57f6ba1f34af093ec6c5da737928429f7ed53852
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16
17 #include <phy_turbo.h>
18 #include <phy_crc.h>
19 #include <phy_rate_match.h>
20 #include <divide.h>
21
22 #define DRIVER_NAME baseband_turbo_sw
23
24 /* Turbo SW PMD logging ID */
25 static int bbdev_turbo_sw_logtype;
26
27 /* Helper macro for logging */
28 #define rte_bbdev_log(level, fmt, ...) \
29         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
30                 ##__VA_ARGS__)
31
32 #define rte_bbdev_log_debug(fmt, ...) \
33         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
34                 ##__VA_ARGS__)
35
36 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
37 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
38 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
39
40 /* private data structure */
41 struct bbdev_private {
42         unsigned int max_nb_queues;  /**< Max number of queues */
43 };
44
45 /*  Initialisation params structure that can be used by Turbo SW driver */
46 struct turbo_sw_params {
47         int socket_id;  /*< Turbo SW device socket */
48         uint16_t queues_num;  /*< Turbo SW device queues number */
49 };
50
51 /* Accecptable params for Turbo SW devices */
52 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
53 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
54
55 static const char * const turbo_sw_valid_params[] = {
56         TURBO_SW_MAX_NB_QUEUES_ARG,
57         TURBO_SW_SOCKET_ID_ARG
58 };
59
60 /* queue */
61 struct turbo_sw_queue {
62         /* Ring for processed (encoded/decoded) operations which are ready to
63          * be dequeued.
64          */
65         struct rte_ring *processed_pkts;
66         /* Stores input for turbo encoder (used when CRC attachment is
67          * performed
68          */
69         uint8_t *enc_in;
70         /* Stores output from turbo encoder */
71         uint8_t *enc_out;
72         /* Alpha gamma buf for bblib_turbo_decoder() function */
73         int8_t *ag;
74         /* Temp buf for bblib_turbo_decoder() function */
75         uint16_t *code_block;
76         /* Input buf for bblib_rate_dematching_lte() function */
77         uint8_t *deint_input;
78         /* Output buf for bblib_rate_dematching_lte() function */
79         uint8_t *deint_output;
80         /* Output buf for bblib_turbodec_adapter_lte() function */
81         uint8_t *adapter_output;
82         /* Operation type of this queue */
83         enum rte_bbdev_op_type type;
84 } __rte_cache_aligned;
85
86 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
87 static inline int32_t
88 compute_idx(uint16_t k)
89 {
90         int32_t result = 0;
91
92         if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
93                 return -1;
94
95         if (k > 2048) {
96                 if ((k - 2048) % 64 != 0)
97                         result = -1;
98
99                 result = 124 + (k - 2048) / 64;
100         } else if (k <= 512) {
101                 if ((k - 40) % 8 != 0)
102                         result = -1;
103
104                 result = (k - 40) / 8 + 1;
105         } else if (k <= 1024) {
106                 if ((k - 512) % 16 != 0)
107                         result = -1;
108
109                 result = 60 + (k - 512) / 16;
110         } else { /* 1024 < k <= 2048 */
111                 if ((k - 1024) % 32 != 0)
112                         result = -1;
113
114                 result = 92 + (k - 1024) / 32;
115         }
116
117         return result;
118 }
119
120 /* Read flag value 0/1 from bitmap */
121 static inline bool
122 check_bit(uint32_t bitmap, uint32_t bitmask)
123 {
124         return bitmap & bitmask;
125 }
126
127 /* Get device info */
128 static void
129 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
130 {
131         struct bbdev_private *internals = dev->data->dev_private;
132
133         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
134                 {
135                         .type = RTE_BBDEV_OP_TURBO_DEC,
136                         .cap.turbo_dec = {
137                                 .capability_flags =
138                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
139                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
140                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
141                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
142                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
143                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
144                                 .max_llr_modulus = 16,
145                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
146                                 .num_buffers_hard_out =
147                                                 RTE_BBDEV_MAX_CODE_BLOCKS,
148                                 .num_buffers_soft_out = 0,
149                         }
150                 },
151                 {
152                         .type   = RTE_BBDEV_OP_TURBO_ENC,
153                         .cap.turbo_enc = {
154                                 .capability_flags =
155                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
156                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
157                                                 RTE_BBDEV_TURBO_RATE_MATCH |
158                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
159                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
160                                 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
161                         }
162                 },
163                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
164         };
165
166         static struct rte_bbdev_queue_conf default_queue_conf = {
167                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
168         };
169
170         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
171
172         default_queue_conf.socket = dev->data->socket_id;
173
174         dev_info->driver_name = RTE_STR(DRIVER_NAME);
175         dev_info->max_num_queues = internals->max_nb_queues;
176         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
177         dev_info->hardware_accelerated = false;
178         dev_info->max_dl_queue_priority = 0;
179         dev_info->max_ul_queue_priority = 0;
180         dev_info->default_queue_conf = default_queue_conf;
181         dev_info->capabilities = bbdev_capabilities;
182         dev_info->cpu_flag_reqs = &cpu_flag;
183         dev_info->min_alignment = 64;
184
185         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
186 }
187
188 /* Release queue */
189 static int
190 q_release(struct rte_bbdev *dev, uint16_t q_id)
