baseband/turbo_sw: optimize memory copy
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12
13 #include <rte_bbdev.h>
14 #include <rte_bbdev_pmd.h>
15
16 #include <phy_turbo.h>
17 #include <phy_crc.h>
18 #include <phy_rate_match.h>
19 #include <divide.h>
20
21 #define DRIVER_NAME turbo_sw
22
23 /* Turbo SW PMD logging ID */
24 static int bbdev_turbo_sw_logtype;
25
26 /* Helper macro for logging */
27 #define rte_bbdev_log(level, fmt, ...) \
28         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
29                 ##__VA_ARGS__)
30
31 #define rte_bbdev_log_debug(fmt, ...) \
32         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
33                 ##__VA_ARGS__)
34
35 /* Number of columns in sub-block interleaver (36.212, section 5.1.4.1.1) */
36 #define C_SUBBLOCK (32)
37 #define MAX_TB_SIZE (391656)
38 #define MAX_CB_SIZE (6144)
39 #define MAX_KW (18528)
40
41 /* private data structure */
42 struct bbdev_private {
43         unsigned int max_nb_queues;  /**< Max number of queues */
44 };
45
46 /*  Initialisation params structure that can be used by Turbo SW driver */
47 struct turbo_sw_params {
48         int socket_id;  /*< Turbo SW device socket */
49         uint16_t queues_num;  /*< Turbo SW device queues number */
50 };
51
52 /* Accecptable params for Turbo SW devices */
53 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
54 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
55
56 static const char * const turbo_sw_valid_params[] = {
57         TURBO_SW_MAX_NB_QUEUES_ARG,
58         TURBO_SW_SOCKET_ID_ARG
59 };
60
61 /* queue */
62 struct turbo_sw_queue {
63         /* Ring for processed (encoded/decoded) operations which are ready to
64          * be dequeued.
65          */
66         struct rte_ring *processed_pkts;
67         /* Stores input for turbo encoder (used when CRC attachment is
68          * performed
69          */
70         uint8_t *enc_in;
71         /* Stores output from turbo encoder */
72         uint8_t *enc_out;
73         /* Alpha gamma buf for bblib_turbo_decoder() function */
74         int8_t *ag;
75         /* Temp buf for bblib_turbo_decoder() function */
76         uint16_t *code_block;
77         /* Input buf for bblib_rate_dematching_lte() function */
78         uint8_t *deint_input;
79         /* Output buf for bblib_rate_dematching_lte() function */
80         uint8_t *deint_output;
81         /* Output buf for bblib_turbodec_adapter_lte() function */
82         uint8_t *adapter_output;
83         /* Operation type of this queue */
84         enum rte_bbdev_op_type type;
85 } __rte_cache_aligned;
86
87 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
88 static inline int32_t
89 compute_idx(uint16_t k)
90 {
91         int32_t result = 0;
92
93         if (k < 40 || k > MAX_CB_SIZE)
94                 return -1;
95
96         if (k > 2048) {
97                 if ((k - 2048) % 64 != 0)
98                         result = -1;
99
100                 result = 124 + (k - 2048) / 64;
101         } else if (k <= 512) {
102                 if ((k - 40) % 8 != 0)
103                         result = -1;
104
105                 result = (k - 40) / 8 + 1;
106         } else if (k <= 1024) {
107                 if ((k - 512) % 16 != 0)
108                         result = -1;
109
110                 result = 60 + (k - 512) / 16;
111         } else { /* 1024 < k <= 2048 */
112                 if ((k - 1024) % 32 != 0)
113                         result = -1;
114
115                 result = 92 + (k - 1024) / 32;
116         }
117
118         return result;
119 }
120
121 /* Read flag value 0/1 from bitmap */
122 static inline bool
123 check_bit(uint32_t bitmap, uint32_t bitmask)
124 {
125         return bitmap & bitmask;
126 }
127
128 /* Get device info */
129 static void
130 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
131 {
132         struct bbdev_private *internals = dev->data->dev_private;
133
134         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
135                 {
136                         .type = RTE_BBDEV_OP_TURBO_DEC,
137                         .cap.turbo_dec = {
138                                 .capability_flags =
139                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
140                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
141                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
142                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
143                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
144                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
145                                 .num_buffers_hard_out =
146                                                 RTE_BBDEV_MAX_CODE_BLOCKS,
147                                 .num_buffers_soft_out = 0,
148                         }
149                 },
150                 {
151                         .type   = RTE_BBDEV_OP_TURBO_ENC,
152                         .cap.turbo_enc = {
153                                 .capability_flags =
154                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
155                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
156                                                 RTE_BBDEV_TURBO_RATE_MATCH |
157                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
