baseband/turbo_sw: move macros to bbdev library
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12
13 #include <rte_bbdev.h>
14 #include <rte_bbdev_pmd.h>
15
16 #include <phy_turbo.h>
17 #include <phy_crc.h>
18 #include <phy_rate_match.h>
19 #include <divide.h>
20
21 #define DRIVER_NAME turbo_sw
22
23 /* Turbo SW PMD logging ID */
24 static int bbdev_turbo_sw_logtype;
25
26 /* Helper macro for logging */
27 #define rte_bbdev_log(level, fmt, ...) \
28         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
29                 ##__VA_ARGS__)
30
31 #define rte_bbdev_log_debug(fmt, ...) \
32         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
33                 ##__VA_ARGS__)
34
35 /* private data structure */
36 struct bbdev_private {
37         unsigned int max_nb_queues;  /**< Max number of queues */
38 };
39
40 /*  Initialisation params structure that can be used by Turbo SW driver */
41 struct turbo_sw_params {
42         int socket_id;  /*< Turbo SW device socket */
43         uint16_t queues_num;  /*< Turbo SW device queues number */
44 };
45
46 /* Accecptable params for Turbo SW devices */
47 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
48 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
49
50 static const char * const turbo_sw_valid_params[] = {
51         TURBO_SW_MAX_NB_QUEUES_ARG,
52         TURBO_SW_SOCKET_ID_ARG
53 };
54
55 /* queue */
56 struct turbo_sw_queue {
57         /* Ring for processed (encoded/decoded) operations which are ready to
58          * be dequeued.
59          */
60         struct rte_ring *processed_pkts;
61         /* Stores input for turbo encoder (used when CRC attachment is
62          * performed
63          */
64         uint8_t *enc_in;
65         /* Stores output from turbo encoder */
66         uint8_t *enc_out;
67         /* Alpha gamma buf for bblib_turbo_decoder() function */
68         int8_t *ag;
69         /* Temp buf for bblib_turbo_decoder() function */
70         uint16_t *code_block;
71         /* Input buf for bblib_rate_dematching_lte() function */
72         uint8_t *deint_input;
73         /* Output buf for bblib_rate_dematching_lte() function */
74         uint8_t *deint_output;
75         /* Output buf for bblib_turbodec_adapter_lte() function */
76         uint8_t *adapter_output;
77         /* Operation type of this queue */
78         enum rte_bbdev_op_type type;
79 } __rte_cache_aligned;
80
81 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
82 static inline int32_t
83 compute_idx(uint16_t k)
84 {
85         int32_t result = 0;
86
87         if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
88                 return -1;
89
90         if (k > 2048) {
91                 if ((k - 2048) % 64 != 0)
92                         result = -1;
93
94                 result = 124 + (k - 2048) / 64;
95         } else if (k <= 512) {
96                 if ((k - 40) % 8 != 0)
97                         result = -1;
98
99                 result = (k - 40) / 8 + 1;
100         } else if (k <= 1024) {
101                 if ((k - 512) % 16 != 0)
102                         result = -1;
103
104                 result = 60 + (k - 512) / 16;
105         } else { /* 1024 < k <= 2048 */
106                 if ((k - 1024) % 32 != 0)
107                         result = -1;
108
109                 result = 92 + (k - 1024) / 32;
110         }
111
112         return result;
113 }
114
115 /* Read flag value 0/1 from bitmap */
116 static inline bool
117 check_bit(uint32_t bitmap, uint32_t bitmask)
118 {
119         return bitmap & bitmask;
120 }
121
122 /* Get device info */
123 static void
124 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
125 {
126         struct bbdev_private *internals = dev->data->dev_private;
127
128         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
129                 {
130                         .type = RTE_BBDEV_OP_TURBO_DEC,
131                         .cap.turbo_dec = {
132                                 .capability_flags =
133                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
134                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
135                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
136                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
137                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
138                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
139                                 .num_buffers_hard_out =
140                                                 RTE_BBDEV_MAX_CODE_BLOCKS,
141                                 .num_buffers_soft_out = 0,
142                         }
143                 },
144                 {
145                         .type   = RTE_BBDEV_OP_TURBO_ENC,
146                         .cap.turbo_enc = {
147                                 .capability_flags =
148                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
149                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
150                                                 RTE_BBDEV_TURBO_RATE_MATCH |
151                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
152                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
153                                 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
154                         }
155                 },
156                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
157         };
158
159         static struct rte_bbdev_queue_conf default_queue_conf = {
160                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