191 {
192         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
193
194         if (q != NULL) {
195                 rte_ring_free(q->processed_pkts);
196                 rte_free(q->enc_out);
197                 rte_free(q->enc_in);
198                 rte_free(q->ag);
199                 rte_free(q->code_block);
200                 rte_free(q->deint_input);
201                 rte_free(q->deint_output);
202                 rte_free(q->adapter_output);
203                 rte_free(q);
204                 dev->data->queues[q_id].queue_private = NULL;
205         }
206
207         rte_bbdev_log_debug("released device queue %u:%u",
208                         dev->data->dev_id, q_id);
209         return 0;
210 }
211
212 /* Setup a queue */
213 static int
214 q_setup(struct rte_bbdev *dev, uint16_t q_id,
215                 const struct rte_bbdev_queue_conf *queue_conf)
216 {
217         int ret;
218         struct turbo_sw_queue *q;
219         char name[RTE_RING_NAMESIZE];
220
221         /* Allocate the queue data structure. */
222         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
223                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
224         if (q == NULL) {
225                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
226                 return -ENOMEM;
227         }
228
229         /* Allocate memory for encoder output. */
230         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
231                         dev->data->dev_id, q_id);
232         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
233                 rte_bbdev_log(ERR,
234                                 "Creating queue name for device %u queue %u failed",
235                                 dev->data->dev_id, q_id);
236                 return -ENAMETOOLONG;
237         }
238         q->enc_out = rte_zmalloc_socket(name,
239                         ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
240                         sizeof(*q->enc_out) * 3,
241                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
242         if (q->enc_out == NULL) {
243                 rte_bbdev_log(ERR,
244                         "Failed to allocate queue memory for %s", name);
245                 goto free_q;
246         }
247
248         /* Allocate memory for rate matching output. */
249         ret = snprintf(name, RTE_RING_NAMESIZE,
250                         RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
251                         q_id);
252         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
253                 rte_bbdev_log(ERR,
254                                 "Creating queue name for device %u queue %u failed",
255                                 dev->data->dev_id, q_id);
256                 return -ENAMETOOLONG;
257         }
258         q->enc_in = rte_zmalloc_socket(name,
259                         (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
260                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
261         if (q->enc_in == NULL) {
262                 rte_bbdev_log(ERR,
263                         "Failed to allocate queue memory for %s", name);
264                 goto free_q;
265         }
266
267         /* Allocate memory for Aplha Gamma temp buffer. */
268         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
269                         dev->data->dev_id, q_id);
270         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
271                 rte_bbdev_log(ERR,
272                                 "Creating queue name for device %u queue %u failed",
273                                 dev->data->dev_id, q_id);
274                 return -ENAMETOOLONG;
275         }
276         q->ag = rte_zmalloc_socket(name,
277                         RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
278                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
279         if (q->ag == NULL) {
280                 rte_bbdev_log(ERR,
281                         "Failed to allocate queue memory for %s", name);
282                 goto free_q;
283         }
284
285         /* Allocate memory for code block temp buffer. */
286         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
287                         dev->data->dev_id, q_id);
288         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
289                 rte_bbdev_log(ERR,
290                                 "Creating queue name for device %u queue %u failed",
291                                 dev->data->dev_id, q_id);
292                 return -ENAMETOOLONG;
293         }
294         q->code_block = rte_zmalloc_socket(name,
295                         RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
296                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
297         if (q->code_block == NULL) {
298                 rte_bbdev_log(ERR,
299                         "Failed to allocate queue memory for %s", name);
300                 goto free_q;
301         }
302
303         /* Allocate memory for Deinterleaver input. */
304         ret = snprintf(name, RTE_RING_NAMESIZE,
305                         RTE_STR(DRIVER_NAME)"_de_i%u:%u",
306                         dev->data->dev_id, q_id);
307         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
308                 rte_bbdev_log(ERR,
309                                 "Creating queue name for device %u queue %u failed",
310                                 dev->data->dev_id, q_id);
311                 return -ENAMETOOLONG;
312         }
313         q->deint_input = rte_zmalloc_socket(name,
314                         DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
315                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
316         if (q->deint_input == NULL) {
317                 rte_bbdev_log(ERR,
318                         "Failed to allocate queue memory for %s", name);
319                 goto free_q;
320         }
321
322         /* Allocate memory for Deinterleaver output. */
323         ret = snprintf(name, RTE_RING_NAMESIZE,
324                         RTE_STR(DRIVER_NAME)"_de_o%u:%u",
325                         dev->data->dev_id, q_id);
326         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
327                 rte_bbdev_log(ERR,
328                                 "Creating queue name for device %u queue %u failed",
329                                 dev->data->dev_id, q_id);
330                 return -ENAMETOOLONG;
331         }
332         q->deint_output = rte_zmalloc_socket(NULL,
333                         DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
334                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
