389         for (i = 0; i < num; ++i) {
3390                 cbs_in_tb = get_num_cbs_in_tb_enc(&ops[i]->turbo_enc);
3391                 /* Check if there are available space for further processing */
3392                 if (unlikely(avail - cbs_in_tb < 0))
3393                         break;
3394                 avail -= cbs_in_tb;
3395
3396                 ret = enqueue_enc_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
3397                 if (ret < 0)
3398                         break;
3399                 enqueued_cbs += ret;
3400         }
3401         if (unlikely(enqueued_cbs == 0))
3402                 return 0; /* Nothing to enqueue */
3403
3404         acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3405
3406         /* Update stats */
3407         q_data->queue_stats.enqueued_count += i;
3408         q_data->queue_stats.enqueue_err_count += num - i;
3409
3410         return i;
3411 }
3412
3413 /* Enqueue encode operations for ACC100 device. */
3414 static uint16_t
3415 acc100_enqueue_enc(struct rte_bbdev_queue_data *q_data,
3416                 struct rte_bbdev_enc_op **ops, uint16_t num)
3417 {
3418         if (unlikely(num == 0))
3419                 return 0;
3420         if (ops[0]->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3421                 return acc100_enqueue_enc_tb(q_data, ops, num);
3422         else
3423                 return acc100_enqueue_enc_cb(q_data, ops, num);
3424 }
3425
3426 /* Enqueue encode operations for ACC100 device. */
3427 static uint16_t
3428 acc100_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
3429                 struct rte_bbdev_enc_op **ops, uint16_t num)
3430 {
3431         if (unlikely(num == 0))
3432                 return 0;
3433         if (ops[0]->ldpc_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3434                 return acc100_enqueue_enc_tb(q_data, ops, num);
3435         else
3436                 return acc100_enqueue_ldpc_enc_cb(q_data, ops, num);
3437 }
3438
3439
3440 /* Enqueue decode operations for ACC100 device in CB mode */
3441 static uint16_t
3442 acc100_enqueue_dec_cb(struct rte_bbdev_queue_data *q_data,
3443                 struct rte_bbdev_dec_op **ops, uint16_t num)
3444 {
3445         struct acc100_queue *q = q_data->queue_private;
3446         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3447         uint16_t i;
3448         union acc100_dma_desc *desc;
3449         int ret;
3450
3451         for (i = 0; i < num; ++i) {
3452                 /* Check if there are available space for further processing */
3453                 if (unlikely(avail - 1 < 0))
3454                         break;
3455                 avail -= 1;
3456
3457                 ret = enqueue_dec_one_op_cb(q, ops[i], i);
3458                 if (ret < 0)
3459                         break;
3460         }
3461
3462         if (unlikely(i == 0))
3463                 return 0; /* Nothing to enqueue */
3464
3465         /* Set SDone in last CB in enqueued ops for CB mode*/
3466         desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3467                         & q->sw_ring_wrap_mask);
3468         desc->req.sdone_enable = 1;
3469         desc->req.irq_enable = q->irq_enable;
3470
3471         acc100_dma_enqueue(q, i, &q_data->queue_stats);
3472
3473         /* Update stats */
3474         q_data->queue_stats.enqueued_count += i;
3475         q_data->queue_stats.enqueue_err_count += num - i;
3476
3477         return i;
3478 }
3479
3480 /* Check we can mux encode operations with common FCW */
3481 static inline bool
3482 cmp_ldpc_dec_op(struct rte_bbdev_dec_op **ops) {
3483         /* Only mux compatible code blocks */
3484         if (memcmp((uint8_t *)(&ops[0]->ldpc_dec) + ACC100_DEC_OFFSET,
3485                         (uint8_t *)(&ops[1]->ldpc_dec) +
3486                         ACC100_DEC_OFFSET, ACC100_CMP_DEC_SIZE) != 0) {
3487                 return false;
3488         } else
3489                 return true;
3490 }
3491
3492
3493 /* Enqueue decode operations for ACC100 device in TB mode */
3494 static uint16_t
3495 acc100_enqueue_ldpc_dec_tb(struct rte_bbdev_queue_data *q_data,
3496                 struct rte_bbdev_dec_op **ops, uint16_t num)
3497 {
3498         struct acc100_queue *q = q_data->queue_private;
3499         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3500         uint16_t i, enqueued_cbs = 0;
3501         uint8_t cbs_in_tb;
3502         int ret;
3503
3504         for (i = 0; i < num; ++i) {
3505                 cbs_in_tb = get_num_cbs_in_tb_ldpc_dec(&ops[i]->ldpc_dec);
3506                 /* Check if there are available space for further processing */
3507                 if (unlikely(avail - cbs_in_tb < 0))
3508                         break;
3509                 avail -= cbs_in_tb;
3510
3511                 ret = enqueue_ldpc_dec_one_op_tb(q, ops[i],
3512                                 enqueued_cbs, cbs_in_tb);
3513                 if (ret < 0)
3514                         break;
3515                 enqueued_cbs += ret;
3516         }
3517
3518         acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3519
3520         /* Update stats */
3521         q_data->queue_stats.enqueued_count += i;
3522         q_data->queue_stats.enqueue_err_count += num - i;
3523         return i;
3524 }
3525
3526 /* Enqueue decode operations for ACC100 device in CB mode */
3527 static uint16_t
3528 acc100_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data,
3529                 struct rte_bbdev_dec_op **ops, uint16_t num)
3530 {
3531         struct acc100_queue *q = q_data->queue_private;
3532         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3533         uint16_t i;
3534         union acc100_dma_desc *desc;
3535         int ret;
3536         bool same_op = false;
3537         for (i = 0; i < num; ++i) {
3538                 /* Check if there are available space for further processing */
3539                 if (unlikely(avail < 1))
3540                         break;
3541                 avail -= 1;
3542
3543                 if (i > 0)
3544                         same_op = cmp_ldpc_dec_op(&ops[i-1]);
3545                 rte_bbdev_log(INFO, "Op %d %d %d %d %d %d %d %d %d %d %d %d\n",
3546                         i, ops[i]->ldpc_dec.op_flags, ops[i]->ldpc_dec.rv_index,
3547                         ops[i]->ldpc_dec.iter_max, ops[i]->ldpc_dec.iter_count,
3548                         ops[i]->ldpc_dec.basegraph, ops[i]->ldpc_dec.z_c,
3549                         ops[i]->ldpc_dec.n_cb, ops[i]->ldpc_dec.q_m,
3550                         ops[i]->ldpc_dec.n_filler, ops[i]->ldpc_dec.cb_params.e,
3551                         same_op);
