baseband/turbo_sw: support FlexRAN 1.4.0
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12
13 #include <rte_bbdev.h>
14 #include <rte_bbdev_pmd.h>
15
16 #include <phy_turbo.h>
17 #include <phy_crc.h>
18 #include <phy_rate_match.h>
19 #include <divide.h>
20
21 #define DRIVER_NAME turbo_sw
22
23 /* Turbo SW PMD logging ID */
24 static int bbdev_turbo_sw_logtype;
25
26 /* Helper macro for logging */
27 #define rte_bbdev_log(level, fmt, ...) \
28         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
29                 ##__VA_ARGS__)
30
31 #define rte_bbdev_log_debug(fmt, ...) \
32         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
33                 ##__VA_ARGS__)
34
35 /* Number of columns in sub-block interleaver (36.212, section 5.1.4.1.1) */
36 #define C_SUBBLOCK (32)
37 #define MAX_TB_SIZE (391656)
38 #define MAX_CB_SIZE (6144)
39 #define MAX_KW (18528)
40
41 /* private data structure */
42 struct bbdev_private {
43         unsigned int max_nb_queues;  /**< Max number of queues */
44 };
45
46 /*  Initialisation params structure that can be used by Turbo SW driver */
47 struct turbo_sw_params {
48         int socket_id;  /*< Turbo SW device socket */
49         uint16_t queues_num;  /*< Turbo SW device queues number */
50 };
51
52 /* Accecptable params for Turbo SW devices */
53 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
54 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
55
56 static const char * const turbo_sw_valid_params[] = {
57         TURBO_SW_MAX_NB_QUEUES_ARG,
58         TURBO_SW_SOCKET_ID_ARG
59 };
60
61 /* queue */
62 struct turbo_sw_queue {
63         /* Ring for processed (encoded/decoded) operations which are ready to
64          * be dequeued.
65          */
66         struct rte_ring *processed_pkts;
67         /* Stores input for turbo encoder (used when CRC attachment is
68          * performed
69          */
70         uint8_t *enc_in;
71         /* Stores output from turbo encoder */
72         uint8_t *enc_out;
73         /* Alpha gamma buf for bblib_turbo_decoder() function */
74         int8_t *ag;
75         /* Temp buf for bblib_turbo_decoder() function */
76         uint16_t *code_block;
77         /* Input buf for bblib_rate_dematching_lte() function */
78         uint8_t *deint_input;
79         /* Output buf for bblib_rate_dematching_lte() function */
80         uint8_t *deint_output;
81         /* Output buf for bblib_turbodec_adapter_lte() function */
82         uint8_t *adapter_output;
83         /* Operation type of this queue */
84         enum rte_bbdev_op_type type;
85 } __rte_cache_aligned;
86
87 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
88 static inline int32_t
89 compute_idx(uint16_t k)
90 {
91         int32_t result = 0;
92
93         if (k < 40 || k > MAX_CB_SIZE)
94                 return -1;
95
96         if (k > 2048) {
97                 if ((k - 2048) % 64 != 0)
98                         result = -1;
99
100                 result = 124 + (k - 2048) / 64;
101         } else if (k <= 512) {
102                 if ((k - 40) % 8 != 0)
103                         result = -1;
104
105                 result = (k - 40) / 8 + 1;
106         } else if (k <= 1024) {
107                 if ((k - 512) % 16 != 0)
108                         result = -1;
109
110                 result = 60 + (k - 512) / 16;
111         } else { /* 1024 < k <= 2048 */
112                 if ((k - 1024) % 32 != 0)
113                         result = -1;
114
115                 result = 92 + (k - 1024) / 32;
116         }
117
118         return result;
119 }
120
121 /* Read flag value 0/1 from bitmap */
122 static inline bool
123 check_bit(uint32_t bitmap, uint32_t bitmask)
124 {
125         return bitmap & bitmask;
126 }
127
128 /* Get device info */
129 static void
130 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
131 {
132         struct bbdev_private *internals = dev->data->dev_private;
133
134         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
135                 {
136                         .type = RTE_BBDEV_OP_TURBO_DEC,
137                         .cap.turbo_dec = {
138                                 .capability_flags =
139                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
140                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
141                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
142                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
143                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
144                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
145                                 .num_buffers_hard_out =
146                                                 RTE_BBDEV_MAX_CODE_BLOCKS,
147                                 .num_buffers_soft_out = 0,
148                         }
149                 },
150                 {
151                         .type   = RTE_BBDEV_OP_TURBO_ENC,
152                         .cap.turbo_enc = {
153                                 .capability_flags =
154                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
155                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
156                                                 RTE_BBDEV_TURBO_RATE_MATCH |
157                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
158                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
159                                 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
160                         }
161                 },
162                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
163         };