335         if (q->deint_output == NULL) {
336                 rte_bbdev_log(ERR,
337                         "Failed to allocate queue memory for %s", name);
338                 goto free_q;
339         }
340
341         /* Allocate memory for Adapter output. */
342         ret = snprintf(name, RTE_RING_NAMESIZE,
343                         RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
344                         dev->data->dev_id, q_id);
345         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
346                 rte_bbdev_log(ERR,
347                                 "Creating queue name for device %u queue %u failed",
348                                 dev->data->dev_id, q_id);
349                 return -ENAMETOOLONG;
350         }
351         q->adapter_output = rte_zmalloc_socket(NULL,
352                         ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
353                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
354         if (q->adapter_output == NULL) {
355                 rte_bbdev_log(ERR,
356                         "Failed to allocate queue memory for %s", name);
357                 goto free_q;
358         }
359
360         /* Create ring for packets awaiting to be dequeued. */
361         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
362                         dev->data->dev_id, q_id);
363         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
364                 rte_bbdev_log(ERR,
365                                 "Creating queue name for device %u queue %u failed",
366                                 dev->data->dev_id, q_id);
367                 return -ENAMETOOLONG;
368         }
369         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
370                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
371         if (q->processed_pkts == NULL) {
372                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
373                 goto free_q;
374         }
375
376         q->type = queue_conf->op_type;
377
378         dev->data->queues[q_id].queue_private = q;
379         rte_bbdev_log_debug("setup device queue %s", name);
380         return 0;
381
382 free_q:
383         rte_ring_free(q->processed_pkts);
384         rte_free(q->enc_out);
385         rte_free(q->enc_in);
386         rte_free(q->ag);
387         rte_free(q->code_block);
388         rte_free(q->deint_input);
389         rte_free(q->deint_output);
390         rte_free(q->adapter_output);
391         rte_free(q);
392         return -EFAULT;
393 }
394
395 static const struct rte_bbdev_ops pmd_ops = {
396         .info_get = info_get,
397         .queue_setup = q_setup,
398         .queue_release = q_release
399 };
400
401 /* Checks if the encoder input buffer is correct.
402  * Returns 0 if it's valid, -1 otherwise.
403  */
404 static inline int
405 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
406                 const uint16_t in_length)
407 {
408         if (k_idx < 0) {
409                 rte_bbdev_log(ERR, "K Index is invalid");
410                 return -1;
411         }
412
413         if (in_length - (k >> 3) < 0) {
414                 rte_bbdev_log(ERR,
415                                 "Mismatch between input length (%u bytes) and K (%u bits)",
416                                 in_length, k);
417                 return -1;
418         }
419
420         if (k > RTE_BBDEV_MAX_CB_SIZE) {
421                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
422                                 k, RTE_BBDEV_MAX_CB_SIZE);
423                 return -1;
424         }
425
426         return 0;
427 }
428
429 /* Checks if the decoder input buffer is correct.
430  * Returns 0 if it's valid, -1 otherwise.
431  */
432 static inline int
433 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
434 {
435         if (k_idx < 0) {
436                 rte_bbdev_log(ERR, "K index is invalid");
437                 return -1;
438         }
439
440         if (in_length - kw < 0) {
441                 rte_bbdev_log(ERR,
442                                 "Mismatch between input length (%u) and kw (%u)",
443                                 in_length, kw);
444                 return -1;
445         }
446
447         if (kw > RTE_BBDEV_MAX_KW) {
448                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
449                                 kw, RTE_BBDEV_MAX_KW);
450                 return -1;
451         }
452
453         return 0;
454 }
455
456 static inline void
457 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
458                 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
459                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
460                 uint16_t in_offset, uint16_t out_offset, uint16_t total_left,
461                 struct rte_bbdev_stats *q_stats)
462 {
463         int ret;
464         int16_t k_idx;
465         uint16_t m;
466         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
467         uint64_t first_3_bytes = 0;
468         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
469         struct bblib_crc_request crc_req;
470         struct bblib_crc_response crc_resp;
471         struct bblib_turbo_encoder_request turbo_req;
472         struct bblib_turbo_encoder_response turbo_resp;
473         struct bblib_rate_match_dl_request rm_req;
474         struct bblib_rate_match_dl_response rm_resp;
475 #ifdef RTE_BBDEV_OFFLOAD_COST
476         uint64_t start_time;
477 #else
478         RTE_SET_USED(q_stats);
479 #endif
480
481         k_idx = compute_idx(k);
482         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
483
484         /* CRC24A (for TB) */
485         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
486                 (enc->code_block_mode == 1)) {
487                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
488                 if (ret != 0) {
489                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
490                         return;
491                 }
492                 crc_req.data = in;
493                 crc_req.len = k - 24;
494                 /* Check if there is a room for CRC bits if not use
495                  * the temporary buffer.
496                  */
497                 if (rte_pktmbuf_append(m_in, 3) == NULL) {
498                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
499                         in = q->enc_in;
500                 } else {
501                         /* Store 3 first bytes of next CB as they will be
502                          * overwritten by CRC bytes. If it is the last CB then
503                          * there is no point to store 3 next bytes and this
504                          * if..else branch will be omitted.