3552                 ret = enqueue_ldpc_dec_one_op_cb(q, ops[i], i, same_op);
3553                 if (ret < 0)
3554                         break;
3555         }
3556
3557         if (unlikely(i == 0))
3558                 return 0; /* Nothing to enqueue */
3559
3560         /* Set SDone in last CB in enqueued ops for CB mode*/
3561         desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3562                         & q->sw_ring_wrap_mask);
3563
3564         desc->req.sdone_enable = 1;
3565         desc->req.irq_enable = q->irq_enable;
3566
3567         acc100_dma_enqueue(q, i, &q_data->queue_stats);
3568
3569         /* Update stats */
3570         q_data->queue_stats.enqueued_count += i;
3571         q_data->queue_stats.enqueue_err_count += num - i;
3572         return i;
3573 }
3574
3575
3576 /* Enqueue decode operations for ACC100 device in TB mode */
3577 static uint16_t
3578 acc100_enqueue_dec_tb(struct rte_bbdev_queue_data *q_data,
3579                 struct rte_bbdev_dec_op **ops, uint16_t num)
3580 {
3581         struct acc100_queue *q = q_data->queue_private;
3582         int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3583         uint16_t i, enqueued_cbs = 0;
3584         uint8_t cbs_in_tb;
3585         int ret;
3586
3587         for (i = 0; i < num; ++i) {
3588                 cbs_in_tb = get_num_cbs_in_tb_dec(&ops[i]->turbo_dec);
3589                 /* Check if there are available space for further processing */
3590                 if (unlikely(avail - cbs_in_tb < 0))
3591                         break;
3592                 avail -= cbs_in_tb;
3593
3594                 ret = enqueue_dec_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
3595                 if (ret < 0)
3596                         break;
3597                 enqueued_cbs += ret;
3598         }
3599
3600         acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3601
3602         /* Update stats */
3603         q_data->queue_stats.enqueued_count += i;
3604         q_data->queue_stats.enqueue_err_count += num - i;
3605
3606         return i;
3607 }
3608
3609 /* Enqueue decode operations for ACC100 device. */
3610 static uint16_t
3611 acc100_enqueue_dec(struct rte_bbdev_queue_data *q_data,
3612                 struct rte_bbdev_dec_op **ops, uint16_t num)
3613 {
3614         if (unlikely(num == 0))
3615                 return 0;
3616         if (ops[0]->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3617                 return acc100_enqueue_dec_tb(q_data, ops, num);
3618         else
3619                 return acc100_enqueue_dec_cb(q_data, ops, num);
3620 }
3621
3622 /* Enqueue decode operations for ACC100 device. */
3623 static uint16_t
3624 acc100_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
3625                 struct rte_bbdev_dec_op **ops, uint16_t num)
3626 {
3627         struct acc100_queue *q = q_data->queue_private;
3628         int32_t aq_avail = q->aq_depth +
3629                         (q->aq_dequeued - q->aq_enqueued) / 128;
3630
3631         if (unlikely((aq_avail == 0) || (num == 0)))
3632                 return 0;
3633
3634         if (ops[0]->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3635                 return acc100_enqueue_ldpc_dec_tb(q_data, ops, num);
3636         else
3637                 return acc100_enqueue_ldpc_dec_cb(q_data, ops, num);
3638 }
3639
3640
3641 /* Dequeue one encode operations from ACC100 device in CB mode */
3642 static inline int
3643 dequeue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
3644                 uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
3645 {
3646         union acc100_dma_desc *desc, atom_desc;
3647         union acc100_dma_rsp_desc rsp;
3648         struct rte_bbdev_enc_op *op;
3649         int i;
3650
3651         desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
3652                         & q->sw_ring_wrap_mask);
3653         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3654                         __ATOMIC_RELAXED);
3655
3656         /* Check fdone bit */
3657         if (!(atom_desc.rsp.val & ACC100_FDONE))
3658                 return -1;
3659
3660         rsp.val = atom_desc.rsp.val;
3661         rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
3662
3663         /* Dequeue */
3664         op = desc->req.op_addr;
3665
3666         /* Clearing status, it will be set based on response */
3667         op->status = 0;
3668
3669         op->status |= ((rsp.input_err)
3670                         ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3671         op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3672         op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3673
3674         if (desc->req.last_desc_in_batch) {
3675                 (*aq_dequeued)++;
3676                 desc->req.last_desc_in_batch = 0;
3677         }
3678         desc->rsp.val = ACC100_DMA_DESC_TYPE;
3679         desc->rsp.add_info_0 = 0; /*Reserved bits */
3680         desc->rsp.add_info_1 = 0; /*Reserved bits */
3681
3682         /* Flag that the muxing cause loss of opaque data */
3683         op->opaque_data = (void *)-1;
3684         for (i = 0 ; i < desc->req.numCBs; i++)
3685                 ref_op[i] = op;
3686
3687         /* One CB (op) was successfully dequeued */
3688         return desc->req.numCBs;
3689 }
3690
3691 /* Dequeue one encode operations from ACC100 device in TB mode */
3692 static inline int
3693 dequeue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
3694                 uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
3695 {
3696         union acc100_dma_desc *desc, *last_desc, atom_desc;
3697         union acc100_dma_rsp_desc rsp;
3698         struct rte_bbdev_enc_op *op;
3699         uint8_t i = 0;
3700         uint16_t current_dequeued_cbs = 0, cbs_in_tb;
3701
3702         desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
3703                         & q->sw_ring_wrap_mask);
3704         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3705                         __ATOMIC_RELAXED);
3706
3707         /* Check fdone bit */
3708         if (!(atom_desc.rsp.val & ACC100_FDONE))
3709                 return -1;
3710
3711         /* Get number of CBs in dequeued TB */
3712         cbs_in_tb = desc->req.cbs_in_tb;
3713         /* Get last CB */
3714         last_desc = q->ring_addr + ((q->sw_ring_tail
3715                         + total_dequeued_cbs + cbs_in_tb - 1)
3716                         & q->sw_ring_wrap_mask);
3717         /* Check if last CB in TB is ready to dequeue (and thus
3718          * the whole TB) - checking sdone bit. If not return.