158                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
159                                 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
160                         }
161                 },
162                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
163         };
164
165         static struct rte_bbdev_queue_conf default_queue_conf = {
166                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
167         };
168
169         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
170
171         default_queue_conf.socket = dev->data->socket_id;
172
173         dev_info->driver_name = RTE_STR(DRIVER_NAME);
174         dev_info->max_num_queues = internals->max_nb_queues;
175         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
176         dev_info->hardware_accelerated = false;
177         dev_info->max_queue_priority = 0;
178         dev_info->default_queue_conf = default_queue_conf;
179         dev_info->capabilities = bbdev_capabilities;
180         dev_info->cpu_flag_reqs = &cpu_flag;
181         dev_info->min_alignment = 64;
182
183         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
184 }
185
186 /* Release queue */
187 static int
188 q_release(struct rte_bbdev *dev, uint16_t q_id)
189 {
190         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
191
192         if (q != NULL) {
193                 rte_ring_free(q->processed_pkts);
194                 rte_free(q->enc_out);
195                 rte_free(q->enc_in);
196                 rte_free(q->ag);
197                 rte_free(q->code_block);
198                 rte_free(q->deint_input);
199                 rte_free(q->deint_output);
200                 rte_free(q->adapter_output);
201                 rte_free(q);
202                 dev->data->queues[q_id].queue_private = NULL;
203         }
204
205         rte_bbdev_log_debug("released device queue %u:%u",
206                         dev->data->dev_id, q_id);
207         return 0;
208 }
209
210 /* Setup a queue */
211 static int
212 q_setup(struct rte_bbdev *dev, uint16_t q_id,
213                 const struct rte_bbdev_queue_conf *queue_conf)
214 {
215         int ret;
216         struct turbo_sw_queue *q;
217         char name[RTE_RING_NAMESIZE];
218
219         /* Allocate the queue data structure. */
220         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
221                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
222         if (q == NULL) {
223                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
224                 return -ENOMEM;
225         }
226
227         /* Allocate memory for encoder output. */
228         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u",
229                         dev->data->dev_id, q_id);
230         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
231                 rte_bbdev_log(ERR,
232                                 "Creating queue name for device %u queue %u failed",
233                                 dev->data->dev_id, q_id);
234                 return -ENAMETOOLONG;
235         }
236         q->enc_out = rte_zmalloc_socket(name,
237                         ((MAX_TB_SIZE >> 3) + 3) * sizeof(*q->enc_out) * 3,
238                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
239         if (q->enc_out == NULL) {
240                 rte_bbdev_log(ERR,
241                         "Failed to allocate queue memory for %s", name);
242                 goto free_q;
243         }
244
245         /* Allocate memory for rate matching output. */
246         ret = snprintf(name, RTE_RING_NAMESIZE,
247                         RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id,
248                         q_id);
249         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
250                 rte_bbdev_log(ERR,
251                                 "Creating queue name for device %u queue %u failed",
252                                 dev->data->dev_id, q_id);
253                 return -ENAMETOOLONG;
254         }
255         q->enc_in = rte_zmalloc_socket(name,
256                         (MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
257                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
258         if (q->enc_in == NULL) {
259                 rte_bbdev_log(ERR,
260                         "Failed to allocate queue memory for %s", name);
261                 goto free_q;
262         }
263
264         /* Allocate memory for Aplha Gamma temp buffer. */
265         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
266                         dev->data->dev_id, q_id);
267         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
268                 rte_bbdev_log(ERR,
269                                 "Creating queue name for device %u queue %u failed",
270                                 dev->data->dev_id, q_id);
271                 return -ENAMETOOLONG;
272         }
273         q->ag = rte_zmalloc_socket(name,
274                         MAX_CB_SIZE * 10 * sizeof(*q->ag),
275                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
276         if (q->ag == NULL) {
277                 rte_bbdev_log(ERR,
278                         "Failed to allocate queue memory for %s", name);
279                 goto free_q;