161         };
162
163         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
164
165         default_queue_conf.socket = dev->data->socket_id;
166
167         dev_info->driver_name = RTE_STR(DRIVER_NAME);
168         dev_info->max_num_queues = internals->max_nb_queues;
169         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
170         dev_info->hardware_accelerated = false;
171         dev_info->max_queue_priority = 0;
172         dev_info->default_queue_conf = default_queue_conf;
173         dev_info->capabilities = bbdev_capabilities;
174         dev_info->cpu_flag_reqs = &cpu_flag;
175         dev_info->min_alignment = 64;
176
177         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
178 }
179
180 /* Release queue */
181 static int
182 q_release(struct rte_bbdev *dev, uint16_t q_id)
183 {
184         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
185
186         if (q != NULL) {
187                 rte_ring_free(q->processed_pkts);
188                 rte_free(q->enc_out);
189                 rte_free(q->enc_in);
190                 rte_free(q->ag);
191                 rte_free(q->code_block);
192                 rte_free(q->deint_input);
193                 rte_free(q->deint_output);
194                 rte_free(q->adapter_output);
195                 rte_free(q);
196                 dev->data->queues[q_id].queue_private = NULL;
197         }
198
199         rte_bbdev_log_debug("released device queue %u:%u",
200                         dev->data->dev_id, q_id);
201         return 0;
202 }
203
204 /* Setup a queue */
205 static int
206 q_setup(struct rte_bbdev *dev, uint16_t q_id,
207                 const struct rte_bbdev_queue_conf *queue_conf)
208 {
209         int ret;
210         struct turbo_sw_queue *q;
211         char name[RTE_RING_NAMESIZE];
212
213         /* Allocate the queue data structure. */
214         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
215                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
216         if (q == NULL) {
217                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
218                 return -ENOMEM;
219         }
220
221         /* Allocate memory for encoder output. */
222         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u",
223                         dev->data->dev_id, q_id);
224         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
225                 rte_bbdev_log(ERR,
226                                 "Creating queue name for device %u queue %u failed",
227                                 dev->data->dev_id, q_id);
228                 return -ENAMETOOLONG;
229         }
230         q->enc_out = rte_zmalloc_socket(name,
231                         ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
232                         sizeof(*q->enc_out) * 3,
233                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
234         if (q->enc_out == NULL) {
235                 rte_bbdev_log(ERR,
236                         "Failed to allocate queue memory for %s", name);
237                 goto free_q;
238         }
239
240         /* Allocate memory for rate matching output. */
241         ret = snprintf(name, RTE_RING_NAMESIZE,
242                         RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id,
243                         q_id);
244         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
245                 rte_bbdev_log(ERR,
246                                 "Creating queue name for device %u queue %u failed",
247                                 dev->data->dev_id, q_id);
248                 return -ENAMETOOLONG;
249         }
250         q->enc_in = rte_zmalloc_socket(name,
251                         (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
252                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
253         if (q->enc_in == NULL) {
254                 rte_bbdev_log(ERR,
255                         "Failed to allocate queue memory for %s", name);
256                 goto free_q;
257         }
258
259         /* Allocate memory for Aplha Gamma temp buffer. */
260         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
261                         dev->data->dev_id, q_id);
262         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
263                 rte_bbdev_log(ERR,
264                                 "Creating queue name for device %u queue %u failed",
265                                 dev->data->dev_id, q_id);
266                 return -ENAMETOOLONG;
267         }
268         q->ag = rte_zmalloc_socket(name,
269                         RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
270                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
271         if (q->ag == NULL) {
272                 rte_bbdev_log(ERR,
273                         "Failed to allocate queue memory for %s", name);
274                 goto free_q;
275         }
276
277         /* Allocate memory for code block temp buffer. */
278         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
279                         dev->data->dev_id, q_id);
280         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
281                 rte_bbdev_log(ERR,
282                                 "Creating queue name for device %u queue %u failed",
283                                 dev->data->dev_id, q_id);
284                 return -ENAMETOOLONG;
285         }
286         q->code_block = rte_zmalloc_socket(name,
287                         (6144 >> 3) * sizeof(*q->code_block),
288                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