3719          */
3720         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
3721                         __ATOMIC_RELAXED);
3722         if (!(atom_desc.rsp.val & ACC100_SDONE))
3723                 return -1;
3724
3725         /* Dequeue */
3726         op = desc->req.op_addr;
3727
3728         /* Clearing status, it will be set based on response */
3729         op->status = 0;
3730
3731         while (i < cbs_in_tb) {
3732                 desc = q->ring_addr + ((q->sw_ring_tail
3733                                 + total_dequeued_cbs)
3734                                 & q->sw_ring_wrap_mask);
3735                 atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3736                                 __ATOMIC_RELAXED);
3737                 rsp.val = atom_desc.rsp.val;
3738                 rte_bbdev_log_debug("Resp. desc %p: %x", desc,
3739                                 rsp.val);
3740
3741                 op->status |= ((rsp.input_err)
3742                                 ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3743                 op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3744                 op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3745
3746                 if (desc->req.last_desc_in_batch) {
3747                         (*aq_dequeued)++;
3748                         desc->req.last_desc_in_batch = 0;
3749                 }
3750                 desc->rsp.val = ACC100_DMA_DESC_TYPE;
3751                 desc->rsp.add_info_0 = 0;
3752                 desc->rsp.add_info_1 = 0;
3753                 total_dequeued_cbs++;
3754                 current_dequeued_cbs++;
3755                 i++;
3756         }
3757
3758         *ref_op = op;
3759
3760         return current_dequeued_cbs;
3761 }
3762
3763 /* Dequeue one decode operation from ACC100 device in CB mode */
3764 static inline int
3765 dequeue_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
3766                 struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3767                 uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3768 {
3769         union acc100_dma_desc *desc, atom_desc;
3770         union acc100_dma_rsp_desc rsp;
3771         struct rte_bbdev_dec_op *op;
3772
3773         desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3774                         & q->sw_ring_wrap_mask);
3775         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3776                         __ATOMIC_RELAXED);
3777
3778         /* Check fdone bit */
3779         if (!(atom_desc.rsp.val & ACC100_FDONE))
3780                 return -1;
3781
3782         rsp.val = atom_desc.rsp.val;
3783         rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
3784
3785         /* Dequeue */
3786         op = desc->req.op_addr;
3787
3788         /* Clearing status, it will be set based on response */
3789         op->status = 0;
3790         op->status |= ((rsp.input_err)
3791                         ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3792         op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3793         op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3794         if (op->status != 0) {
3795                 q_data->queue_stats.dequeue_err_count++;
3796                 acc100_check_ir(q->d);
3797         }
3798
3799         /* CRC invalid if error exists */
3800         if (!op->status)
3801                 op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3802         op->turbo_dec.iter_count = (uint8_t) rsp.iter_cnt / 2;
3803         /* Check if this is the last desc in batch (Atomic Queue) */
3804         if (desc->req.last_desc_in_batch) {
3805                 (*aq_dequeued)++;
3806                 desc->req.last_desc_in_batch = 0;
3807         }
3808         desc->rsp.val = ACC100_DMA_DESC_TYPE;
3809         desc->rsp.add_info_0 = 0;
3810         desc->rsp.add_info_1 = 0;
3811         *ref_op = op;
3812
3813         /* One CB (op) was successfully dequeued */
3814         return 1;
3815 }
3816
3817 /* Dequeue one decode operations from ACC100 device in CB mode */
3818 static inline int
3819 dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
3820                 struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3821                 uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3822 {
3823         union acc100_dma_desc *desc, atom_desc;
3824         union acc100_dma_rsp_desc rsp;
3825         struct rte_bbdev_dec_op *op;
3826
3827         desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3828                         & q->sw_ring_wrap_mask);
3829         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3830                         __ATOMIC_RELAXED);
3831
3832         /* Check fdone bit */
3833         if (!(atom_desc.rsp.val & ACC100_FDONE))
3834                 return -1;
3835
3836         rsp.val = atom_desc.rsp.val;
3837
3838         /* Dequeue */
3839         op = desc->req.op_addr;
3840
3841         /* Clearing status, it will be set based on response */
3842         op->status = 0;
3843         op->status |= rsp.input_err << RTE_BBDEV_DATA_ERROR;
3844         op->status |= rsp.dma_err << RTE_BBDEV_DRV_ERROR;
3845         op->status |= rsp.fcw_err << RTE_BBDEV_DRV_ERROR;
3846         if (op->status != 0)
3847                 q_data->queue_stats.dequeue_err_count++;
3848
3849         op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3850         if (op->ldpc_dec.hard_output.length > 0 && !rsp.synd_ok)
3851                 op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
3852         op->ldpc_dec.iter_count = (uint8_t) rsp.iter_cnt;
3853
3854         if (op->status & (1 << RTE_BBDEV_DRV_ERROR))
3855                 acc100_check_ir(q->d);
3856
3857         /* Check if this is the last desc in batch (Atomic Queue) */
3858         if (desc->req.last_desc_in_batch) {
3859                 (*aq_dequeued)++;
3860                 desc->req.last_desc_in_batch = 0;
3861         }
3862
3863         desc->rsp.val = ACC100_DMA_DESC_TYPE;
3864         desc->rsp.add_info_0 = 0;
3865         desc->rsp.add_info_1 = 0;
3866
3867         *ref_op = op;
3868
3869         /* One CB (op) was successfully dequeued */
3870         return 1;
3871 }
3872
3873 /* Dequeue one decode operations from ACC100 device in TB mode. */
3874 static inline int
3875 dequeue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3876                 uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3877 {
3878         union acc100_dma_desc *desc, *last_desc, atom_desc;
3879         union acc100_dma_rsp_desc rsp;
3880         struct rte_bbdev_dec_op *op;
3881         uint8_t cbs_in_tb = 1, cb_idx = 0;
3882
3883         desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3884                         & q->sw_ring_wrap_mask);
3885         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3886                         __ATOMIC_RELAXED);
3887
3888         /* Check fdone bit */
3889         if (!(atom_desc.rsp.val & ACC100_FDONE))
3890                 return -1;
3891
3892         /* Dequeue */
3893         op = desc->req.op_addr;
3894
3895         /* Get number of CBs in dequeued TB */
3896         cbs_in_tb = desc->req.cbs_in_tb;
3897         /* Get last CB */
3898         last_desc = q->ring_addr + ((q->sw_ring_tail
3899                         + dequeued_cbs + cbs_in_tb - 1)
3900                         & q->sw_ring_wrap_mask);
3901         /* Check if last CB in TB is ready to dequeue (and thus
3902          * the whole TB) - checking sdone bit. If not return.