164
165         static struct rte_bbdev_queue_conf default_queue_conf = {
166                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
167         };
168
169         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
170
171         default_queue_conf.socket = dev->data->socket_id;
172
173         dev_info->driver_name = RTE_STR(DRIVER_NAME);
174         dev_info->max_num_queues = internals->max_nb_queues;
175         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
176         dev_info->hardware_accelerated = false;
177         dev_info->max_queue_priority = 0;
178         dev_info->default_queue_conf = default_queue_conf;
179         dev_info->capabilities = bbdev_capabilities;
180         dev_info->cpu_flag_reqs = &cpu_flag;
181         dev_info->min_alignment = 64;
182
183         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
184 }
185
186 /* Release queue */
187 static int
188 q_release(struct rte_bbdev *dev, uint16_t q_id)
189 {
190         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
191
192         if (q != NULL) {
193                 rte_ring_free(q->processed_pkts);
194                 rte_free(q->enc_out);
195                 rte_free(q->enc_in);
196                 rte_free(q->ag);
197                 rte_free(q->code_block);
198                 rte_free(q->deint_input);
199                 rte_free(q->deint_output);
200                 rte_free(q->adapter_output);
201                 rte_free(q);
202                 dev->data->queues[q_id].queue_private = NULL;
203         }
204
205         rte_bbdev_log_debug("released device queue %u:%u",
206                         dev->data->dev_id, q_id);
207         return 0;
208 }
209
210 /* Setup a queue */
211 static int
212 q_setup(struct rte_bbdev *dev, uint16_t q_id,
213                 const struct rte_bbdev_queue_conf *queue_conf)
214 {
215         int ret;
216         struct turbo_sw_queue *q;
217         char name[RTE_RING_NAMESIZE];
218
219         /* Allocate the queue data structure. */
220         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
221                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
222         if (q == NULL) {
223                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
224                 return -ENOMEM;
225         }
226
227         /* Allocate memory for encoder output. */
228         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u",
229                         dev->data->dev_id, q_id);
230         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
231                 rte_bbdev_log(ERR,
232                                 "Creating queue name for device %u queue %u failed",
233                                 dev->data->dev_id, q_id);
234                 return -ENAMETOOLONG;
235         }
236         q->enc_out = rte_zmalloc_socket(name,
237                         ((MAX_TB_SIZE >> 3) + 3) * sizeof(*q->enc_out) * 3,
238                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
239         if (q->enc_out == NULL) {
240                 rte_bbdev_log(ERR,
241                         "Failed to allocate queue memory for %s", name);
242                 goto free_q;
243         }
244
245         /* Allocate memory for rate matching output. */
246         ret = snprintf(name, RTE_RING_NAMESIZE,
247                         RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id,
248                         q_id);
249         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
250                 rte_bbdev_log(ERR,
251                                 "Creating queue name for device %u queue %u failed",
252                                 dev->data->dev_id, q_id);
253                 return -ENAMETOOLONG;
254         }
255         q->enc_in = rte_zmalloc_socket(name,
256                         (MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
257                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
258         if (q->enc_in == NULL) {
259                 rte_bbdev_log(ERR,
260                         "Failed to allocate queue memory for %s", name);
261                 goto free_q;
262         }
263
264         /* Allocate memory for Aplha Gamma temp buffer. */
265         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
266                         dev->data->dev_id, q_id);
267         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
268                 rte_bbdev_log(ERR,
269                                 "Creating queue name for device %u queue %u failed",
270                                 dev->data->dev_id, q_id);
271                 return -ENAMETOOLONG;
272         }
273         q->ag = rte_zmalloc_socket(name,
274                         MAX_CB_SIZE * 10 * sizeof(*q->ag),
275                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
276         if (q->ag == NULL) {
277                 rte_bbdev_log(ERR,
278                         "Failed to allocate queue memory for %s", name);
279                 goto free_q;
280         }
281
282         /* Allocate memory for code block temp buffer. */
283         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
284                         dev->data->dev_id, q_id);
285         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
286                 rte_bbdev_log(ERR,
287                                 "Creating queue name for device %u queue %u failed",
288                                 dev->data->dev_id, q_id);
289                 return -ENAMETOOLONG;
290         }
291         q->code_block = rte_zmalloc_socket(name,
292                         (6144 >> 3) * sizeof(*q->code_block),