280         }
281
282         /* Allocate memory for code block temp buffer. */
283         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
284                         dev->data->dev_id, q_id);
285         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
286                 rte_bbdev_log(ERR,
287                                 "Creating queue name for device %u queue %u failed",
288                                 dev->data->dev_id, q_id);
289                 return -ENAMETOOLONG;
290         }
291         q->code_block = rte_zmalloc_socket(name,
292                         (6144 >> 3) * sizeof(*q->code_block),
293                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
294         if (q->code_block == NULL) {
295                 rte_bbdev_log(ERR,
296                         "Failed to allocate queue memory for %s", name);
297                 goto free_q;
298         }
299
300         /* Allocate memory for Deinterleaver input. */
301         ret = snprintf(name, RTE_RING_NAMESIZE,
302                         RTE_STR(DRIVER_NAME)"_deint_input%u:%u",
303                         dev->data->dev_id, q_id);
304         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
305                 rte_bbdev_log(ERR,
306                                 "Creating queue name for device %u queue %u failed",
307                                 dev->data->dev_id, q_id);
308                 return -ENAMETOOLONG;
309         }
310         q->deint_input = rte_zmalloc_socket(name,
311                         MAX_KW * sizeof(*q->deint_input),
312                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
313         if (q->deint_input == NULL) {
314                 rte_bbdev_log(ERR,
315                         "Failed to allocate queue memory for %s", name);
316                 goto free_q;
317         }
318
319         /* Allocate memory for Deinterleaver output. */
320         ret = snprintf(name, RTE_RING_NAMESIZE,
321                         RTE_STR(DRIVER_NAME)"_deint_output%u:%u",
322                         dev->data->dev_id, q_id);
323         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
324                 rte_bbdev_log(ERR,
325                                 "Creating queue name for device %u queue %u failed",
326                                 dev->data->dev_id, q_id);
327                 return -ENAMETOOLONG;
328         }
329         q->deint_output = rte_zmalloc_socket(NULL,
330                         MAX_KW * sizeof(*q->deint_output),
331                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
332         if (q->deint_output == NULL) {
333                 rte_bbdev_log(ERR,
334                         "Failed to allocate queue memory for %s", name);
335                 goto free_q;
336         }
337
338         /* Allocate memory for Adapter output. */
339         ret = snprintf(name, RTE_RING_NAMESIZE,
340                         RTE_STR(DRIVER_NAME)"_adapter_output%u:%u",
341                         dev->data->dev_id, q_id);
342         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
343                 rte_bbdev_log(ERR,
344                                 "Creating queue name for device %u queue %u failed",
345                                 dev->data->dev_id, q_id);
346                 return -ENAMETOOLONG;
347         }
348         q->adapter_output = rte_zmalloc_socket(NULL,
349                         MAX_CB_SIZE * 6 * sizeof(*q->adapter_output),
350                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
351         if (q->adapter_output == NULL) {
352                 rte_bbdev_log(ERR,
353                         "Failed to allocate queue memory for %s", name);
354                 goto free_q;
355         }
356
357         /* Create ring for packets awaiting to be dequeued. */
358         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
359                         dev->data->dev_id, q_id);
360         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
361                 rte_bbdev_log(ERR,
362                                 "Creating queue name for device %u queue %u failed",
363                                 dev->data->dev_id, q_id);
364                 return -ENAMETOOLONG;
365         }
366         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
367                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
368         if (q->processed_pkts == NULL) {
369                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
370                 goto free_q;
371         }
372
373         q->type = queue_conf->op_type;
374
375         dev->data->queues[q_id].queue_private = q;
376         rte_bbdev_log_debug("setup device queue %s", name);
377         return 0;
378
379 free_q:
380         rte_ring_free(q->processed_pkts);
381         rte_free(q->enc_out);
382         rte_free(q->enc_in);
383         rte_free(q->ag);
384         rte_free(q->code_block);
385         rte_free(q->deint_input);
386         rte_free(q->deint_output);
387         rte_free(q->adapter_output);
388         rte_free(q);
389         return -EFAULT;
390 }
391
392 static const struct rte_bbdev_ops pmd_ops = {
393         .info_get = info_get,
394         .queue_setup = q_setup,
395         .queue_release = q_release
396 };
397
398 /* Checks if the encoder input buffer is correct.