3903          */
3904         atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
3905                         __ATOMIC_RELAXED);
3906         if (!(atom_desc.rsp.val & ACC100_SDONE))
3907                 return -1;
3908
3909         /* Clearing status, it will be set based on response */
3910         op->status = 0;
3911
3912         /* Read remaining CBs if exists */
3913         while (cb_idx < cbs_in_tb) {
3914                 desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3915                                 & q->sw_ring_wrap_mask);
3916                 atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3917                                 __ATOMIC_RELAXED);
3918                 rsp.val = atom_desc.rsp.val;
3919                 rte_bbdev_log_debug("Resp. desc %p: %x", desc,
3920                                 rsp.val);
3921
3922                 op->status |= ((rsp.input_err)
3923                                 ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3924                 op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3925                 op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3926
3927                 /* CRC invalid if error exists */
3928                 if (!op->status)
3929                         op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3930                 op->turbo_dec.iter_count = RTE_MAX((uint8_t) rsp.iter_cnt,
3931                                 op->turbo_dec.iter_count);
3932
3933                 /* Check if this is the last desc in batch (Atomic Queue) */
3934                 if (desc->req.last_desc_in_batch) {
3935                         (*aq_dequeued)++;
3936                         desc->req.last_desc_in_batch = 0;
3937                 }
3938                 desc->rsp.val = ACC100_DMA_DESC_TYPE;
3939                 desc->rsp.add_info_0 = 0;
3940                 desc->rsp.add_info_1 = 0;
3941                 dequeued_cbs++;
3942                 cb_idx++;
3943         }
3944
3945         *ref_op = op;
3946
3947         return cb_idx;
3948 }
3949
3950 /* Dequeue encode operations from ACC100 device. */
3951 static uint16_t
3952 acc100_dequeue_enc(struct rte_bbdev_queue_data *q_data,
3953                 struct rte_bbdev_enc_op **ops, uint16_t num)
3954 {
3955         struct acc100_queue *q = q_data->queue_private;
3956         uint16_t dequeue_num;
3957         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
3958         uint32_t aq_dequeued = 0;
3959         uint16_t i, dequeued_cbs = 0;
3960         struct rte_bbdev_enc_op *op;
3961         int ret;
3962
3963 #ifdef RTE_LIBRTE_BBDEV_DEBUG
3964         if (unlikely(ops == NULL || q == NULL)) {
3965                 rte_bbdev_log_debug("Unexpected undefined pointer");
3966                 return 0;
3967         }
3968 #endif
3969
3970         dequeue_num = (avail < num) ? avail : num;
3971
3972         for (i = 0; i < dequeue_num; ++i) {
3973                 op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3974                         & q->sw_ring_wrap_mask))->req.op_addr;
3975                 if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3976                         ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs,
3977                                         &aq_dequeued);
3978                 else
3979                         ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs,
3980                                         &aq_dequeued);
3981
3982                 if (ret < 0)
3983                         break;
3984                 dequeued_cbs += ret;
3985         }
3986
3987         q->aq_dequeued += aq_dequeued;
3988         q->sw_ring_tail += dequeued_cbs;
3989
3990         /* Update enqueue stats */
3991         q_data->queue_stats.dequeued_count += i;
3992
3993         return i;
3994 }
3995
3996 /* Dequeue LDPC encode operations from ACC100 device. */
3997 static uint16_t
3998 acc100_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
3999                 struct rte_bbdev_enc_op **ops, uint16_t num)
4000 {
4001         struct acc100_queue *q = q_data->queue_private;
4002         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4003         uint32_t aq_dequeued = 0;
4004         uint16_t dequeue_num, i, dequeued_cbs = 0, dequeued_descs = 0;
4005         int ret;
4006
4007 #ifdef RTE_LIBRTE_BBDEV_DEBUG
4008         if (unlikely(ops == 0 && q == NULL))
4009                 return 0;
4010 #endif
4011
4012         dequeue_num = RTE_MIN(avail, num);
4013
4014         for (i = 0; i < dequeue_num; i++) {
4015                 ret = dequeue_enc_one_op_cb(q, &ops[dequeued_cbs],
4016                                 dequeued_descs, &aq_dequeued);
4017                 if (ret < 0)
4018                         break;
4019                 dequeued_cbs += ret;
4020                 dequeued_descs++;
4021                 if (dequeued_cbs >= num)
4022                         break;
4023         }
4024
4025         q->aq_dequeued += aq_dequeued;
4026         q->sw_ring_tail += dequeued_descs;
4027
4028         /* Update enqueue stats */
4029         q_data->queue_stats.dequeued_count += dequeued_cbs;
4030
4031         return dequeued_cbs;
4032 }
4033
4034
4035 /* Dequeue decode operations from ACC100 device. */
4036 static uint16_t
4037 acc100_dequeue_dec(struct rte_bbdev_queue_data *q_data,
4038                 struct rte_bbdev_dec_op **ops, uint16_t num)
4039 {
4040         struct acc100_queue *q = q_data->queue_private;
4041         uint16_t dequeue_num;
4042         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4043         uint32_t aq_dequeued = 0;
4044         uint16_t i;
4045         uint16_t dequeued_cbs = 0;
4046         struct rte_bbdev_dec_op *op;
4047         int ret;
4048
4049 #ifdef RTE_LIBRTE_BBDEV_DEBUG
4050         if (unlikely(ops == 0 && q == NULL))
4051                 return 0;
4052 #endif
4053
4054         dequeue_num = (avail < num) ? avail : num;
4055
4056         for (i = 0; i < dequeue_num; ++i) {
4057                 op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
4058                         & q->sw_ring_wrap_mask))->req.op_addr;
4059                 if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
4060                         ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
4061                                         &aq_dequeued);
4062                 else
4063                         ret = dequeue_dec_one_op_cb(q_data, q, &ops[i],
4064                                         dequeued_cbs, &aq_dequeued);
4065
4066                 if (ret < 0)
4067                         break;
4068                 dequeued_cbs += ret;
4069         }
4070
4071         q->aq_dequeued += aq_dequeued;
4072         q->sw_ring_tail += dequeued_cbs;
4073
4074         /* Update enqueue stats */
4075         q_data->queue_stats.dequeued_count += i;
4076
4077         return i;
4078 }
4079
4080 /* Dequeue decode operations from ACC100 device. */
4081 static uint16_t
4082 acc100_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
4083                 struct rte_bbdev_dec_op **ops, uint16_t num)
4084 {
4085         struct acc100_queue *q = q_data->queue_private;