293                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
294         if (q->code_block == NULL) {
295                 rte_bbdev_log(ERR,
296                         "Failed to allocate queue memory for %s", name);
297                 goto free_q;
298         }
299
300         /* Allocate memory for Deinterleaver input. */
301         ret = snprintf(name, RTE_RING_NAMESIZE,
302                         RTE_STR(DRIVER_NAME)"_deint_input%u:%u",
303                         dev->data->dev_id, q_id);
304         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
305                 rte_bbdev_log(ERR,
306                                 "Creating queue name for device %u queue %u failed",
307                                 dev->data->dev_id, q_id);
308                 return -ENAMETOOLONG;
309         }
310         q->deint_input = rte_zmalloc_socket(name,
311                         MAX_KW * sizeof(*q->deint_input),
312                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
313         if (q->deint_input == NULL) {
314                 rte_bbdev_log(ERR,
315                         "Failed to allocate queue memory for %s", name);
316                 goto free_q;
317         }
318
319         /* Allocate memory for Deinterleaver output. */
320         ret = snprintf(name, RTE_RING_NAMESIZE,
321                         RTE_STR(DRIVER_NAME)"_deint_output%u:%u",
322                         dev->data->dev_id, q_id);
323         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
324                 rte_bbdev_log(ERR,
325                                 "Creating queue name for device %u queue %u failed",
326                                 dev->data->dev_id, q_id);
327                 return -ENAMETOOLONG;
328         }
329         q->deint_output = rte_zmalloc_socket(NULL,
330                         MAX_KW * sizeof(*q->deint_output),
331                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
332         if (q->deint_output == NULL) {
333                 rte_bbdev_log(ERR,
334                         "Failed to allocate queue memory for %s", name);
335                 goto free_q;
336         }
337
338         /* Allocate memory for Adapter output. */
339         ret = snprintf(name, RTE_RING_NAMESIZE,
340                         RTE_STR(DRIVER_NAME)"_adapter_output%u:%u",
341                         dev->data->dev_id, q_id);
342         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
343                 rte_bbdev_log(ERR,
344                                 "Creating queue name for device %u queue %u failed",
345                                 dev->data->dev_id, q_id);
346                 return -ENAMETOOLONG;
347         }
348         q->adapter_output = rte_zmalloc_socket(NULL,
349                         MAX_CB_SIZE * 6 * sizeof(*q->adapter_output),
350                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
351         if (q->adapter_output == NULL) {
352                 rte_bbdev_log(ERR,
353                         "Failed to allocate queue memory for %s", name);
354                 goto free_q;
355         }
356
357         /* Create ring for packets awaiting to be dequeued. */
358         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
359                         dev->data->dev_id, q_id);
360         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
361                 rte_bbdev_log(ERR,
362                                 "Creating queue name for device %u queue %u failed",
363                                 dev->data->dev_id, q_id);
364                 return -ENAMETOOLONG;
365         }
366         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
367                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
368         if (q->processed_pkts == NULL) {
369                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
370                 goto free_q;
371         }
372
373         q->type = queue_conf->op_type;
374
375         dev->data->queues[q_id].queue_private = q;
376         rte_bbdev_log_debug("setup device queue %s", name);
377         return 0;
378
379 free_q:
380         rte_ring_free(q->processed_pkts);
381         rte_free(q->enc_out);
382         rte_free(q->enc_in);
383         rte_free(q->ag);
384         rte_free(q->code_block);
385         rte_free(q->deint_input);
386         rte_free(q->deint_output);
387         rte_free(q->adapter_output);
388         rte_free(q);
389         return -EFAULT;
390 }
391
392 static const struct rte_bbdev_ops pmd_ops = {
393         .info_get = info_get,
394         .queue_setup = q_setup,
395         .queue_release = q_release
396 };
397
398 /* Checks if the encoder input buffer is correct.
399  * Returns 0 if it's valid, -1 otherwise.
400  */
401 static inline int
402 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
403                 const uint16_t in_length)
404 {
405         if (k_idx < 0) {
406                 rte_bbdev_log(ERR, "K Index is invalid");
407                 return -1;
408         }
409
410         if (in_length - (k >> 3) < 0) {
411                 rte_bbdev_log(ERR,
412                                 "Mismatch between input length (%u bytes) and K (%u bits)",
413                                 in_length, k);
414                 return -1;
415         }
416
417         if (k > MAX_CB_SIZE) {
418                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
419                                 k, MAX_CB_SIZE);
420                 return -1;
421         }
422
423         return 0;
424 }
425
426 /* Checks if the decoder input buffer is correct.
427  * Returns 0 if it's valid, -1 otherwise.