289         if (q->code_block == NULL) {
290                 rte_bbdev_log(ERR,
291                         "Failed to allocate queue memory for %s", name);
292                 goto free_q;
293         }
294
295         /* Allocate memory for Deinterleaver input. */
296         ret = snprintf(name, RTE_RING_NAMESIZE,
297                         RTE_STR(DRIVER_NAME)"_deint_input%u:%u",
298                         dev->data->dev_id, q_id);
299         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
300                 rte_bbdev_log(ERR,
301                                 "Creating queue name for device %u queue %u failed",
302                                 dev->data->dev_id, q_id);
303                 return -ENAMETOOLONG;
304         }
305         q->deint_input = rte_zmalloc_socket(name,
306                         RTE_BBDEV_MAX_KW * sizeof(*q->deint_input),
307                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
308         if (q->deint_input == NULL) {
309                 rte_bbdev_log(ERR,
310                         "Failed to allocate queue memory for %s", name);
311                 goto free_q;
312         }
313
314         /* Allocate memory for Deinterleaver output. */
315         ret = snprintf(name, RTE_RING_NAMESIZE,
316                         RTE_STR(DRIVER_NAME)"_deint_output%u:%u",
317                         dev->data->dev_id, q_id);
318         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
319                 rte_bbdev_log(ERR,
320                                 "Creating queue name for device %u queue %u failed",
321                                 dev->data->dev_id, q_id);
322                 return -ENAMETOOLONG;
323         }
324         q->deint_output = rte_zmalloc_socket(NULL,
325                         RTE_BBDEV_MAX_KW * sizeof(*q->deint_output),
326                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
327         if (q->deint_output == NULL) {
328                 rte_bbdev_log(ERR,
329                         "Failed to allocate queue memory for %s", name);
330                 goto free_q;
331         }
332
333         /* Allocate memory for Adapter output. */
334         ret = snprintf(name, RTE_RING_NAMESIZE,
335                         RTE_STR(DRIVER_NAME)"_adapter_output%u:%u",
336                         dev->data->dev_id, q_id);
337         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
338                 rte_bbdev_log(ERR,
339                                 "Creating queue name for device %u queue %u failed",
340                                 dev->data->dev_id, q_id);
341                 return -ENAMETOOLONG;
342         }
343         q->adapter_output = rte_zmalloc_socket(NULL,
344                         RTE_BBDEV_MAX_CB_SIZE * 6 * sizeof(*q->adapter_output),
345                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
346         if (q->adapter_output == NULL) {
347                 rte_bbdev_log(ERR,
348                         "Failed to allocate queue memory for %s", name);
349                 goto free_q;
350         }
351
352         /* Create ring for packets awaiting to be dequeued. */
353         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
354                         dev->data->dev_id, q_id);
355         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
356                 rte_bbdev_log(ERR,
357                                 "Creating queue name for device %u queue %u failed",
358                                 dev->data->dev_id, q_id);
359                 return -ENAMETOOLONG;
360         }
361         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
362                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
363         if (q->processed_pkts == NULL) {
364                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
365                 goto free_q;
366         }
367
368         q->type = queue_conf->op_type;
369
370         dev->data->queues[q_id].queue_private = q;
371         rte_bbdev_log_debug("setup device queue %s", name);
372         return 0;
373
374 free_q:
375         rte_ring_free(q->processed_pkts);
376         rte_free(q->enc_out);
377         rte_free(q->enc_in);
378         rte_free(q->ag);
379         rte_free(q->code_block);
380         rte_free(q->deint_input);
381         rte_free(q->deint_output);
382         rte_free(q->adapter_output);
383         rte_free(q);
384         return -EFAULT;
385 }
386
387 static const struct rte_bbdev_ops pmd_ops = {
388         .info_get = info_get,
389         .queue_setup = q_setup,
390         .queue_release = q_release
391 };
392
393 /* Checks if the encoder input buffer is correct.
394  * Returns 0 if it's valid, -1 otherwise.
395  */
396 static inline int
397 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
398                 const uint16_t in_length)
399 {
400         if (k_idx < 0) {
401                 rte_bbdev_log(ERR, "K Index is invalid");
402                 return -1;
403         }
404
405         if (in_length - (k >> 3) < 0) {
406                 rte_bbdev_log(ERR,
407                                 "Mismatch between input length (%u bytes) and K (%u bits)",
408                                 in_length, k);
409                 return -1;
410         }
411
412         if (k > RTE_BBDEV_MAX_CB_SIZE) {
413                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
414                                 k, RTE_BBDEV_MAX_CB_SIZE);
415                 return -1;
416         }
417
418         return 0;
419 }
420
421 /* Checks if the decoder input buffer is correct.
422  * Returns 0 if it's valid, -1 otherwise.