4086         uint16_t dequeue_num;
4087         uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4088         uint32_t aq_dequeued = 0;
4089         uint16_t i;
4090         uint16_t dequeued_cbs = 0;
4091         struct rte_bbdev_dec_op *op;
4092         int ret;
4093
4094 #ifdef RTE_LIBRTE_BBDEV_DEBUG
4095         if (unlikely(ops == 0 && q == NULL))
4096                 return 0;
4097 #endif
4098
4099         dequeue_num = RTE_MIN(avail, num);
4100
4101         for (i = 0; i < dequeue_num; ++i) {
4102                 op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
4103                         & q->sw_ring_wrap_mask))->req.op_addr;
4104                 if (op->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
4105                         ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
4106                                         &aq_dequeued);
4107                 else
4108                         ret = dequeue_ldpc_dec_one_op_cb(
4109                                         q_data, q, &ops[i], dequeued_cbs,
4110                                         &aq_dequeued);
4111
4112                 if (ret < 0)
4113                         break;
4114                 dequeued_cbs += ret;
4115         }
4116
4117         q->aq_dequeued += aq_dequeued;
4118         q->sw_ring_tail += dequeued_cbs;
4119
4120         /* Update enqueue stats */
4121         q_data->queue_stats.dequeued_count += i;
4122
4123         return i;
4124 }
4125
4126 /* Initialization Function */
4127 static void
4128 acc100_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
4129 {
4130         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
4131
4132         dev->dev_ops = &acc100_bbdev_ops;
4133         dev->enqueue_enc_ops = acc100_enqueue_enc;
4134         dev->enqueue_dec_ops = acc100_enqueue_dec;
4135         dev->dequeue_enc_ops = acc100_dequeue_enc;
4136         dev->dequeue_dec_ops = acc100_dequeue_dec;
4137         dev->enqueue_ldpc_enc_ops = acc100_enqueue_ldpc_enc;
4138         dev->enqueue_ldpc_dec_ops = acc100_enqueue_ldpc_dec;
4139         dev->dequeue_ldpc_enc_ops = acc100_dequeue_ldpc_enc;
4140         dev->dequeue_ldpc_dec_ops = acc100_dequeue_ldpc_dec;
4141
4142         ((struct acc100_device *) dev->data->dev_private)->pf_device =
4143                         !strcmp(drv->driver.name,
4144                                         RTE_STR(ACC100PF_DRIVER_NAME));
4145         ((struct acc100_device *) dev->data->dev_private)->mmio_base =
4146                         pci_dev->mem_resource[0].addr;
4147
4148         rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"",
4149                         drv->driver.name, dev->data->name,
4150                         (void *)pci_dev->mem_resource[0].addr,
4151                         pci_dev->mem_resource[0].phys_addr);
4152 }
4153
4154 static int acc100_pci_probe(struct rte_pci_driver *pci_drv,
4155         struct rte_pci_device *pci_dev)
4156 {
4157         struct rte_bbdev *bbdev = NULL;
4158         char dev_name[RTE_BBDEV_NAME_MAX_LEN];
4159
4160         if (pci_dev == NULL) {
4161                 rte_bbdev_log(ERR, "NULL PCI device");
4162                 return -EINVAL;
4163         }
4164
4165         rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
4166
4167         /* Allocate memory to be used privately by drivers */
4168         bbdev = rte_bbdev_allocate(pci_dev->device.name);
4169         if (bbdev == NULL)
4170                 return -ENODEV;
4171
4172         /* allocate device private memory */
4173         bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
4174                         sizeof(struct acc100_device), RTE_CACHE_LINE_SIZE,
4175                         pci_dev->device.numa_node);
4176
4177         if (bbdev->data->dev_private == NULL) {
4178                 rte_bbdev_log(CRIT,
4179                                 "Allocate of %zu bytes for device \"%s\" failed",
4180                                 sizeof(struct acc100_device), dev_name);
4181                                 rte_bbdev_release(bbdev);
4182                         return -ENOMEM;
4183         }
4184
4185         /* Fill HW specific part of device structure */
4186         bbdev->device = &pci_dev->device;
4187         bbdev->intr_handle = &pci_dev->intr_handle;
4188         bbdev->data->socket_id = pci_dev->device.numa_node;
4189
4190         /* Invoke ACC100 device initialization function */
4191         acc100_bbdev_init(bbdev, pci_drv);
4192
4193         rte_bbdev_log_debug("Initialised bbdev %s (id = %u)",
4194                         dev_name, bbdev->data->dev_id);
4195         return 0;
4196 }
4197
4198 static int acc100_pci_remove(struct rte_pci_device *pci_dev)
4199 {
4200         struct rte_bbdev *bbdev;
4201         int ret;
4202         uint8_t dev_id;
4203
4204         if (pci_dev == NULL)
4205                 return -EINVAL;
4206
4207         /* Find device */
4208         bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
4209         if (bbdev == NULL) {
4210                 rte_bbdev_log(CRIT,
4211                                 "Couldn't find HW dev \"%s\" to uninitialise it",
4212                                 pci_dev->device.name);
4213                 return -ENODEV;
4214         }
4215         dev_id = bbdev->data->dev_id;
4216
4217         /* free device private memory before close */
4218         rte_free(bbdev->data->dev_private);
4219
4220         /* Close device */
4221         ret = rte_bbdev_close(dev_id);
4222         if (ret < 0)
4223                 rte_bbdev_log(ERR,
4224                                 "Device %i failed to close during uninit: %i",
4225                                 dev_id, ret);
4226
4227         /* release bbdev from library */
4228         rte_bbdev_release(bbdev);
4229
4230         rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
4231
4232         return 0;
4233 }
4234
4235 static struct rte_pci_driver acc100_pci_pf_driver = {
4236                 .probe = acc100_pci_probe,
4237                 .remove = acc100_pci_remove,
4238                 .id_table = pci_id_acc100_pf_map,
4239                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING
4240 };
4241
4242 static struct rte_pci_driver acc100_pci_vf_driver = {
4243                 .probe = acc100_pci_probe,
4244                 .remove = acc100_pci_remove,
4245                 .id_table = pci_id_acc100_vf_map,
4246                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING
4247 };
4248
4249 RTE_PMD_REGISTER_PCI(ACC100PF_DRIVER_NAME, acc100_pci_pf_driver);
4250 RTE_PMD_REGISTER_PCI_TABLE(ACC100PF_DRIVER_NAME, pci_id_acc100_pf_map);
4251 RTE_PMD_REGISTER_PCI(ACC100VF_DRIVER_NAME, acc100_pci_vf_driver);
4252 RTE_PMD_REGISTER_PCI_TABLE(ACC100VF_DRIVER_NAME, pci_id_acc100_vf_map);
4253
4254 /*
4255  * Workaround implementation to fix the power on status of some 5GUL engines
4256  * This requires DMA permission if ported outside DPDK
4257  * It consists in resolving the state of these engines by running a
4258  * dummy operation and resetting the engines to ensure state are reliably
4259  * defined.