428  */
429 static inline int
430 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
431 {
432         if (k_idx < 0) {
433                 rte_bbdev_log(ERR, "K index is invalid");
434                 return -1;
435         }
436
437         if (in_length - kw < 0) {
438                 rte_bbdev_log(ERR,
439                                 "Mismatch between input length (%u) and kw (%u)",
440                                 in_length, kw);
441                 return -1;
442         }
443
444         if (kw > MAX_KW) {
445                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
446                                 kw, MAX_KW);
447                 return -1;
448         }
449
450         return 0;
451 }
452
453 static inline void
454 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
455                 uint8_t cb_idx, uint8_t c, uint16_t k, uint16_t ncb,
456                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
457                 uint16_t in_offset, uint16_t out_offset, uint16_t total_left)
458 {
459         int ret;
460         int16_t k_idx;
461         uint16_t m;
462         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
463         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
464         struct bblib_crc_request crc_req;
465         struct bblib_crc_response crc_resp;
466         struct bblib_turbo_encoder_request turbo_req;
467         struct bblib_turbo_encoder_response turbo_resp;
468         struct bblib_rate_match_dl_request rm_req;
469         struct bblib_rate_match_dl_response rm_resp;
470
471         k_idx = compute_idx(k);
472         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
473
474         /* CRC24A (for TB) */
475         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
476                 (enc->code_block_mode == 1)) {
477                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
478                 if (ret != 0) {
479                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
480                         return;
481                 }
482                 /* copy the input to the temporary buffer to be able to extend
483                  * it by 3 CRC bytes
484                  */
485                 rte_memcpy(q->enc_in, in, (k - 24) >> 3);
486                 crc_req.data = in;
487                 crc_req.len = (k - 24) >> 3;
488                 crc_resp.data = q->enc_in;
489                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
490
491                 in = q->enc_in;
492         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
493                 /* CRC24B */
494                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
495                 if (ret != 0) {
496                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
497                         return;
498                 }
499                 /* copy the input to the temporary buffer to be able to extend
500                  * it by 3 CRC bytes
501                  */
502                 rte_memcpy(q->enc_in, in, (k - 24) >> 3);
503                 crc_req.data = in;
504                 crc_req.len = (k - 24) >> 3;
505                 crc_resp.data = q->enc_in;
506                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
507
508                 in = q->enc_in;
509         } else {
510                 ret = is_enc_input_valid(k, k_idx, total_left);
511                 if (ret != 0) {
512                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
513                         return;
514                 }
515         }
516
517         /* Turbo encoder */
518
519         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
520          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
521          * So dst_data's length should be 3*(k/8) + 3 bytes.
522          */
523         out0 = q->enc_out;
524         out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
525         out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
526
527         turbo_req.case_id = k_idx;
528         turbo_req.input_win = in;
529         turbo_req.length = k >> 3;
530         turbo_resp.output_win_0 = out0;
531         turbo_resp.output_win_1 = out1;
532         turbo_resp.output_win_2 = out2;
533         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
534                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
535                 rte_bbdev_log(ERR, "Turbo Encoder failed");
536                 return;
537         }
538
539         /* Rate-matching */
540         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
541                 /* get output data starting address */
542                 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, (e >> 3));
543                 if (rm_out == NULL) {
544                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
545                         rte_bbdev_log(ERR,
546                                         "Too little space in output mbuf");
547                         return;
548                 }
549                 /* rte_bbdev_op_data.offset can be different than the offset
550                  * of the appended bytes
551                  */
552                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
553
554                 /* index of current code block */
555                 rm_req.r = cb_idx;
556                 /* total number of code block */
557                 rm_req.C = c;
558                 /* For DL - 1, UL - 0 */
559                 rm_req.direction = 1;
560                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
561                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
562                  * known we can adjust those parameters
563                  */
564                 rm_req.Nsoft = ncb * rm_req.C;
565                 rm_req.KMIMO = 1;
566                 rm_req.MDL_HARQ = 1;
567                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
568                  * are used for E calculation. As E is already known we can
569                  * adjust those parameters
570                  */
571                 rm_req.NL = e;
572                 rm_req.Qm = 1;
573                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
574
575                 rm_req.rvidx = enc->rv_index;
576                 rm_req.Kidx = k_idx - 1;
577                 rm_req.nLen = k + 4;
578                 rm_req.tin0 = out0;
579                 rm_req.tin1 = out1;
580                 rm_req.tin2 = out2;