399  * Returns 0 if it's valid, -1 otherwise.
400  */
401 static inline int
402 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
403                 const uint16_t in_length)
404 {
405         if (k_idx < 0) {
406                 rte_bbdev_log(ERR, "K Index is invalid");
407                 return -1;
408         }
409
410         if (in_length - (k >> 3) < 0) {
411                 rte_bbdev_log(ERR,
412                                 "Mismatch between input length (%u bytes) and K (%u bits)",
413                                 in_length, k);
414                 return -1;
415         }
416
417         if (k > MAX_CB_SIZE) {
418                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
419                                 k, MAX_CB_SIZE);
420                 return -1;
421         }
422
423         return 0;
424 }
425
426 /* Checks if the decoder input buffer is correct.
427  * Returns 0 if it's valid, -1 otherwise.
428  */
429 static inline int
430 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
431 {
432         if (k_idx < 0) {
433                 rte_bbdev_log(ERR, "K index is invalid");
434                 return -1;
435         }
436
437         if (in_length - kw < 0) {
438                 rte_bbdev_log(ERR,
439                                 "Mismatch between input length (%u) and kw (%u)",
440                                 in_length, kw);
441                 return -1;
442         }
443
444         if (kw > MAX_KW) {
445                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
446                                 kw, MAX_KW);
447                 return -1;
448         }
449
450         return 0;
451 }
452
453 static inline void
454 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
455                 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
456                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
457                 uint16_t in_offset, uint16_t out_offset, uint16_t total_left)
458 {
459         int ret;
460         int16_t k_idx;
461         uint16_t m;
462         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
463         uint64_t first_3_bytes = 0;
464         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
465         struct bblib_crc_request crc_req;
466         struct bblib_crc_response crc_resp;
467         struct bblib_turbo_encoder_request turbo_req;
468         struct bblib_turbo_encoder_response turbo_resp;
469         struct bblib_rate_match_dl_request rm_req;
470         struct bblib_rate_match_dl_response rm_resp;
471
472         k_idx = compute_idx(k);
473         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
474
475         /* CRC24A (for TB) */
476         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
477                 (enc->code_block_mode == 1)) {
478                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
479                 if (ret != 0) {
480                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
481                         return;
482                 }
483                 crc_req.data = in;
484                 crc_req.len = (k - 24) >> 3;
485                 /* Check if there is a room for CRC bits. If not use
486                  * the temporary buffer.
487                  */
488                 if (rte_pktmbuf_append(m_in, 3) == NULL) {
489                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
490                         in = q->enc_in;
491                 } else {
492                         /* Store 3 first bytes of next CB as they will be
493                          * overwritten by CRC bytes. If it is the last CB then
494                          * there is no point to store 3 next bytes and this
495                          * if..else branch will be omitted.