4260  */
4261 static void
4262 poweron_cleanup(struct rte_bbdev *bbdev, struct acc100_device *d,
4263                 struct rte_acc100_conf *conf)
4264 {
4265         int i, template_idx, qg_idx;
4266         uint32_t address, status, value;
4267         printf("Need to clear power-on 5GUL status in internal memory\n");
4268         /* Reset LDPC Cores */
4269         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4270                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4271                                 ACC100_ENGINE_OFFSET * i, ACC100_RESET_HI);
4272         usleep(ACC100_LONG_WAIT);
4273         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4274                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4275                                 ACC100_ENGINE_OFFSET * i, ACC100_RESET_LO);
4276         usleep(ACC100_LONG_WAIT);
4277         /* Prepare dummy workload */
4278         alloc_2x64mb_sw_rings_mem(bbdev, d, 0);
4279         /* Set base addresses */
4280         uint32_t phys_high = (uint32_t)(d->sw_rings_iova >> 32);
4281         uint32_t phys_low  = (uint32_t)(d->sw_rings_iova &
4282                         ~(ACC100_SIZE_64MBYTE-1));
4283         acc100_reg_write(d, HWPfDmaFec5GulDescBaseHiRegVf, phys_high);
4284         acc100_reg_write(d, HWPfDmaFec5GulDescBaseLoRegVf, phys_low);
4285
4286         /* Descriptor for a dummy 5GUL code block processing*/
4287         union acc100_dma_desc *desc = NULL;
4288         desc = d->sw_rings;
4289         desc->req.data_ptrs[0].address = d->sw_rings_iova +
4290                         ACC100_DESC_FCW_OFFSET;
4291         desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
4292         desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
4293         desc->req.data_ptrs[0].last = 0;
4294         desc->req.data_ptrs[0].dma_ext = 0;
4295         desc->req.data_ptrs[1].address = d->sw_rings_iova + 512;
4296         desc->req.data_ptrs[1].blkid = ACC100_DMA_BLKID_IN;
4297         desc->req.data_ptrs[1].last = 1;
4298         desc->req.data_ptrs[1].dma_ext = 0;
4299         desc->req.data_ptrs[1].blen = 44;
4300         desc->req.data_ptrs[2].address = d->sw_rings_iova + 1024;
4301         desc->req.data_ptrs[2].blkid = ACC100_DMA_BLKID_OUT_ENC;
4302         desc->req.data_ptrs[2].last = 1;
4303         desc->req.data_ptrs[2].dma_ext = 0;
4304         desc->req.data_ptrs[2].blen = 5;
4305         /* Dummy FCW */
4306         desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
4307         desc->req.fcw_ld.qm = 1;
4308         desc->req.fcw_ld.nfiller = 30;
4309         desc->req.fcw_ld.BG = 2 - 1;
4310         desc->req.fcw_ld.Zc = 7;
4311         desc->req.fcw_ld.ncb = 350;
4312         desc->req.fcw_ld.rm_e = 4;
4313         desc->req.fcw_ld.itmax = 10;
4314         desc->req.fcw_ld.gain_i = 1;
4315         desc->req.fcw_ld.gain_h = 1;
4316
4317         int engines_to_restart[ACC100_SIG_UL_5G_LAST + 1] = {0};
4318         int num_failed_engine = 0;
4319         /* Detect engines in undefined state */
4320         for (template_idx = ACC100_SIG_UL_5G;
4321                         template_idx <= ACC100_SIG_UL_5G_LAST;
4322                         template_idx++) {
4323                 /* Check engine power-on status */
4324                 address = HwPfFecUl5gIbDebugReg +
4325                                 ACC100_ENGINE_OFFSET * template_idx;
4326                 status = (acc100_reg_read(d, address) >> 4) & 0xF;
4327                 if (status == 0) {
4328                         engines_to_restart[num_failed_engine] = template_idx;
4329                         num_failed_engine++;
4330                 }
4331         }
4332
4333         int numQqsAcc = conf->q_ul_5g.num_qgroups;
4334         int numQgs = conf->q_ul_5g.num_qgroups;
4335         value = 0;
4336         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4337                 value |= (1 << qg_idx);
4338         /* Force each engine which is in unspecified state */
4339         for (i = 0; i < num_failed_engine; i++) {
4340                 int failed_engine = engines_to_restart[i];
4341                 printf("Force engine %d\n", failed_engine);
4342                 for (template_idx = ACC100_SIG_UL_5G;
4343                                 template_idx <= ACC100_SIG_UL_5G_LAST;
4344                                 template_idx++) {
4345                         address = HWPfQmgrGrpTmplateReg4Indx
4346                                         + ACC100_BYTES_IN_WORD * template_idx;
4347                         if (template_idx == failed_engine)
4348                                 acc100_reg_write(d, address, value);
4349                         else
4350                                 acc100_reg_write(d, address, 0);
4351                 }
4352                 /* Reset descriptor header */
4353                 desc->req.word0 = ACC100_DMA_DESC_TYPE;
4354                 desc->req.word1 = 0;
4355                 desc->req.word2 = 0;
4356                 desc->req.word3 = 0;
4357                 desc->req.numCBs = 1;
4358                 desc->req.m2dlen = 2;
4359                 desc->req.d2mlen = 1;
4360                 /* Enqueue the code block for processing */
4361                 union acc100_enqueue_reg_fmt enq_req;
4362                 enq_req.val = 0;
4363                 enq_req.addr_offset = ACC100_DESC_OFFSET;
4364                 enq_req.num_elem = 1;
4365                 enq_req.req_elem_addr = 0;
4366                 rte_wmb();
4367                 acc100_reg_write(d, HWPfQmgrIngressAq + 0x100, enq_req.val);
4368                 usleep(ACC100_LONG_WAIT * 100);
4369                 if (desc->req.word0 != 2)
4370                         printf("DMA Response %#"PRIx32"\n", desc->req.word0);
4371         }
4372
4373         /* Reset LDPC Cores */
4374         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4375                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4376                                 ACC100_ENGINE_OFFSET * i,
4377                                 ACC100_RESET_HI);
4378         usleep(ACC100_LONG_WAIT);
4379         for (i = 0; i < ACC100_ENGINES_MAX; i++)
4380                 acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4381                                 ACC100_ENGINE_OFFSET * i,
4382                                 ACC100_RESET_LO);
4383         usleep(ACC100_LONG_WAIT);
4384         acc100_reg_write(d, HWPfHi5GHardResetReg, ACC100_RESET_HARD);
4385         usleep(ACC100_LONG_WAIT);
4386         int numEngines = 0;
4387         /* Check engine power-on status again */
4388         for (template_idx = ACC100_SIG_UL_5G;
4389                         template_idx <= ACC100_SIG_UL_5G_LAST;
4390                         template_idx++) {
4391                 address = HwPfFecUl5gIbDebugReg +
4392                                 ACC100_ENGINE_OFFSET * template_idx;
4393                 status = (acc100_reg_read(d, address) >> 4) & 0xF;
4394                 address = HWPfQmgrGrpTmplateReg4Indx
4395                                 + ACC100_BYTES_IN_WORD * template_idx;
4396                 if (status == 1) {
4397                         acc100_reg_write(d, address, value);
4398                         numEngines++;
4399                 } else