581                 rm_resp.output = rm_out;
582                 rm_resp.OutputLen = (e >> 3);
583                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
584                         rm_req.bypass_rvidx = 1;
585                 else
586                         rm_req.bypass_rvidx = 0;
587
588                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
589                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
590                         rte_bbdev_log(ERR, "Rate matching failed");
591                         return;
592                 }
593                 enc->output.length += rm_resp.OutputLen;
594         } else {
595                 /* Rate matching is bypassed */
596
597                 /* Completing last byte of out0 (where 4 tail bits are stored)
598                  * by moving first 4 bits from out1
599                  */
600                 tmp_out = (uint8_t *) --out1;
601                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
602                 tmp_out++;
603                 /* Shifting out1 data by 4 bits to the left */
604                 for (m = 0; m < k >> 3; ++m) {
605                         uint8_t *first = tmp_out;
606                         uint8_t second = *(tmp_out + 1);
607                         *first = (*first << 4) | ((second & 0xF0) >> 4);
608                         tmp_out++;
609                 }
610                 /* Shifting out2 data by 8 bits to the left */
611                 for (m = 0; m < (k >> 3) + 1; ++m) {
612                         *tmp_out = *(tmp_out + 1);
613                         tmp_out++;
614                 }
615                 *tmp_out = 0;
616
617                 /* copy shifted output to turbo_enc entity */
618                 out0 = (uint8_t *)rte_pktmbuf_append(m_out,
619                                 (k >> 3) * 3 + 2);
620                 if (out0 == NULL) {
621                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
622                         rte_bbdev_log(ERR,
623                                         "Too little space in output mbuf");
624                         return;
625                 }
626                 enc->output.length += (k >> 3) * 3 + 2;
627                 /* rte_bbdev_op_data.offset can be different than the
628                  * offset of the appended bytes
629                  */
630                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
631                                 out_offset);
632                 rte_memcpy(out0, q->enc_out, (k >> 3) * 3 + 2);
633         }
634 }
635
636 static inline void
637 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
638 {
639         uint8_t c, r, crc24_bits = 0;
640         uint16_t k, ncb;
641         uint32_t e;
642         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
643         uint16_t in_offset = enc->input.offset;
644         uint16_t out_offset = enc->output.offset;
645         struct rte_mbuf *m_in = enc->input.data;
646         struct rte_mbuf *m_out = enc->output.data;
647         uint16_t total_left = enc->input.length;
648
649         /* Clear op status */
650         op->status = 0;
651
652         if (total_left > MAX_TB_SIZE >> 3) {
653                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
654                                 total_left, MAX_TB_SIZE);
655                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
656                 return;
657         }
658
659         if (m_in == NULL || m_out == NULL) {
660                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
661                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
662                 return;
663         }
664
665         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
666                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
667                 crc24_bits = 24;
668
669         if (enc->code_block_mode == 0) { /* For Transport Block mode */
670                 c = enc->tb_params.c;
671                 r = enc->tb_params.r;
672         } else {/* For Code Block mode */
673                 c = 1;
674                 r = 0;
675         }
676
677         while (total_left > 0 && r < c) {
678                 if (enc->code_block_mode == 0) {
679                         k = (r < enc->tb_params.c_neg) ?
680                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
681                         ncb = (r < enc->tb_params.c_neg) ?
682                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
683                         e = (r < enc->tb_params.cab) ?
684                                 enc->tb_params.ea : enc->tb_params.eb;
685                 } else {
686                         k = enc->cb_params.k;
687                         ncb = enc->cb_params.ncb;
688                         e = enc->cb_params.e;
689                 }
690
691                 process_enc_cb(q, op, r, c, k, ncb, e, m_in,
692                                 m_out, in_offset, out_offset, total_left);
693                 /* Update total_left */
694                 total_left -= (k - crc24_bits) >> 3;
695                 /* Update offsets for next CBs (if exist) */
696                 in_offset += (k - crc24_bits) >> 3;
697                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
698                         out_offset += e >> 3;
699                 else
700                         out_offset += (k >> 3) * 3 + 2;
701                 r++;
702         }
703
704         /* check if all input data was processed */
705         if (total_left != 0) {
706                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
707                 rte_bbdev_log(ERR,
708                                 "Mismatch between mbuf length and included CBs sizes");
709         }
710 }
711
712 static inline uint16_t
713 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
714                 uint16_t nb_ops)
715 {
716         uint16_t i;
717
718         for (i = 0; i < nb_ops; ++i)
719                 enqueue_enc_one_op(q, ops[i]);
720
721         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
722                         NULL);
723 }
724
725 /* Remove the padding bytes from a cyclic buffer.
726  * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
727  * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
728  * The output buffer is a data stream wk with pruned padding bytes. It's length
729  * is 3*D bytes and the order of non-padding bytes is preserved.