423  */
424 static inline int
425 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
426 {
427         if (k_idx < 0) {
428                 rte_bbdev_log(ERR, "K index is invalid");
429                 return -1;
430         }
431
432         if (in_length - kw < 0) {
433                 rte_bbdev_log(ERR,
434                                 "Mismatch between input length (%u) and kw (%u)",
435                                 in_length, kw);
436                 return -1;
437         }
438
439         if (kw > RTE_BBDEV_MAX_KW) {
440                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
441                                 kw, RTE_BBDEV_MAX_KW);
442                 return -1;
443         }
444
445         return 0;
446 }
447
448 static inline void
449 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
450                 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
451                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
452                 uint16_t in_offset, uint16_t out_offset, uint16_t total_left)
453 {
454         int ret;
455         int16_t k_idx;
456         uint16_t m;
457         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
458         uint64_t first_3_bytes = 0;
459         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
460         struct bblib_crc_request crc_req;
461         struct bblib_crc_response crc_resp;
462         struct bblib_turbo_encoder_request turbo_req;
463         struct bblib_turbo_encoder_response turbo_resp;
464         struct bblib_rate_match_dl_request rm_req;
465         struct bblib_rate_match_dl_response rm_resp;
466
467         k_idx = compute_idx(k);
468         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
469
470         /* CRC24A (for TB) */
471         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
472                 (enc->code_block_mode == 1)) {
473                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
474                 if (ret != 0) {
475                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
476                         return;
477                 }
478                 crc_req.data = in;
479                 crc_req.len = (k - 24) >> 3;
480                 /* Check if there is a room for CRC bits. If not use
481                  * the temporary buffer.
482                  */
483                 if (rte_pktmbuf_append(m_in, 3) == NULL) {
484                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
485                         in = q->enc_in;
486                 } else {
487                         /* Store 3 first bytes of next CB as they will be
488                          * overwritten by CRC bytes. If it is the last CB then
489                          * there is no point to store 3 next bytes and this
490                          * if..else branch will be omitted.
491                          */
492                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
493                 }
494
495                 crc_resp.data = in;
496                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
497         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
498                 /* CRC24B */
499                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
500                 if (ret != 0) {
501                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
502                         return;
503                 }
504                 crc_req.data = in;
505                 crc_req.len = (k - 24) >> 3;
506                 /* Check if there is a room for CRC bits. If this is the last
507                  * CB in TB. If not use temporary buffer.
508                  */
509                 if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
510                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
511                         in = q->enc_in;
512                 } else if (c - r > 1) {
513                         /* Store 3 first bytes of next CB as they will be
514                          * overwritten by CRC bytes. If it is the last CB then
515                          * there is no point to store 3 next bytes and this
516                          * if..else branch will be omitted.
517                          */
518                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
519                 }
520
521                 crc_resp.data = in;
522                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
523         } else {
524                 ret = is_enc_input_valid(k, k_idx, total_left);
525                 if (ret != 0) {
526                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
527                         return;
528                 }
529         }
530
531         /* Turbo encoder */
532
533         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
534          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
535          * So dst_data's length should be 3*(k/8) + 3 bytes.
536          * In Rate-matching bypass case outputs pointers passed to encoder
537          * (out0, out1 and out2) can directly point to addresses of output from
538          * turbo_enc entity.
539          */
540         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
541                 out0 = q->enc_out;
542                 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
543                 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
544         } else {
545                 out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
546                 if (out0 == NULL) {
547                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
548                         rte_bbdev_log(ERR,
549                                         "Too little space in output mbuf");
550                         return;
551                 }
552                 enc->output.length += (k >> 3) * 3 + 2;
553                 /* rte_bbdev_op_data.offset can be different than the
554                  * offset of the appended bytes
555                  */
556                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
557                 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
558                                 out_offset + (k >> 3) + 1);
559                 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
560                                 out_offset + 2 * ((k >> 3) + 1));
561         }
562
563         turbo_req.case_id = k_idx;
564         turbo_req.input_win = in;
565         turbo_req.length = k >> 3;
566         turbo_resp.output_win_0 = out0;
567         turbo_resp.output_win_1 = out1;
568         turbo_resp.output_win_2 = out2;
569         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
570                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
571                 rte_bbdev_log(ERR, "Turbo Encoder failed");
572                 return;
573         }
574
575         /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
576         if (first_3_bytes != 0)
577                 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
578
579         /* Rate-matching */
580         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
581                 /* get output data starting address */
582                 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, (e >> 3));
583                 if (rm_out == NULL) {