4400                         acc100_reg_write(d, address, 0);
4401         }
4402         printf("Number of 5GUL engines %d\n", numEngines);
4403
4404         if (d->sw_rings_base != NULL)
4405                 rte_free(d->sw_rings_base);
4406         usleep(ACC100_LONG_WAIT);
4407 }
4408
4409 /* Initial configuration of a ACC100 device prior to running configure() */
4410 int
4411 rte_acc100_configure(const char *dev_name, struct rte_acc100_conf *conf)
4412 {
4413         rte_bbdev_log(INFO, "rte_acc100_configure");
4414         uint32_t value, address, status;
4415         int qg_idx, template_idx, vf_idx, acc, i;
4416         struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
4417
4418         /* Compile time checks */
4419         RTE_BUILD_BUG_ON(sizeof(struct acc100_dma_req_desc) != 256);
4420         RTE_BUILD_BUG_ON(sizeof(union acc100_dma_desc) != 256);
4421         RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_td) != 24);
4422         RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_te) != 32);
4423
4424         if (bbdev == NULL) {
4425                 rte_bbdev_log(ERR,
4426                 "Invalid dev_name (%s), or device is not yet initialised",
4427                 dev_name);
4428                 return -ENODEV;
4429         }
4430         struct acc100_device *d = bbdev->data->dev_private;
4431
4432         /* Store configuration */
4433         rte_memcpy(&d->acc100_conf, conf, sizeof(d->acc100_conf));
4434
4435         /* PCIe Bridge configuration */
4436         acc100_reg_write(d, HwPfPcieGpexBridgeControl, ACC100_CFG_PCI_BRIDGE);
4437         for (i = 1; i < ACC100_GPEX_AXIMAP_NUM; i++)
4438                 acc100_reg_write(d,
4439                                 HwPfPcieGpexAxiAddrMappingWindowPexBaseHigh
4440                                 + i * 16, 0);
4441
4442         /* Prevent blocking AXI read on BRESP for AXI Write */
4443         address = HwPfPcieGpexAxiPioControl;
4444         value = ACC100_CFG_PCI_AXI;
4445         acc100_reg_write(d, address, value);
4446
4447         /* 5GDL PLL phase shift */
4448         acc100_reg_write(d, HWPfChaDl5gPllPhshft0, 0x1);
4449
4450         /* Explicitly releasing AXI as this may be stopped after PF FLR/BME */
4451         address = HWPfDmaAxiControl;
4452         value = 1;
4453         acc100_reg_write(d, address, value);
4454
4455         /* DDR Configuration */
4456         address = HWPfDdrBcTim6;
4457         value = acc100_reg_read(d, address);
4458         value &= 0xFFFFFFFB; /* Bit 2 */
4459 #ifdef ACC100_DDR_ECC_ENABLE
4460         value |= 0x4;
4461 #endif
4462         acc100_reg_write(d, address, value);
4463         address = HWPfDdrPhyDqsCountNum;
4464 #ifdef ACC100_DDR_ECC_ENABLE
4465         value = 9;
4466 #else
4467         value = 8;
4468 #endif
4469         acc100_reg_write(d, address, value);
4470
4471         /* Set default descriptor signature */
4472         address = HWPfDmaDescriptorSignatuture;
4473         value = 0;
4474         acc100_reg_write(d, address, value);
4475
4476         /* Enable the Error Detection in DMA */
4477         value = ACC100_CFG_DMA_ERROR;
4478         address = HWPfDmaErrorDetectionEn;
4479         acc100_reg_write(d, address, value);
4480
4481         /* AXI Cache configuration */
4482         value = ACC100_CFG_AXI_CACHE;
4483         address = HWPfDmaAxcacheReg;
4484         acc100_reg_write(d, address, value);
4485
4486         /* Default DMA Configuration (Qmgr Enabled) */
4487         address = HWPfDmaConfig0Reg;
4488         value = 0;
4489         acc100_reg_write(d, address, value);
4490         address = HWPfDmaQmanen;
4491         value = 0;
4492         acc100_reg_write(d, address, value);
4493
4494         /* Default RLIM/ALEN configuration */
4495         address = HWPfDmaConfig1Reg;
4496         value = (1 << 31) + (23 << 8) + (1 << 6) + 7;
4497         acc100_reg_write(d, address, value);
4498
4499         /* Configure DMA Qmanager addresses */
4500         address = HWPfDmaQmgrAddrReg;
4501         value = HWPfQmgrEgressQueuesTemplate;
4502         acc100_reg_write(d, address, value);
4503
4504         /* ===== Qmgr Configuration ===== */
4505         /* Configuration of the AQueue Depth QMGR_GRP_0_DEPTH_LOG2 for UL */
4506         int totalQgs = conf->q_ul_4g.num_qgroups +
4507                         conf->q_ul_5g.num_qgroups +
4508                         conf->q_dl_4g.num_qgroups +
4509                         conf->q_dl_5g.num_qgroups;
4510         for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4511                 address = HWPfQmgrDepthLog2Grp +
4512                 ACC100_BYTES_IN_WORD * qg_idx;
4513                 value = aqDepth(qg_idx, conf);
4514                 acc100_reg_write(d, address, value);
4515                 address = HWPfQmgrTholdGrp +
4516                 ACC100_BYTES_IN_WORD * qg_idx;
4517                 value = (1 << 16) + (1 << (aqDepth(qg_idx, conf) - 1));
4518                 acc100_reg_write(d, address, value);
4519         }
4520
4521         /* Template Priority in incremental order */
4522         for (template_idx = 0; template_idx < ACC100_NUM_TMPL;
4523                         template_idx++) {
4524                 address = HWPfQmgrGrpTmplateReg0Indx +
4525                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4526                 value = ACC100_TMPL_PRI_0;
4527                 acc100_reg_write(d, address, value);
4528                 address = HWPfQmgrGrpTmplateReg1Indx +
4529                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4530                 value = ACC100_TMPL_PRI_1;
4531                 acc100_reg_write(d, address, value);
4532                 address = HWPfQmgrGrpTmplateReg2indx +
4533                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4534                 value = ACC100_TMPL_PRI_2;
4535                 acc100_reg_write(d, address, value);
4536                 address = HWPfQmgrGrpTmplateReg3Indx +
4537                 ACC100_BYTES_IN_WORD * (template_idx % 8);
4538                 value = ACC100_TMPL_PRI_3;
4539                 acc100_reg_write(d, address, value);
4540         }
4541
4542         address = HWPfQmgrGrpPriority;
4543         value = ACC100_CFG_QMGR_HI_P;
4544         acc100_reg_write(d, address, value);
4545
4546         /* Template Configuration */
4547         for (template_idx = 0; template_idx < ACC100_NUM_TMPL;
4548                         template_idx++) {
4549                 value = 0;
4550                 address = HWPfQmgrGrpTmplateReg4Indx
4551                                 + ACC100_BYTES_IN_WORD * template_idx;
4552                 acc100_reg_write(d, address, value);
4553         }
4554         /* 4GUL */
4555         int numQgs = conf->q_ul_4g.num_qgroups;
4556         int numQqsAcc = 0;
4557         value = 0;
4558         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4559                 value |= (1 << qg_idx);
4560         for (template_idx = ACC100_SIG_UL_4G;
4561                         template_idx <= ACC100_SIG_UL_4G_LAST;
4562                         template_idx++) {
4563                 address = HWPfQmgrGrpTmplateReg4Indx
4564                                 + ACC100_BYTES_IN_WORD * template_idx;
4565                 acc100_reg_write(d, address, value);