505                          */
506                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
507                 }
508
509                 crc_resp.data = in;
510 #ifdef RTE_BBDEV_OFFLOAD_COST
511                 start_time = rte_rdtsc_precise();
512 #endif
513                 /* CRC24A generation */
514                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
515 #ifdef RTE_BBDEV_OFFLOAD_COST
516                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
517 #endif
518         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
519                 /* CRC24B */
520                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
521                 if (ret != 0) {
522                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
523                         return;
524                 }
525                 crc_req.data = in;
526                 crc_req.len = k - 24;
527                 /* Check if there is a room for CRC bits if this is the last
528                  * CB in TB. If not use temporary buffer.
529                  */
530                 if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
531                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
532                         in = q->enc_in;
533                 } else if (c - r > 1) {
534                         /* Store 3 first bytes of next CB as they will be
535                          * overwritten by CRC bytes. If it is the last CB then
536                          * there is no point to store 3 next bytes and this
537                          * if..else branch will be omitted.
538                          */
539                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
540                 }
541
542                 crc_resp.data = in;
543 #ifdef RTE_BBDEV_OFFLOAD_COST
544                 start_time = rte_rdtsc_precise();
545 #endif
546                 /* CRC24B generation */
547                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
548 #ifdef RTE_BBDEV_OFFLOAD_COST
549                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
550 #endif
551         } else {
552                 ret = is_enc_input_valid(k, k_idx, total_left);
553                 if (ret != 0) {
554                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
555                         return;
556                 }
557         }
558
559         /* Turbo encoder */
560
561         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
562          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
563          * So dst_data's length should be 3*(k/8) + 3 bytes.
564          * In Rate-matching bypass case outputs pointers passed to encoder
565          * (out0, out1 and out2) can directly point to addresses of output from
566          * turbo_enc entity.
567          */
568         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
569                 out0 = q->enc_out;
570                 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
571                 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
572         } else {
573                 out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
574                 if (out0 == NULL) {
575                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
576                         rte_bbdev_log(ERR,
577                                         "Too little space in output mbuf");
578                         return;
579                 }
580                 enc->output.length += (k >> 3) * 3 + 2;
581                 /* rte_bbdev_op_data.offset can be different than the
582                  * offset of the appended bytes
583                  */
584                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
585                 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
586                                 out_offset + (k >> 3) + 1);
587                 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
588                                 out_offset + 2 * ((k >> 3) + 1));
589         }
590
591         turbo_req.case_id = k_idx;
592         turbo_req.input_win = in;
593         turbo_req.length = k >> 3;
594         turbo_resp.output_win_0 = out0;
595         turbo_resp.output_win_1 = out1;
596         turbo_resp.output_win_2 = out2;
597
598 #ifdef RTE_BBDEV_OFFLOAD_COST
599         start_time = rte_rdtsc_precise();
600 #endif
601         /* Turbo encoding */
602         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
603                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
604                 rte_bbdev_log(ERR, "Turbo Encoder failed");
605                 return;
606         }
607 #ifdef RTE_BBDEV_OFFLOAD_COST
608         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
609 #endif
610
611         /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
612         if (first_3_bytes != 0)
613                 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
614
615         /* Rate-matching */
616         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
617                 uint8_t mask_id;
618                 /* Integer round up division by 8 */
619                 uint16_t out_len = (e + 7) >> 3;
620                 /* The mask array is indexed using E%8. E is an even number so
621                  * there are only 4 possible values.
622                  */
623                 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
624
625                 /* get output data starting address */
626                 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, out_len);
627                 if (rm_out == NULL) {
628                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
629                         rte_bbdev_log(ERR,
630                                         "Too little space in output mbuf");
631                         return;
632                 }
633                 /* rte_bbdev_op_data.offset can be different than the offset
634                  * of the appended bytes
635                  */
636                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
637
638                 /* index of current code block */
639                 rm_req.r = r;
640                 /* total number of code block */
641                 rm_req.C = c;
642                 /* For DL - 1, UL - 0 */
643                 rm_req.direction = 1;
644                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
645                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
646                  * known we can adjust those parameters
647                  */
648                 rm_req.Nsoft = ncb * rm_req.C;
649                 rm_req.KMIMO = 1;
650                 rm_req.MDL_HARQ = 1;
651                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
652                  * are used for E calculation. As E is already known we can
653                  * adjust those parameters
654                  */
655                 rm_req.NL = e;
656                 rm_req.Qm = 1;
657                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
658
659                 rm_req.rvidx = enc->rv_index;
660                 rm_req.Kidx = k_idx - 1;
661                 rm_req.nLen = k + 4;
662                 rm_req.tin0 = out0;
663                 rm_req.tin1 = out1;
664                 rm_req.tin2 = out2;
665                 rm_resp.output = rm_out;
666                 rm_resp.OutputLen = out_len;
667                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
668                         rm_req.bypass_rvidx = 1;
669                 else
670                         rm_req.bypass_rvidx = 0;
671
672 #ifdef RTE_BBDEV_OFFLOAD_COST
673                 start_time = rte_rdtsc_precise();
674 #endif
675                 /* Rate-Matching */
676                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
677                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
678                         rte_bbdev_log(ERR, "Rate matching failed");
679                         return;
680                 }
681 #ifdef RTE_BBDEV_OFFLOAD_COST
682                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
683 #endif
684
685                 /* SW fills an entire last byte even if E%8 != 0. Clear the
686                  * superfluous data bits for consistency with HW device.