730  */
731 static inline void
732 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
733                 uint16_t ncb)
734 {
735         uint32_t in_idx, out_idx, c_idx;
736         const uint32_t d = k + 4;
737         const uint32_t kw = (ncb / 3);
738         const uint32_t nd = kw - d;
739         const uint32_t r_subblock = kw / C_SUBBLOCK;
740         /* Inter-column permutation pattern */
741         const uint32_t P[C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10,
742                         26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19,
743                         11, 27, 7, 23, 15, 31};
744         in_idx = 0;
745         out_idx = 0;
746
747         /* The padding bytes are at the first Nd positions in the first row. */
748         for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
749                 if (P[c_idx] < nd) {
750                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
751                                         r_subblock - 1);
752                         out_idx += r_subblock - 1;
753                 } else {
754                         rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
755                         out_idx += r_subblock;
756                 }
757         }
758
759         /* First and second parity bits sub-blocks are interlaced. */
760         for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
761                         in_idx += 2 * r_subblock, ++c_idx) {
762                 uint32_t second_block_c_idx = P[c_idx];
763                 uint32_t third_block_c_idx = P[c_idx] + 1;
764
765                 if (second_block_c_idx < nd && third_block_c_idx < nd) {
766                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
767                                         2 * r_subblock - 2);
768                         out_idx += 2 * r_subblock - 2;
769                 } else if (second_block_c_idx >= nd &&
770                                 third_block_c_idx >= nd) {
771                         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
772                         out_idx += 2 * r_subblock;
773                 } else if (second_block_c_idx < nd) {
774                         out[out_idx++] = in[in_idx];
775                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
776                                         2 * r_subblock - 2);
777                         out_idx += 2 * r_subblock - 2;
778                 } else {
779                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
780                                         2 * r_subblock - 1);
781                         out_idx += 2 * r_subblock - 1;
782                 }
783         }
784
785         /* Last interlaced row is different - its last byte is the only padding
786          * byte. We can have from 2 up to 26 padding bytes (Nd) per sub-block.
787          * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
788          * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
789          * (moving to another column). 2nd parity sub-block uses the same
790          * inter-column permutation pattern as the systematic and 1st parity
791          * sub-blocks but it adds '1' to the resulting index and calculates the
792          * modulus of the result and Kw. Last column is mapped to itself (id 31)
793          * so the first byte taken from the 2nd parity sub-block will be the
794          * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
795          * last byte will be the first byte from the sub-block:
796          * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't  be smaller
797          * than 2 so we know that bytes with ids 0 and 1 must be the padding
798          * bytes. The bytes from the 1st parity sub-block are the bytes from the
799          * 31st column - Nd can't be greater than 26 so we are sure that there
800          * are no padding bytes in 31st column.
801          */
802         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
803 }
804
805 static inline void
806 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
807                 uint16_t ncb)
808 {
809         uint16_t d = k + 4;
810         uint16_t kpi = ncb / 3;
811         uint16_t nd = kpi - d;
812
813         rte_memcpy(&out[nd], in, d);
814         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
815         rte_memcpy(&out[nd + 2 * (kpi + 64)], &in[2 * kpi], d);
816 }
817
818 static inline void
819 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
820                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
821                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
822                 bool check_crc_24b, uint16_t total_left)
823 {
824         int ret;
825         int32_t k_idx;
826         int32_t iter_cnt;
827         uint8_t *in, *out, *adapter_input;
828         int32_t ncb, ncb_without_null;
829         struct bblib_turbo_adapter_ul_response adapter_resp;
830         struct bblib_turbo_adapter_ul_request adapter_req;
831         struct bblib_turbo_decoder_request turbo_req;
832         struct bblib_turbo_decoder_response turbo_resp;
833         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
834
835         k_idx = compute_idx(k);
836
837         ret = is_dec_input_valid(k_idx, kw, total_left);
838         if (ret != 0) {
839                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
840                 return;
841         }
842
843         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
844         ncb = kw;
845         ncb_without_null = (k + 4) * 3;
846
847         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
848                 struct bblib_deinterleave_ul_request deint_req;
849                 struct bblib_deinterleave_ul_response deint_resp;
850
851                 /* SW decoder accepts only a circular buffer without NULL bytes
852                  * so the input needs to be converted.