584                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
585                         rte_bbdev_log(ERR,
586                                         "Too little space in output mbuf");
587                         return;
588                 }
589                 /* rte_bbdev_op_data.offset can be different than the offset
590                  * of the appended bytes
591                  */
592                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
593
594                 /* index of current code block */
595                 rm_req.r = r;
596                 /* total number of code block */
597                 rm_req.C = c;
598                 /* For DL - 1, UL - 0 */
599                 rm_req.direction = 1;
600                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
601                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
602                  * known we can adjust those parameters
603                  */
604                 rm_req.Nsoft = ncb * rm_req.C;
605                 rm_req.KMIMO = 1;
606                 rm_req.MDL_HARQ = 1;
607                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
608                  * are used for E calculation. As E is already known we can
609                  * adjust those parameters
610                  */
611                 rm_req.NL = e;
612                 rm_req.Qm = 1;
613                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
614
615                 rm_req.rvidx = enc->rv_index;
616                 rm_req.Kidx = k_idx - 1;
617                 rm_req.nLen = k + 4;
618                 rm_req.tin0 = out0;
619                 rm_req.tin1 = out1;
620                 rm_req.tin2 = out2;
621                 rm_resp.output = rm_out;
622                 rm_resp.OutputLen = (e >> 3);
623                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
624                         rm_req.bypass_rvidx = 1;
625                 else
626                         rm_req.bypass_rvidx = 0;
627
628                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
629                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
630                         rte_bbdev_log(ERR, "Rate matching failed");
631                         return;
632                 }
633                 enc->output.length += rm_resp.OutputLen;
634         } else {
635                 /* Rate matching is bypassed */
636
637                 /* Completing last byte of out0 (where 4 tail bits are stored)
638                  * by moving first 4 bits from out1
639                  */
640                 tmp_out = (uint8_t *) --out1;
641                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
642                 tmp_out++;
643                 /* Shifting out1 data by 4 bits to the left */
644                 for (m = 0; m < k >> 3; ++m) {
645                         uint8_t *first = tmp_out;
646                         uint8_t second = *(tmp_out + 1);
647                         *first = (*first << 4) | ((second & 0xF0) >> 4);
648                         tmp_out++;
649                 }
650                 /* Shifting out2 data by 8 bits to the left */
651                 for (m = 0; m < (k >> 3) + 1; ++m) {
652                         *tmp_out = *(tmp_out + 1);
653                         tmp_out++;
654                 }
655                 *tmp_out = 0;
656         }
657 }
658
659 static inline void
660 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
661 {
662         uint8_t c, r, crc24_bits = 0;
663         uint16_t k, ncb;
664         uint32_t e;
665         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
666         uint16_t in_offset = enc->input.offset;
667         uint16_t out_offset = enc->output.offset;
668         struct rte_mbuf *m_in = enc->input.data;
669         struct rte_mbuf *m_out = enc->output.data;
670         uint16_t total_left = enc->input.length;
671
672         /* Clear op status */
673         op->status = 0;
674
675         if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
676                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
677                                 total_left, RTE_BBDEV_MAX_TB_SIZE);
678                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
679                 return;
680         }
681
682         if (m_in == NULL || m_out == NULL) {
683                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
684                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
685                 return;
686         }
687
688         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
689                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
690                 crc24_bits = 24;
691
692         if (enc->code_block_mode == 0) { /* For Transport Block mode */
693                 c = enc->tb_params.c;
694                 r = enc->tb_params.r;
695         } else {/* For Code Block mode */
696                 c = 1;
697                 r = 0;
698         }
699
700         while (total_left > 0 && r < c) {
701                 if (enc->code_block_mode == 0) {
702                         k = (r < enc->tb_params.c_neg) ?
703                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
704                         ncb = (r < enc->tb_params.c_neg) ?
705                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
706                         e = (r < enc->tb_params.cab) ?
707                                 enc->tb_params.ea : enc->tb_params.eb;
708                 } else {
709                         k = enc->cb_params.k;
710                         ncb = enc->cb_params.ncb;
711                         e = enc->cb_params.e;
712                 }
713
714                 process_enc_cb(q, op, r, c, k, ncb, e, m_in,
715                                 m_out, in_offset, out_offset, total_left);
716                 /* Update total_left */
717                 total_left -= (k - crc24_bits) >> 3;
718                 /* Update offsets for next CBs (if exist) */
719                 in_offset += (k - crc24_bits) >> 3;
720                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
721                         out_offset += e >> 3;
722                 else
723                         out_offset += (k >> 3) * 3 + 2;
724                 r++;
725         }
726
727         /* check if all input data was processed */
728         if (total_left != 0) {
729                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
730                 rte_bbdev_log(ERR,
731                                 "Mismatch between mbuf length and included CBs sizes");
732         }
733 }
734
735 static inline uint16_t
736 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
737                 uint16_t nb_ops)
738 {
739         uint16_t i;
740
741         for (i = 0; i < nb_ops; ++i)
742                 enqueue_enc_one_op(q, ops[i]);
743
744         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
745                         NULL);
746 }
747
748 /* Remove the padding bytes from a cyclic buffer.
749  * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
750  * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
751  * The output buffer is a data stream wk with pruned padding bytes. It's length
752  * is 3*D bytes and the order of non-padding bytes is preserved.