687                  */
688                 mask_id = (e & 7) >> 1;
689                 rm_out[out_len - 1] &= mask_out[mask_id];
690                 enc->output.length += rm_resp.OutputLen;
691         } else {
692                 /* Rate matching is bypassed */
693
694                 /* Completing last byte of out0 (where 4 tail bits are stored)
695                  * by moving first 4 bits from out1
696                  */
697                 tmp_out = (uint8_t *) --out1;
698                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
699                 tmp_out++;
700                 /* Shifting out1 data by 4 bits to the left */
701                 for (m = 0; m < k >> 3; ++m) {
702                         uint8_t *first = tmp_out;
703                         uint8_t second = *(tmp_out + 1);
704                         *first = (*first << 4) | ((second & 0xF0) >> 4);
705                         tmp_out++;
706                 }
707                 /* Shifting out2 data by 8 bits to the left */
708                 for (m = 0; m < (k >> 3) + 1; ++m) {
709                         *tmp_out = *(tmp_out + 1);
710                         tmp_out++;
711                 }
712                 *tmp_out = 0;
713         }
714 }
715
716 static inline void
717 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
718                 struct rte_bbdev_stats *queue_stats)
719 {
720         uint8_t c, r, crc24_bits = 0;
721         uint16_t k, ncb;
722         uint32_t e;
723         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
724         uint16_t in_offset = enc->input.offset;
725         uint16_t out_offset = enc->output.offset;
726         struct rte_mbuf *m_in = enc->input.data;
727         struct rte_mbuf *m_out = enc->output.data;
728         uint16_t total_left = enc->input.length;
729
730         /* Clear op status */
731         op->status = 0;
732
733         if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
734                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
735                                 total_left, RTE_BBDEV_MAX_TB_SIZE);
736                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
737                 return;
738         }
739
740         if (m_in == NULL || m_out == NULL) {
741                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
742                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
743                 return;
744         }
745
746         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
747                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
748                 crc24_bits = 24;
749
750         if (enc->code_block_mode == 0) { /* For Transport Block mode */
751                 c = enc->tb_params.c;
752                 r = enc->tb_params.r;
753         } else {/* For Code Block mode */
754                 c = 1;
755                 r = 0;
756         }
757
758         while (total_left > 0 && r < c) {
759                 if (enc->code_block_mode == 0) {
760                         k = (r < enc->tb_params.c_neg) ?
761                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
762                         ncb = (r < enc->tb_params.c_neg) ?
763                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
764                         e = (r < enc->tb_params.cab) ?
765                                 enc->tb_params.ea : enc->tb_params.eb;
766                 } else {
767                         k = enc->cb_params.k;
768                         ncb = enc->cb_params.ncb;
769                         e = enc->cb_params.e;
770                 }
771
772                 process_enc_cb(q, op, r, c, k, ncb, e, m_in,
773                                 m_out, in_offset, out_offset, total_left,
774                                 queue_stats);
775                 /* Update total_left */
776                 total_left -= (k - crc24_bits) >> 3;
777                 /* Update offsets for next CBs (if exist) */
778                 in_offset += (k - crc24_bits) >> 3;
779                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
780                         out_offset += e >> 3;
781                 else
782                         out_offset += (k >> 3) * 3 + 2;
783                 r++;
784         }
785
786         /* check if all input data was processed */
787         if (total_left != 0) {
788                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
789                 rte_bbdev_log(ERR,
790                                 "Mismatch between mbuf length and included CBs sizes");
791         }
792 }
793
794 static inline uint16_t
795 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
796                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
797 {
798         uint16_t i;
799 #ifdef RTE_BBDEV_OFFLOAD_COST
800         queue_stats->acc_offload_cycles = 0;
801 #endif
802
803         for (i = 0; i < nb_ops; ++i)
804                 enqueue_enc_one_op(q, ops[i], queue_stats);
805
806         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
807                         NULL);
808 }
809
810 /* Remove the padding bytes from a cyclic buffer.
811  * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
812  * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
813  * The output buffer is a data stream wk with pruned padding bytes. It's length
814  * is 3*D bytes and the order of non-padding bytes is preserved.