496                          */
497                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
498                 }
499
500                 crc_resp.data = in;
501                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
502         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
503                 /* CRC24B */
504                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
505                 if (ret != 0) {
506                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
507                         return;
508                 }
509                 crc_req.data = in;
510                 crc_req.len = (k - 24) >> 3;
511                 /* Check if there is a room for CRC bits. If this is the last
512                  * CB in TB. If not use temporary buffer.
513                  */
514                 if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
515                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
516                         in = q->enc_in;
517                 } else if (c - r > 1) {
518                         /* Store 3 first bytes of next CB as they will be
519                          * overwritten by CRC bytes. If it is the last CB then
520                          * there is no point to store 3 next bytes and this
521                          * if..else branch will be omitted.
522                          */
523                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
524                 }
525
526                 crc_resp.data = in;
527                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
528         } else {
529                 ret = is_enc_input_valid(k, k_idx, total_left);
530                 if (ret != 0) {
531                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
532                         return;
533                 }
534         }
535
536         /* Turbo encoder */
537
538         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
539          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
540          * So dst_data's length should be 3*(k/8) + 3 bytes.
541          * In Rate-matching bypass case outputs pointers passed to encoder
542          * (out0, out1 and out2) can directly point to addresses of output from
543          * turbo_enc entity.
544          */
545         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
546                 out0 = q->enc_out;
547                 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
548                 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
549         } else {
550                 out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
551                 if (out0 == NULL) {
552                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
553                         rte_bbdev_log(ERR,
554                                         "Too little space in output mbuf");
555                         return;
556                 }
557                 enc->output.length += (k >> 3) * 3 + 2;
558                 /* rte_bbdev_op_data.offset can be different than the
559                  * offset of the appended bytes
560                  */
561                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
562                 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
563                                 out_offset + (k >> 3) + 1);
564                 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
565                                 out_offset + 2 * ((k >> 3) + 1));
566         }
567
568         turbo_req.case_id = k_idx;
569         turbo_req.input_win = in;
570         turbo_req.length = k >> 3;
571         turbo_resp.output_win_0 = out0;
572         turbo_resp.output_win_1 = out1;
573         turbo_resp.output_win_2 = out2;
574         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
575                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
576                 rte_bbdev_log(ERR, "Turbo Encoder failed");
577                 return;
578         }
579
580         /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
581         if (first_3_bytes != 0)
582                 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
583
584         /* Rate-matching */
585         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
586                 /* get output data starting address */
587                 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, (e >> 3));
588                 if (rm_out == NULL) {
589                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
590                         rte_bbdev_log(ERR,
591                                         "Too little space in output mbuf");
592                         return;
593                 }
594                 /* rte_bbdev_op_data.offset can be different than the offset
595                  * of the appended bytes
596                  */
597                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
598
599                 /* index of current code block */
600                 rm_req.r = r;
601                 /* total number of code block */
602                 rm_req.C = c;
603                 /* For DL - 1, UL - 0 */
604                 rm_req.direction = 1;
605                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
606                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
607                  * known we can adjust those parameters
608                  */
609                 rm_req.Nsoft = ncb * rm_req.C;
610                 rm_req.KMIMO = 1;
611                 rm_req.MDL_HARQ = 1;
612                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
613                  * are used for E calculation. As E is already known we can
614                  * adjust those parameters
615                  */
616                 rm_req.NL = e;
617                 rm_req.Qm = 1;