753  */
754 static inline void
755 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
756                 uint16_t ncb)
757 {
758         uint32_t in_idx, out_idx, c_idx;
759         const uint32_t d = k + 4;
760         const uint32_t kw = (ncb / 3);
761         const uint32_t nd = kw - d;
762         const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK;
763         /* Inter-column permutation pattern */
764         const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28,
765                         2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13,
766                         29, 3, 19, 11, 27, 7, 23, 15, 31};
767         in_idx = 0;
768         out_idx = 0;
769
770         /* The padding bytes are at the first Nd positions in the first row. */
771         for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
772                 if (P[c_idx] < nd) {
773                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
774                                         r_subblock - 1);
775                         out_idx += r_subblock - 1;
776                 } else {
777                         rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
778                         out_idx += r_subblock;
779                 }
780         }
781
782         /* First and second parity bits sub-blocks are interlaced. */
783         for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
784                         in_idx += 2 * r_subblock, ++c_idx) {
785                 uint32_t second_block_c_idx = P[c_idx];
786                 uint32_t third_block_c_idx = P[c_idx] + 1;
787
788                 if (second_block_c_idx < nd && third_block_c_idx < nd) {
789                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
790                                         2 * r_subblock - 2);
791                         out_idx += 2 * r_subblock - 2;
792                 } else if (second_block_c_idx >= nd &&
793                                 third_block_c_idx >= nd) {
794                         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
795                         out_idx += 2 * r_subblock;
796                 } else if (second_block_c_idx < nd) {
797                         out[out_idx++] = in[in_idx];
798                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
799                                         2 * r_subblock - 2);
800                         out_idx += 2 * r_subblock - 2;
801                 } else {
802                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
803                                         2 * r_subblock - 1);
804                         out_idx += 2 * r_subblock - 1;
805                 }
806         }
807
808         /* Last interlaced row is different - its last byte is the only padding
809          * byte. We can have from 2 up to 26 padding bytes (Nd) per sub-block.
810          * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
811          * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
812          * (moving to another column). 2nd parity sub-block uses the same
813          * inter-column permutation pattern as the systematic and 1st parity
814          * sub-blocks but it adds '1' to the resulting index and calculates the
815          * modulus of the result and Kw. Last column is mapped to itself (id 31)
816          * so the first byte taken from the 2nd parity sub-block will be the
817          * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
818          * last byte will be the first byte from the sub-block:
819          * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't  be smaller
820          * than 2 so we know that bytes with ids 0 and 1 must be the padding
821          * bytes. The bytes from the 1st parity sub-block are the bytes from the
822          * 31st column - Nd can't be greater than 26 so we are sure that there
823          * are no padding bytes in 31st column.
824          */
825         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
826 }
827
828 static inline void
829 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
830                 uint16_t ncb)
831 {
832         uint16_t d = k + 4;
833         uint16_t kpi = ncb / 3;
834         uint16_t nd = kpi - d;
835
836         rte_memcpy(&out[nd], in, d);
837         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
838         rte_memcpy(&out[nd + 2 * (kpi + 64)], &in[2 * kpi], d);
839 }
840
841 static inline void
842 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
843                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
844                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
845                 bool check_crc_24b, uint16_t total_left)
846 {
847         int ret;
848         int32_t k_idx;
849         int32_t iter_cnt;
850         uint8_t *in, *out, *adapter_input;
851         int32_t ncb, ncb_without_null;
852         struct bblib_turbo_adapter_ul_response adapter_resp;
853         struct bblib_turbo_adapter_ul_request adapter_req;
854         struct bblib_turbo_decoder_request turbo_req;
855         struct bblib_turbo_decoder_response turbo_resp;
856         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
857
858         k_idx = compute_idx(k);
859
860         ret = is_dec_input_valid(k_idx, kw, total_left);
861         if (ret != 0) {
862                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
863                 return;
864         }
865
866         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
867         ncb = kw;
868         ncb_without_null = (k + 4) * 3;
869
870         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
871                 struct bblib_deinterleave_ul_request deint_req;
872                 struct bblib_deinterleave_ul_response deint_resp;
873
874                 /* SW decoder accepts only a circular buffer without NULL bytes
875                  * so the input needs to be converted.