815  */
816 static inline void
817 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
818                 uint16_t ncb)
819 {
820         uint32_t in_idx, out_idx, c_idx;
821         const uint32_t d = k + 4;
822         const uint32_t kw = (ncb / 3);
823         const uint32_t nd = kw - d;
824         const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK;
825         /* Inter-column permutation pattern */
826         const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28,
827                         2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13,
828                         29, 3, 19, 11, 27, 7, 23, 15, 31};
829         in_idx = 0;
830         out_idx = 0;
831
832         /* The padding bytes are at the first Nd positions in the first row. */
833         for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
834                 if (P[c_idx] < nd) {
835                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
836                                         r_subblock - 1);
837                         out_idx += r_subblock - 1;
838                 } else {
839                         rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
840                         out_idx += r_subblock;
841                 }
842         }
843
844         /* First and second parity bits sub-blocks are interlaced. */
845         for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
846                         in_idx += 2 * r_subblock, ++c_idx) {
847                 uint32_t second_block_c_idx = P[c_idx];
848                 uint32_t third_block_c_idx = P[c_idx] + 1;
849
850                 if (second_block_c_idx < nd && third_block_c_idx < nd) {
851                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
852                                         2 * r_subblock - 2);
853                         out_idx += 2 * r_subblock - 2;
854                 } else if (second_block_c_idx >= nd &&
855                                 third_block_c_idx >= nd) {
856                         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
857                         out_idx += 2 * r_subblock;
858                 } else if (second_block_c_idx < nd) {
859                         out[out_idx++] = in[in_idx];
860                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
861                                         2 * r_subblock - 2);
862                         out_idx += 2 * r_subblock - 2;
863                 } else {
864                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
865                                         2 * r_subblock - 1);
866                         out_idx += 2 * r_subblock - 1;
867                 }
868         }
869
870         /* Last interlaced row is different - its last byte is the only padding
871          * byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block.
872          * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
873          * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
874          * (moving to another column). 2nd parity sub-block uses the same
875          * inter-column permutation pattern as the systematic and 1st parity
876          * sub-blocks but it adds '1' to the resulting index and calculates the
877          * modulus of the result and Kw. Last column is mapped to itself (id 31)
878          * so the first byte taken from the 2nd parity sub-block will be the
879          * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
880          * last byte will be the first byte from the sub-block:
881          * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't  be smaller
882          * than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the
883          * padding bytes. The bytes from the 1st parity sub-block are the bytes
884          * from the 31st column - Nd can't be greater than 28 so we are sure
885          * that there are no padding bytes in 31st column.
886          */
887         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
888 }
889
890 static inline void
891 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
892                 uint16_t ncb)
893 {
894         uint16_t d = k + 4;
895         uint16_t kpi = ncb / 3;
896         uint16_t nd = kpi - d;
897
898         rte_memcpy(&out[nd], in, d);
899         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
900         rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
901 }
902
903 static inline void
904 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
905                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
906                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
907                 bool check_crc_24b, uint16_t crc24_overlap, uint16_t total_left,
908                 struct rte_bbdev_stats *q_stats)
909 {
910         int ret;
911         int32_t k_idx;
912         int32_t iter_cnt;
913         uint8_t *in, *out, *adapter_input;
914         int32_t ncb, ncb_without_null;
915         struct bblib_turbo_adapter_ul_response adapter_resp;
916         struct bblib_turbo_adapter_ul_request adapter_req;
917         struct bblib_turbo_decoder_request turbo_req;
918         struct bblib_turbo_decoder_response turbo_resp;
919         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
920 #ifdef RTE_BBDEV_OFFLOAD_COST
921         uint64_t start_time;
922 #else
923         RTE_SET_USED(q_stats);
924 #endif
925
926         k_idx = compute_idx(k);
927
928         ret = is_dec_input_valid(k_idx, kw, total_left);
929         if (ret != 0) {
930                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
931                 return;
932         }
933
934         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
935         ncb = kw;
936         ncb_without_null = (k + 4) * 3;
937
938         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
939                 struct bblib_deinterleave_ul_request deint_req;
940                 struct bblib_deinterleave_ul_response deint_resp;
941
942                 /* SW decoder accepts only a circular buffer without NULL bytes
943                  * so the input needs to be converted.
944                  */
945                 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
946
947                 deint_req.pharqbuffer = q->deint_input;
948                 deint_req.ncb = ncb_without_null;
949                 deint_resp.pinteleavebuffer = q->deint_output;
950
951 #ifdef RTE_BBDEV_OFFLOAD_COST
952                 start_time = rte_rdtsc_precise();
953 #endif
954                 bblib_deinterleave_ul(&deint_req, &deint_resp);
955 #ifdef RTE_BBDEV_OFFLOAD_COST
956                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
957 #endif
958         } else
959                 move_padding_bytes(in, q->deint_output, k, ncb);
960
961         adapter_input = q->deint_output;
962
963         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
964                 adapter_req.isinverted = 1;
965         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
966                 adapter_req.isinverted = 0;