618                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
619
620                 rm_req.rvidx = enc->rv_index;
621                 rm_req.Kidx = k_idx - 1;
622                 rm_req.nLen = k + 4;
623                 rm_req.tin0 = out0;
624                 rm_req.tin1 = out1;
625                 rm_req.tin2 = out2;
626                 rm_resp.output = rm_out;
627                 rm_resp.OutputLen = (e >> 3);
628                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
629                         rm_req.bypass_rvidx = 1;
630                 else
631                         rm_req.bypass_rvidx = 0;
632
633                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
634                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
635                         rte_bbdev_log(ERR, "Rate matching failed");
636                         return;
637                 }
638                 enc->output.length += rm_resp.OutputLen;
639         } else {
640                 /* Rate matching is bypassed */
641
642                 /* Completing last byte of out0 (where 4 tail bits are stored)
643                  * by moving first 4 bits from out1
644                  */
645                 tmp_out = (uint8_t *) --out1;
646                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
647                 tmp_out++;
648                 /* Shifting out1 data by 4 bits to the left */
649                 for (m = 0; m < k >> 3; ++m) {
650                         uint8_t *first = tmp_out;
651                         uint8_t second = *(tmp_out + 1);
652                         *first = (*first << 4) | ((second & 0xF0) >> 4);
653                         tmp_out++;
654                 }
655                 /* Shifting out2 data by 8 bits to the left */
656                 for (m = 0; m < (k >> 3) + 1; ++m) {
657                         *tmp_out = *(tmp_out + 1);
658                         tmp_out++;
659                 }
660                 *tmp_out = 0;
661         }
662 }
663
664 static inline void
665 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
666 {
667         uint8_t c, r, crc24_bits = 0;
668         uint16_t k, ncb;
669         uint32_t e;
670         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
671         uint16_t in_offset = enc->input.offset;
672         uint16_t out_offset = enc->output.offset;
673         struct rte_mbuf *m_in = enc->input.data;
674         struct rte_mbuf *m_out = enc->output.data;
675         uint16_t total_left = enc->input.length;
676
677         /* Clear op status */
678         op->status = 0;
679
680         if (total_left > MAX_TB_SIZE >> 3) {
681                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
682                                 total_left, MAX_TB_SIZE);
683                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
684                 return;
685         }
686
687         if (m_in == NULL || m_out == NULL) {
688                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
689                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
690                 return;
691         }
692
693         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
694                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
695                 crc24_bits = 24;
696
697         if (enc->code_block_mode == 0) { /* For Transport Block mode */
698                 c = enc->tb_params.c;
699                 r = enc->tb_params.r;
700         } else {/* For Code Block mode */
701                 c = 1;
702                 r = 0;
703         }
704
705         while (total_left > 0 && r < c) {
706                 if (enc->code_block_mode == 0) {
707                         k = (r < enc->tb_params.c_neg) ?
708                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
709                         ncb = (r < enc->tb_params.c_neg) ?
710                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
711                         e = (r < enc->tb_params.cab) ?
712                                 enc->tb_params.ea : enc->tb_params.eb;
713                 } else {
714                         k = enc->cb_params.k;
715                         ncb = enc->cb_params.ncb;
716                         e = enc->cb_params.e;
717                 }
718
719                 process_enc_cb(q, op, r, c, k, ncb, e, m_in,
720                                 m_out, in_offset, out_offset, total_left);
721                 /* Update total_left */
722                 total_left -= (k - crc24_bits) >> 3;
723                 /* Update offsets for next CBs (if exist) */
724                 in_offset += (k - crc24_bits) >> 3;
725                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
726                         out_offset += e >> 3;
727                 else
728                         out_offset += (k >> 3) * 3 + 2;
729                 r++;
730         }
731
732         /* check if all input data was processed */
733         if (total_left != 0) {
734                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
735                 rte_bbdev_log(ERR,
736                                 "Mismatch between mbuf length and included CBs sizes");
737         }
738 }
739
740 static inline uint16_t
741 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
742                 uint16_t nb_ops)
743 {
744         uint16_t i;
745
746         for (i = 0; i < nb_ops; ++i)
747                 enqueue_enc_one_op(q, ops[i]);
748
749         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
750                         NULL);
751 }
752
753 /* Remove the padding bytes from a cyclic buffer.
754  * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
755  * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
756  * The output buffer is a data stream wk with pruned padding bytes. It's length
757  * is 3*D bytes and the order of non-padding bytes is preserved.