876                  */
877                 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
878
879                 deint_req.pharqbuffer = q->deint_input;
880                 deint_req.ncb = ncb_without_null;
881                 deint_resp.pinteleavebuffer = q->deint_output;
882                 bblib_deinterleave_ul(&deint_req, &deint_resp);
883         } else
884                 move_padding_bytes(in, q->deint_output, k, ncb);
885
886         adapter_input = q->deint_output;
887
888         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
889                 adapter_req.isinverted = 1;
890         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
891                 adapter_req.isinverted = 0;
892         else {
893                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
894                 rte_bbdev_log(ERR, "LLR format wasn't specified");
895                 return;
896         }
897
898         adapter_req.ncb = ncb_without_null;
899         adapter_req.pinteleavebuffer = adapter_input;
900         adapter_resp.pharqout = q->adapter_output;
901         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
902
903         out = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3));
904         if (out == NULL) {
905                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
906                 rte_bbdev_log(ERR, "Too little space in output mbuf");
907                 return;
908         }
909         /* rte_bbdev_op_data.offset can be different than the offset of the
910          * appended bytes
911          */
912         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
913         if (check_crc_24b)
914                 turbo_req.c = c + 1;
915         else
916                 turbo_req.c = c;
917         turbo_req.input = (int8_t *)q->adapter_output;
918         turbo_req.k = k;
919         turbo_req.k_idx = k_idx;
920         turbo_req.max_iter_num = dec->iter_max;
921         turbo_resp.ag_buf = q->ag;
922         turbo_resp.cb_buf = q->code_block;
923         turbo_resp.output = out;
924         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
925         dec->hard_output.length += (k >> 3);
926
927         if (iter_cnt > 0) {
928                 /* Temporary solution for returned iter_count from SDK */
929                 iter_cnt = (iter_cnt - 1) / 2;
930                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
931         } else {
932                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
933                 rte_bbdev_log(ERR, "Turbo Decoder failed");
934                 return;
935         }
936 }
937
938 static inline void
939 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
940 {
941         uint8_t c, r = 0;
942         uint16_t kw, k = 0;
943         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
944         struct rte_mbuf *m_in = dec->input.data;
945         struct rte_mbuf *m_out = dec->hard_output.data;
946         uint16_t in_offset = dec->input.offset;
947         uint16_t total_left = dec->input.length;
948         uint16_t out_offset = dec->hard_output.offset;
949
950         /* Clear op status */
951         op->status = 0;
952
953         if (m_in == NULL || m_out == NULL) {
954                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
955                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
956                 return;
957         }
958
959         if (dec->code_block_mode == 0) { /* For Transport Block mode */
960                 c = dec->tb_params.c;
961         } else { /* For Code Block mode */
962                 k = dec->cb_params.k;
963                 c = 1;
964         }
965
966         while (total_left > 0) {
967                 if (dec->code_block_mode == 0)
968                         k = (r < dec->tb_params.c_neg) ?
969                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
970
971                 /* Calculates circular buffer size (Kw).
972                  * According to 3gpp 36.212 section 5.1.4.2
973                  *   Kw = 3 * Kpi,
974                  * where:
975                  *   Kpi = nCol * nRow
976                  * where nCol is 32 and nRow can be calculated from:
977                  *   D =< nCol * nRow
978                  * where D is the size of each output from turbo encoder block
979                  * (k + 4).
980                  */
981                 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
982
983                 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
984                                 out_offset, check_bit(dec->op_flags,
985                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), total_left);
986                 /* As a result of decoding we get Code Block with included
987                  * decoded CRC24 at the end of Code Block. Type of CRC24 is
988                  * specified by flag.
989                  */
990
991                 /* Update total_left */
992                 total_left -= kw;
993                 /* Update offsets for next CBs (if exist) */
994                 in_offset += kw;
995                 out_offset += (k >> 3);
996                 r++;
997         }
998         if (total_left != 0) {
999                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1000                 rte_bbdev_log(ERR,
1001                                 "Mismatch between mbuf length and included Circular buffer sizes");
1002         }
1003 }
1004
1005 static inline uint16_t
1006 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1007                 uint16_t nb_ops)
1008 {
1009         uint16_t i;
1010
1011         for (i = 0; i < nb_ops; ++i)
1012                 enqueue_dec_one_op(q, ops[i]);
1013
1014         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1015                         NULL);
1016 }
1017
1018 /* Enqueue burst */
1019 static uint16_t
1020 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1021                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1022 {
1023         void *queue = q_data->queue_private;
1024         struct turbo_sw_queue *q = queue;
1025         uint16_t nb_enqueued = 0;
1026
1027         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops);
1028
1029         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1030         q_data->queue_stats.enqueued_count += nb_enqueued;
1031
1032         return nb_enqueued;
1033 }
1034
1035 /* Enqueue burst */
1036 static uint16_t
1037 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1038                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1039 {
1040         void *queue = q_data->queue_private;
1041         struct turbo_sw_queue *q = queue;
1042         uint16_t nb_enqueued = 0;
1043
1044         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
1045