853                  */
854                 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
855
856                 deint_req.pharqbuffer = q->deint_input;
857                 deint_req.ncb = ncb_without_null;
858                 deint_resp.pinteleavebuffer = q->deint_output;
859                 bblib_deinterleave_ul(&deint_req, &deint_resp);
860         } else
861                 move_padding_bytes(in, q->deint_output, k, ncb);
862
863         adapter_input = q->deint_output;
864
865         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
866                 adapter_req.isinverted = 1;
867         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
868                 adapter_req.isinverted = 0;
869         else {
870                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
871                 rte_bbdev_log(ERR, "LLR format wasn't specified");
872                 return;
873         }
874
875         adapter_req.ncb = ncb_without_null;
876         adapter_req.pinteleavebuffer = adapter_input;
877         adapter_resp.pharqout = q->adapter_output;
878         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
879
880         out = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3));
881         if (out == NULL) {
882                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
883                 rte_bbdev_log(ERR, "Too little space in output mbuf");
884                 return;
885         }
886         /* rte_bbdev_op_data.offset can be different than the offset of the
887          * appended bytes
888          */
889         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
890         if (check_crc_24b)
891                 turbo_req.c = c + 1;
892         else
893                 turbo_req.c = c;
894         turbo_req.input = (int8_t *)q->adapter_output;
895         turbo_req.k = k;
896         turbo_req.k_idx = k_idx;
897         turbo_req.max_iter_num = dec->iter_max;
898         turbo_resp.ag_buf = q->ag;
899         turbo_resp.cb_buf = q->code_block;
900         turbo_resp.output = out;
901         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
902         dec->hard_output.length += (k >> 3);
903
904         if (iter_cnt > 0) {
905                 /* Temporary solution for returned iter_count from SDK */
906                 iter_cnt = (iter_cnt - 1) / 2;
907                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
908         } else {
909                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
910                 rte_bbdev_log(ERR, "Turbo Decoder failed");
911                 return;
912         }
913 }
914
915 static inline void
916 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
917 {
918         uint8_t c, r = 0;
919         uint16_t kw, k = 0;
920         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
921         struct rte_mbuf *m_in = dec->input.data;
922         struct rte_mbuf *m_out = dec->hard_output.data;
923         uint16_t in_offset = dec->input.offset;
924         uint16_t total_left = dec->input.length;
925         uint16_t out_offset = dec->hard_output.offset;
926
927         /* Clear op status */
928         op->status = 0;
929
930         if (m_in == NULL || m_out == NULL) {
931                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
932                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
933                 return;
934         }
935
936         if (dec->code_block_mode == 0) { /* For Transport Block mode */
937                 c = dec->tb_params.c;
938         } else { /* For Code Block mode */
939                 k = dec->cb_params.k;
940                 c = 1;
941         }
942
943         while (total_left > 0) {
944                 if (dec->code_block_mode == 0)
945                         k = (r < dec->tb_params.c_neg) ?
946                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
947
948                 /* Calculates circular buffer size (Kw).
949                  * According to 3gpp 36.212 section 5.1.4.2
950                  *   Kw = 3 * Kpi,
951                  * where:
952                  *   Kpi = nCol * nRow
953                  * where nCol is 32 and nRow can be calculated from:
954                  *   D =< nCol * nRow
955                  * where D is the size of each output from turbo encoder block
956                  * (k + 4).
957                  */
958                 kw = RTE_ALIGN_CEIL(k + 4, C_SUBBLOCK) * 3;
959
960                 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
961                                 out_offset, check_bit(dec->op_flags,
962                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), total_left);
963                 /* As a result of decoding we get Code Block with included
964                  * decoded CRC24 at the end of Code Block. Type of CRC24 is
965                  * specified by flag.
966                  */
967
968                 /* Update total_left */
969                 total_left -= kw;
970                 /* Update offsets for next CBs (if exist) */
971                 in_offset += kw;
972                 out_offset += (k >> 3);
973                 r++;
974         }
975         if (total_left != 0) {
976                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
977                 rte_bbdev_log(ERR,
978                                 "Mismatch between mbuf length and included Circular buffer sizes");
979         }
980 }
981
982 static inline uint16_t
983 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
984                 uint16_t nb_ops)
985 {
986         uint16_t i;
987
988         for (i = 0; i < nb_ops; ++i)
989                 enqueue_dec_one_op(q, ops[i]);
990
991         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
992                         NULL);
993 }
994
995 /* Enqueue burst */
996 static uint16_t
997 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
998                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
999 {
1000         void *queue = q_data->queue_private;
1001         struct turbo_sw_queue *q = queue;
1002         uint16_t nb_enqueued = 0;
1003
1004         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops);
1005
1006         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1007         q_data->queue_stats.enqueued_count += nb_enqueued;
1008
1009         return nb_enqueued;
1010 }
1011
1012 /* Enqueue burst */
1013 static uint16_t
1014 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1015                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1016 {
1017         void *queue = q_data->queue_private;
1018         struct turbo_sw_queue *q = queue;
1019         uint16_t nb_enqueued = 0;
1020
1021         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
1022