967         else {
968                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
969                 rte_bbdev_log(ERR, "LLR format wasn't specified");
970                 return;
971         }
972
973         adapter_req.ncb = ncb_without_null;
974         adapter_req.pinteleavebuffer = adapter_input;
975         adapter_resp.pharqout = q->adapter_output;
976
977 #ifdef RTE_BBDEV_OFFLOAD_COST
978         start_time = rte_rdtsc_precise();
979 #endif
980         /* Turbo decode adaptation */
981         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
982 #ifdef RTE_BBDEV_OFFLOAD_COST
983         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
984 #endif
985
986         out = (uint8_t *)rte_pktmbuf_append(m_out, ((k - crc24_overlap) >> 3));
987         if (out == NULL) {
988                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
989                 rte_bbdev_log(ERR, "Too little space in output mbuf");
990                 return;
991         }
992         /* rte_bbdev_op_data.offset can be different than the offset of the
993          * appended bytes
994          */
995         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
996         if (check_crc_24b)
997                 turbo_req.c = c + 1;
998         else
999                 turbo_req.c = c;
1000         turbo_req.input = (int8_t *)q->adapter_output;
1001         turbo_req.k = k;
1002         turbo_req.k_idx = k_idx;
1003         turbo_req.max_iter_num = dec->iter_max;
1004         turbo_req.early_term_disable = !check_bit(dec->op_flags,
1005                         RTE_BBDEV_TURBO_EARLY_TERMINATION);
1006         turbo_resp.ag_buf = q->ag;
1007         turbo_resp.cb_buf = q->code_block;
1008         turbo_resp.output = out;
1009
1010 #ifdef RTE_BBDEV_OFFLOAD_COST
1011         start_time = rte_rdtsc_precise();
1012 #endif
1013         /* Turbo decode */
1014         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
1015 #ifdef RTE_BBDEV_OFFLOAD_COST
1016         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1017 #endif
1018         dec->hard_output.length += (k >> 3);
1019
1020         if (iter_cnt > 0) {
1021                 /* Temporary solution for returned iter_count from SDK */
1022                 iter_cnt = (iter_cnt - 1) >> 1;
1023                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
1024         } else {
1025                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1026                 rte_bbdev_log(ERR, "Turbo Decoder failed");
1027                 return;
1028         }
1029 }
1030
1031 static inline void
1032 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1033                 struct rte_bbdev_stats *queue_stats)
1034 {
1035         uint8_t c, r = 0;
1036         uint16_t kw, k = 0;
1037         uint16_t crc24_overlap = 0;
1038         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1039         struct rte_mbuf *m_in = dec->input.data;
1040         struct rte_mbuf *m_out = dec->hard_output.data;
1041         uint16_t in_offset = dec->input.offset;
1042         uint16_t total_left = dec->input.length;
1043         uint16_t out_offset = dec->hard_output.offset;
1044
1045         /* Clear op status */
1046         op->status = 0;
1047
1048         if (m_in == NULL || m_out == NULL) {
1049                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1050                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1051                 return;
1052         }
1053
1054         if (dec->code_block_mode == 0) { /* For Transport Block mode */
1055                 c = dec->tb_params.c;
1056         } else { /* For Code Block mode */
1057                 k = dec->cb_params.k;
1058                 c = 1;
1059         }
1060
1061         if ((c > 1) && !check_bit(dec->op_flags,
1062                 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1063                 crc24_overlap = 24;
1064
1065         while (total_left > 0) {
1066                 if (dec->code_block_mode == 0)
1067                         k = (r < dec->tb_params.c_neg) ?
1068                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
1069
1070                 /* Calculates circular buffer size (Kw).
1071                  * According to 3gpp 36.212 section 5.1.4.2
1072                  *   Kw = 3 * Kpi,
1073                  * where:
1074                  *   Kpi = nCol * nRow
1075                  * where nCol is 32 and nRow can be calculated from:
1076                  *   D =< nCol * nRow
1077                  * where D is the size of each output from turbo encoder block
1078                  * (k + 4).
1079                  */
1080                 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
1081
1082                 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
1083                                 out_offset, check_bit(dec->op_flags,
1084                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1085                                 total_left, queue_stats);
1086                 /* To keep CRC24 attached to end of Code block, use
1087                  * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1088                  * removed by default once verified.
1089                  */
1090
1091                 /* Update total_left */
1092                 total_left -= kw;
1093                 /* Update offsets for next CBs (if exist) */
1094                 in_offset += kw;
1095                 out_offset += ((k - crc24_overlap) >> 3);
1096                 r++;
1097         }
1098         if (total_left != 0) {
1099                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1100                 rte_bbdev_log(ERR,
1101                                 "Mismatch between mbuf length and included Circular buffer sizes");
1102         }
1103 }
1104
1105 static inline uint16_t
1106 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1107                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1108 {
1109         uint16_t i;
1110 #ifdef RTE_BBDEV_OFFLOAD_COST
1111         queue_stats->acc_offload_cycles = 0;
1112 #endif
1113
1114         for (i = 0; i < nb_ops; ++i)
1115                 enqueue_dec_one_op(q, ops[i], queue_stats);
1116
1117         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1118                         NULL);
1119 }
1120
1121 /* Enqueue burst */
1122 static uint16_t
1123 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1124                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1125 {
1126         void *queue = q_data->queue_private;
1127         struct turbo_sw_queue *q = queue;
1128         uint16_t nb_enqueued = 0;
1129
1130         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1131
1132         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1133         q_data->queue_stats.enqueued_count += nb_enqueued;
1134
1135         return nb_enqueued;
1136 }
1137
1138 /* Enqueue burst */
1139 static uint16_t
1140 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1141                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1142 {