4566         }
4567         /* 5GUL */
4568         numQqsAcc += numQgs;
4569         numQgs  = conf->q_ul_5g.num_qgroups;
4570         value = 0;
4571         int numEngines = 0;
4572         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4573                 value |= (1 << qg_idx);
4574         for (template_idx = ACC100_SIG_UL_5G;
4575                         template_idx <= ACC100_SIG_UL_5G_LAST;
4576                         template_idx++) {
4577                 /* Check engine power-on status */
4578                 address = HwPfFecUl5gIbDebugReg +
4579                                 ACC100_ENGINE_OFFSET * template_idx;
4580                 status = (acc100_reg_read(d, address) >> 4) & 0xF;
4581                 address = HWPfQmgrGrpTmplateReg4Indx
4582                                 + ACC100_BYTES_IN_WORD * template_idx;
4583                 if (status == 1) {
4584                         acc100_reg_write(d, address, value);
4585                         numEngines++;
4586                 } else
4587                         acc100_reg_write(d, address, 0);
4588 #if RTE_ACC100_SINGLE_FEC == 1
4589                 value = 0;
4590 #endif
4591         }
4592         printf("Number of 5GUL engines %d\n", numEngines);
4593         /* 4GDL */
4594         numQqsAcc += numQgs;
4595         numQgs  = conf->q_dl_4g.num_qgroups;
4596         value = 0;
4597         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4598                 value |= (1 << qg_idx);
4599         for (template_idx = ACC100_SIG_DL_4G;
4600                         template_idx <= ACC100_SIG_DL_4G_LAST;
4601                         template_idx++) {
4602                 address = HWPfQmgrGrpTmplateReg4Indx
4603                                 + ACC100_BYTES_IN_WORD * template_idx;
4604                 acc100_reg_write(d, address, value);
4605 #if RTE_ACC100_SINGLE_FEC == 1
4606                         value = 0;
4607 #endif
4608         }
4609         /* 5GDL */
4610         numQqsAcc += numQgs;
4611         numQgs  = conf->q_dl_5g.num_qgroups;
4612         value = 0;
4613         for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4614                 value |= (1 << qg_idx);
4615         for (template_idx = ACC100_SIG_DL_5G;
4616                         template_idx <= ACC100_SIG_DL_5G_LAST;
4617                         template_idx++) {
4618                 address = HWPfQmgrGrpTmplateReg4Indx
4619                                 + ACC100_BYTES_IN_WORD * template_idx;
4620                 acc100_reg_write(d, address, value);
4621 #if RTE_ACC100_SINGLE_FEC == 1
4622                 value = 0;
4623 #endif
4624         }
4625
4626         /* Queue Group Function mapping */
4627         int qman_func_id[5] = {0, 2, 1, 3, 4};
4628         address = HWPfQmgrGrpFunction0;
4629         value = 0;
4630         for (qg_idx = 0; qg_idx < 8; qg_idx++) {
4631                 acc = accFromQgid(qg_idx, conf);
4632                 value |= qman_func_id[acc]<<(qg_idx * 4);
4633         }
4634         acc100_reg_write(d, address, value);
4635
4636         /* Configuration of the Arbitration QGroup depth to 1 */
4637         for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4638                 address = HWPfQmgrArbQDepthGrp +
4639                 ACC100_BYTES_IN_WORD * qg_idx;
4640                 value = 0;
4641                 acc100_reg_write(d, address, value);
4642         }
4643
4644         /* Enabling AQueues through the Queue hierarchy*/
4645         for (vf_idx = 0; vf_idx < ACC100_NUM_VFS; vf_idx++) {
4646                 for (qg_idx = 0; qg_idx < ACC100_NUM_QGRPS; qg_idx++) {
4647                         value = 0;
4648                         if (vf_idx < conf->num_vf_bundles &&
4649                                         qg_idx < totalQgs)
4650                                 value = (1 << aqNum(qg_idx, conf)) - 1;
4651                         address = HWPfQmgrAqEnableVf
4652                                         + vf_idx * ACC100_BYTES_IN_WORD;
4653                         value += (qg_idx << 16);
4654                         acc100_reg_write(d, address, value);
4655                 }
4656         }
4657
4658         /* This pointer to ARAM (256kB) is shifted by 2 (4B per register) */
4659         uint32_t aram_address = 0;
4660         for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4661                 for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
4662                         address = HWPfQmgrVfBaseAddr + vf_idx
4663                                         * ACC100_BYTES_IN_WORD + qg_idx
4664                                         * ACC100_BYTES_IN_WORD * 64;
4665                         value = aram_address;
4666                         acc100_reg_write(d, address, value);
4667                         /* Offset ARAM Address for next memory bank
4668                          * - increment of 4B
4669                          */
4670                         aram_address += aqNum(qg_idx, conf) *
4671                                         (1 << aqDepth(qg_idx, conf));
4672                 }
4673         }
4674
4675         if (aram_address > ACC100_WORDS_IN_ARAM_SIZE) {
4676                 rte_bbdev_log(ERR, "ARAM Configuration not fitting %d %d\n",
4677                                 aram_address, ACC100_WORDS_IN_ARAM_SIZE);
4678                 return -EINVAL;
4679         }
4680
4681         /* ==== HI Configuration ==== */
4682
4683         /* Prevent Block on Transmit Error */
4684         address = HWPfHiBlockTransmitOnErrorEn;
4685         value = 0;
4686         acc100_reg_write(d, address, value);
4687         /* Prevents to drop MSI */
4688         address = HWPfHiMsiDropEnableReg;
4689         value = 0;
4690         acc100_reg_write(d, address, value);
4691         /* Set the PF Mode register */
4692         address = HWPfHiPfMode;
4693         value = (conf->pf_mode_en) ? ACC100_PF_VAL : 0;
4694         acc100_reg_write(d, address, value);
4695         /* Enable Error Detection in HW */
4696         address = HWPfDmaErrorDetectionEn;
4697         value = 0x3D7;
4698         acc100_reg_write(d, address, value);
4699
4700         /* QoS overflow init */
4701         value = 1;
4702         address = HWPfQosmonAEvalOverflow0;
4703         acc100_reg_write(d, address, value);
4704         address = HWPfQosmonBEvalOverflow0;
4705         acc100_reg_write(d, address, value);
4706
4707         /* HARQ DDR Configuration */
4708         unsigned int ddrSizeInMb = 512; /* Fixed to 512 MB per VF for now */
4709         for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
4710                 address = HWPfDmaVfDdrBaseRw + vf_idx
4711                                 * 0x10;
4712                 value = ((vf_idx * (ddrSizeInMb / 64)) << 16) +
4713                                 (ddrSizeInMb - 1);
4714                 acc100_reg_write(d, address, value);
4715         }
4716         usleep(ACC100_LONG_WAIT);
4717
4718         /* Workaround in case some 5GUL engines are in an unexpected state */
4719         if (numEngines < (ACC100_SIG_UL_5G_LAST + 1))
4720                 poweron_cleanup(bbdev, d, conf);
4721
4722         rte_bbdev_log_debug("PF Tip configuration complete for %s", dev_name);
4723         return 0;
4724 }