1023         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1024         q_data->queue_stats.enqueued_count += nb_enqueued;
1025
1026         return nb_enqueued;
1027 }
1028
1029 /* Dequeue decode burst */
1030 static uint16_t
1031 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1032                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1033 {
1034         struct turbo_sw_queue *q = q_data->queue_private;
1035         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1036                         (void **)ops, nb_ops, NULL);
1037         q_data->queue_stats.dequeued_count += nb_dequeued;
1038
1039         return nb_dequeued;
1040 }
1041
1042 /* Dequeue encode burst */
1043 static uint16_t
1044 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1045                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1046 {
1047         struct turbo_sw_queue *q = q_data->queue_private;
1048         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1049                         (void **)ops, nb_ops, NULL);
1050         q_data->queue_stats.dequeued_count += nb_dequeued;
1051
1052         return nb_dequeued;
1053 }
1054
1055 /* Parse 16bit integer from string argument */
1056 static inline int
1057 parse_u16_arg(const char *key, const char *value, void *extra_args)
1058 {
1059         uint16_t *u16 = extra_args;
1060         unsigned int long result;
1061
1062         if ((value == NULL) || (extra_args == NULL))
1063                 return -EINVAL;
1064         errno = 0;
1065         result = strtoul(value, NULL, 0);
1066         if ((result >= (1 << 16)) || (errno != 0)) {
1067                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1068                 return -ERANGE;
1069         }
1070         *u16 = (uint16_t)result;
1071         return 0;
1072 }
1073
1074 /* Parse parameters used to create device */
1075 static int
1076 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1077 {
1078         struct rte_kvargs *kvlist = NULL;
1079         int ret = 0;
1080
1081         if (params == NULL)
1082                 return -EINVAL;
1083         if (input_args) {
1084                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1085                 if (kvlist == NULL)
1086                         return -EFAULT;
1087
1088                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1089                                         &parse_u16_arg, &params->queues_num);
1090                 if (ret < 0)
1091                         goto exit;
1092
1093                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1094                                         &parse_u16_arg, &params->socket_id);
1095                 if (ret < 0)
1096                         goto exit;
1097
1098                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1099                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1100                                         RTE_MAX_NUMA_NODES);
1101                         goto exit;
1102                 }
1103         }
1104
1105 exit:
1106         if (kvlist)
1107                 rte_kvargs_free(kvlist);
1108         return ret;
1109 }
1110
1111 /* Create device */
1112 static int
1113 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1114                 struct turbo_sw_params *init_params)
1115 {
1116         struct rte_bbdev *bbdev;
1117         const char *name = rte_vdev_device_name(vdev);
1118
1119         bbdev = rte_bbdev_allocate(name);
1120         if (bbdev == NULL)
1121                 return -ENODEV;
1122
1123         bbdev->data->dev_private = rte_zmalloc_socket(name,
1124                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1125                         init_params->socket_id);
1126         if (bbdev->data->dev_private == NULL) {
1127                 rte_bbdev_release(bbdev);
1128                 return -ENOMEM;
1129         }
1130
1131         bbdev->dev_ops = &pmd_ops;
1132         bbdev->device = &vdev->device;
1133         bbdev->data->socket_id = init_params->socket_id;
1134         bbdev->intr_handle = NULL;
1135
1136         /* register rx/tx burst functions for data path */
1137         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1138         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1139         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1140         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1141         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1142                         init_params->queues_num;
1143
1144         return 0;
1145 }
1146
1147 /* Initialise device */
1148 static int
1149 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1150 {
1151         struct turbo_sw_params init_params = {
1152                 rte_socket_id(),
1153                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1154         };
1155         const char *name;
1156         const char *input_args;
1157
1158         if (vdev == NULL)
1159                 return -EINVAL;
1160
1161         name = rte_vdev_device_name(vdev);
1162         if (name == NULL)
1163                 return -EINVAL;
1164         input_args = rte_vdev_device_args(vdev);
1165         parse_turbo_sw_params(&init_params, input_args);
1166
1167         rte_bbdev_log_debug(
1168                         "Initialising %s on NUMA node %d with max queues: %d\n",
1169                         name, init_params.socket_id, init_params.queues_num);
1170
1171         return turbo_sw_bbdev_create(vdev, &init_params);
1172 }
1173
1174 /* Uninitialise device */
1175 static int
1176 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1177 {
1178         struct rte_bbdev *bbdev;
1179         const char *name;
1180
1181         if (vdev == NULL)
1182                 return -EINVAL;
1183
1184         name = rte_vdev_device_name(vdev);
1185         if (name == NULL)
1186                 return -EINVAL;
1187
1188         bbdev = rte_bbdev_get_named_dev(name);
1189         if (bbdev == NULL)
1190                 return -EINVAL;
1191
1192         rte_free(bbdev->data->dev_private);
1193
1194         return rte_bbdev_release(bbdev);
1195 }
1196
1197 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1198         .probe = turbo_sw_bbdev_probe,
1199         .remove = turbo_sw_bbdev_remove
1200 };
1201
1202 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1203 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1204         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1205         TURBO_SW_SOCKET_ID_ARG"=<int>");
1206
1207 RTE_INIT(null_bbdev_init_log);
1208 static void
1209 null_bbdev_init_log(void)
1210 {
1211         bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1212         if (bbdev_turbo_sw_logtype >= 0)
1213                 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1214 }