1143         void *queue = q_data->queue_private;
1144         struct turbo_sw_queue *q = queue;
1145         uint16_t nb_enqueued = 0;
1146
1147         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1148
1149         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1150         q_data->queue_stats.enqueued_count += nb_enqueued;
1151
1152         return nb_enqueued;
1153 }
1154
1155 /* Dequeue decode burst */
1156 static uint16_t
1157 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1158                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1159 {
1160         struct turbo_sw_queue *q = q_data->queue_private;
1161         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1162                         (void **)ops, nb_ops, NULL);
1163         q_data->queue_stats.dequeued_count += nb_dequeued;
1164
1165         return nb_dequeued;
1166 }
1167
1168 /* Dequeue encode burst */
1169 static uint16_t
1170 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1171                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1172 {
1173         struct turbo_sw_queue *q = q_data->queue_private;
1174         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1175                         (void **)ops, nb_ops, NULL);
1176         q_data->queue_stats.dequeued_count += nb_dequeued;
1177
1178         return nb_dequeued;
1179 }
1180
1181 /* Parse 16bit integer from string argument */
1182 static inline int
1183 parse_u16_arg(const char *key, const char *value, void *extra_args)
1184 {
1185         uint16_t *u16 = extra_args;
1186         unsigned int long result;
1187
1188         if ((value == NULL) || (extra_args == NULL))
1189                 return -EINVAL;
1190         errno = 0;
1191         result = strtoul(value, NULL, 0);
1192         if ((result >= (1 << 16)) || (errno != 0)) {
1193                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1194                 return -ERANGE;
1195         }
1196         *u16 = (uint16_t)result;
1197         return 0;
1198 }
1199
1200 /* Parse parameters used to create device */
1201 static int
1202 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1203 {
1204         struct rte_kvargs *kvlist = NULL;
1205         int ret = 0;
1206
1207         if (params == NULL)
1208                 return -EINVAL;
1209         if (input_args) {
1210                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1211                 if (kvlist == NULL)
1212                         return -EFAULT;
1213
1214                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1215                                         &parse_u16_arg, &params->queues_num);
1216                 if (ret < 0)
1217                         goto exit;
1218
1219                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1220                                         &parse_u16_arg, &params->socket_id);
1221                 if (ret < 0)
1222                         goto exit;
1223
1224                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1225                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1226                                         RTE_MAX_NUMA_NODES);
1227                         goto exit;
1228                 }
1229         }
1230
1231 exit:
1232         if (kvlist)
1233                 rte_kvargs_free(kvlist);
1234         return ret;
1235 }
1236
1237 /* Create device */
1238 static int
1239 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1240                 struct turbo_sw_params *init_params)
1241 {
1242         struct rte_bbdev *bbdev;
1243         const char *name = rte_vdev_device_name(vdev);
1244
1245         bbdev = rte_bbdev_allocate(name);
1246         if (bbdev == NULL)
1247                 return -ENODEV;
1248
1249         bbdev->data->dev_private = rte_zmalloc_socket(name,
1250                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1251                         init_params->socket_id);
1252         if (bbdev->data->dev_private == NULL) {
1253                 rte_bbdev_release(bbdev);
1254                 return -ENOMEM;
1255         }
1256
1257         bbdev->dev_ops = &pmd_ops;
1258         bbdev->device = &vdev->device;
1259         bbdev->data->socket_id = init_params->socket_id;
1260         bbdev->intr_handle = NULL;
1261
1262         /* register rx/tx burst functions for data path */
1263         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1264         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1265         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1266         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1267         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1268                         init_params->queues_num;
1269
1270         return 0;
1271 }
1272
1273 /* Initialise device */
1274 static int
1275 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1276 {
1277         struct turbo_sw_params init_params = {
1278                 rte_socket_id(),
1279                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1280         };
1281         const char *name;
1282         const char *input_args;
1283
1284         if (vdev == NULL)
1285                 return -EINVAL;
1286
1287         name = rte_vdev_device_name(vdev);
1288         if (name == NULL)
1289                 return -EINVAL;
1290         input_args = rte_vdev_device_args(vdev);
1291         parse_turbo_sw_params(&init_params, input_args);
1292
1293         rte_bbdev_log_debug(
1294                         "Initialising %s on NUMA node %d with max queues: %d\n",
1295                         name, init_params.socket_id, init_params.queues_num);
1296
1297         return turbo_sw_bbdev_create(vdev, &init_params);
1298 }
1299
1300 /* Uninitialise device */
1301 static int
1302 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1303 {
1304         struct rte_bbdev *bbdev;
1305         const char *name;
1306
1307         if (vdev == NULL)
1308                 return -EINVAL;
1309
1310         name = rte_vdev_device_name(vdev);
1311         if (name == NULL)
1312                 return -EINVAL;
1313
1314         bbdev = rte_bbdev_get_named_dev(name);
1315         if (bbdev == NULL)
1316                 return -EINVAL;
1317
1318         rte_free(bbdev->data->dev_private);
1319
1320         return rte_bbdev_release(bbdev);
1321 }
1322
1323 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1324         .probe = turbo_sw_bbdev_probe,
1325         .remove = turbo_sw_bbdev_remove
1326 };
1327
1328 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1329 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1330         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1331         TURBO_SW_SOCKET_ID_ARG"=<int>");
1332 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
1333
1334 RTE_INIT(turbo_sw_bbdev_init_log)
1335 {
1336         bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1337         if (bbdev_turbo_sw_logtype >= 0)
1338                 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1339 }