1046         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1047         q_data->queue_stats.enqueued_count += nb_enqueued;
1048
1049         return nb_enqueued;
1050 }
1051
1052 /* Dequeue decode burst */
1053 static uint16_t
1054 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1055                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1056 {
1057         struct turbo_sw_queue *q = q_data->queue_private;
1058         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1059                         (void **)ops, nb_ops, NULL);
1060         q_data->queue_stats.dequeued_count += nb_dequeued;
1061
1062         return nb_dequeued;
1063 }
1064
1065 /* Dequeue encode burst */
1066 static uint16_t
1067 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1068                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1069 {
1070         struct turbo_sw_queue *q = q_data->queue_private;
1071         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1072                         (void **)ops, nb_ops, NULL);
1073         q_data->queue_stats.dequeued_count += nb_dequeued;
1074
1075         return nb_dequeued;
1076 }
1077
1078 /* Parse 16bit integer from string argument */
1079 static inline int
1080 parse_u16_arg(const char *key, const char *value, void *extra_args)
1081 {
1082         uint16_t *u16 = extra_args;
1083         unsigned int long result;
1084
1085         if ((value == NULL) || (extra_args == NULL))
1086                 return -EINVAL;
1087         errno = 0;
1088         result = strtoul(value, NULL, 0);
1089         if ((result >= (1 << 16)) || (errno != 0)) {
1090                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1091                 return -ERANGE;
1092         }
1093         *u16 = (uint16_t)result;
1094         return 0;
1095 }
1096
1097 /* Parse parameters used to create device */
1098 static int
1099 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1100 {
1101         struct rte_kvargs *kvlist = NULL;
1102         int ret = 0;
1103
1104         if (params == NULL)
1105                 return -EINVAL;
1106         if (input_args) {
1107                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1108                 if (kvlist == NULL)
1109                         return -EFAULT;
1110
1111                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1112                                         &parse_u16_arg, &params->queues_num);
1113                 if (ret < 0)
1114                         goto exit;
1115
1116                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1117                                         &parse_u16_arg, &params->socket_id);
1118                 if (ret < 0)
1119                         goto exit;
1120
1121                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1122                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1123                                         RTE_MAX_NUMA_NODES);
1124                         goto exit;
1125                 }
1126         }
1127
1128 exit:
1129         if (kvlist)
1130                 rte_kvargs_free(kvlist);
1131         return ret;
1132 }
1133
1134 /* Create device */
1135 static int
1136 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1137                 struct turbo_sw_params *init_params)
1138 {
1139         struct rte_bbdev *bbdev;
1140         const char *name = rte_vdev_device_name(vdev);
1141
1142         bbdev = rte_bbdev_allocate(name);
1143         if (bbdev == NULL)
1144                 return -ENODEV;
1145
1146         bbdev->data->dev_private = rte_zmalloc_socket(name,
1147                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1148                         init_params->socket_id);
1149         if (bbdev->data->dev_private == NULL) {
1150                 rte_bbdev_release(bbdev);
1151                 return -ENOMEM;
1152         }
1153
1154         bbdev->dev_ops = &pmd_ops;
1155         bbdev->device = &vdev->device;
1156         bbdev->data->socket_id = init_params->socket_id;
1157         bbdev->intr_handle = NULL;
1158
1159         /* register rx/tx burst functions for data path */
1160         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1161         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1162         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1163         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1164         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1165                         init_params->queues_num;
1166
1167         return 0;
1168 }
1169
1170 /* Initialise device */
1171 static int
1172 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1173 {
1174         struct turbo_sw_params init_params = {
1175                 rte_socket_id(),
1176                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1177         };
1178         const char *name;
1179         const char *input_args;
1180
1181         if (vdev == NULL)
1182                 return -EINVAL;
1183
1184         name = rte_vdev_device_name(vdev);
1185         if (name == NULL)
1186                 return -EINVAL;
1187         input_args = rte_vdev_device_args(vdev);
1188         parse_turbo_sw_params(&init_params, input_args);
1189
1190         rte_bbdev_log_debug(
1191                         "Initialising %s on NUMA node %d with max queues: %d\n",
1192                         name, init_params.socket_id, init_params.queues_num);
1193
1194         return turbo_sw_bbdev_create(vdev, &init_params);
1195 }
1196
1197 /* Uninitialise device */
1198 static int
1199 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1200 {
1201         struct rte_bbdev *bbdev;
1202         const char *name;
1203
1204         if (vdev == NULL)
1205                 return -EINVAL;
1206
1207         name = rte_vdev_device_name(vdev);
1208         if (name == NULL)
1209                 return -EINVAL;
1210
1211         bbdev = rte_bbdev_get_named_dev(name);
1212         if (bbdev == NULL)
1213                 return -EINVAL;
1214
1215         rte_free(bbdev->data->dev_private);
1216
1217         return rte_bbdev_release(bbdev);
1218 }
1219
1220 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1221         .probe = turbo_sw_bbdev_probe,
1222         .remove = turbo_sw_bbdev_remove
1223 };
1224
1225 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1226 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1227         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1228         TURBO_SW_SOCKET_ID_ARG"=<int>");
1229
1230 RTE_INIT(null_bbdev_init_log);
1231 static void
1232 null_bbdev_init_log(void)
1233 {
1234         bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1235         if (bbdev_turbo_sw_logtype >= 0)
1236                 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1237 }