758  */
759 static inline void
760 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
761                 uint16_t ncb)
762 {
763         uint32_t in_idx, out_idx, c_idx;
764         const uint32_t d = k + 4;
765         const uint32_t kw = (ncb / 3);
766         const uint32_t nd = kw - d;
767         const uint32_t r_subblock = kw / C_SUBBLOCK;
768         /* Inter-column permutation pattern */
769         const uint32_t P[C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10,
770                         26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19,
771                         11, 27, 7, 23, 15, 31};
772         in_idx = 0;
773         out_idx = 0;
774
775         /* The padding bytes are at the first Nd positions in the first row. */
776         for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
777                 if (P[c_idx] < nd) {
778                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
779                                         r_subblock - 1);
780                         out_idx += r_subblock - 1;
781                 } else {
782                         rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
783                         out_idx += r_subblock;
784                 }
785         }
786
787         /* First and second parity bits sub-blocks are interlaced. */
788         for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
789                         in_idx += 2 * r_subblock, ++c_idx) {
790                 uint32_t second_block_c_idx = P[c_idx];
791                 uint32_t third_block_c_idx = P[c_idx] + 1;
792
793                 if (second_block_c_idx < nd && third_block_c_idx < nd) {
794                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
795                                         2 * r_subblock - 2);
796                         out_idx += 2 * r_subblock - 2;
797                 } else if (second_block_c_idx >= nd &&
798                                 third_block_c_idx >= nd) {
799                         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
800                         out_idx += 2 * r_subblock;
801                 } else if (second_block_c_idx < nd) {
802                         out[out_idx++] = in[in_idx];
803                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
804                                         2 * r_subblock - 2);
805                         out_idx += 2 * r_subblock - 2;
806                 } else {
807                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
808                                         2 * r_subblock - 1);
809                         out_idx += 2 * r_subblock - 1;
810                 }
811         }
812
813         /* Last interlaced row is different - its last byte is the only padding
814          * byte. We can have from 2 up to 26 padding bytes (Nd) per sub-block.
815          * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
816          * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
817          * (moving to another column). 2nd parity sub-block uses the same
818          * inter-column permutation pattern as the systematic and 1st parity
819          * sub-blocks but it adds '1' to the resulting index and calculates the
820          * modulus of the result and Kw. Last column is mapped to itself (id 31)
821          * so the first byte taken from the 2nd parity sub-block will be the
822          * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
823          * last byte will be the first byte from the sub-block:
824          * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't  be smaller
825          * than 2 so we know that bytes with ids 0 and 1 must be the padding
826          * bytes. The bytes from the 1st parity sub-block are the bytes from the
827          * 31st column - Nd can't be greater than 26 so we are sure that there
828          * are no padding bytes in 31st column.
829          */
830         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
831 }
832
833 static inline void
834 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
835                 uint16_t ncb)
836 {
837         uint16_t d = k + 4;
838         uint16_t kpi = ncb / 3;
839         uint16_t nd = kpi - d;
840
841         rte_memcpy(&out[nd], in, d);
842         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
843         rte_memcpy(&out[nd + 2 * (kpi + 64)], &in[2 * kpi], d);
844 }
845
846 static inline void
847 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
848                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
849                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
850                 bool check_crc_24b, uint16_t total_left)
851 {
852         int ret;
853         int32_t k_idx;
854         int32_t iter_cnt;
855         uint8_t *in, *out, *adapter_input;
856         int32_t ncb, ncb_without_null;
857         struct bblib_turbo_adapter_ul_response adapter_resp;
858         struct bblib_turbo_adapter_ul_request adapter_req;
859         struct bblib_turbo_decoder_request turbo_req;
860         struct bblib_turbo_decoder_response turbo_resp;
861         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
862
863         k_idx = compute_idx(k);
864
865         ret = is_dec_input_valid(k_idx, kw, total_left);
866         if (ret != 0) {
867                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
868                 return;
869         }
870
871         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
872         ncb = kw;
873         ncb_without_null = (k + 4) * 3;
874
875         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
876                 struct bblib_deinterleave_ul_request deint_req;
877                 struct bblib_deinterleave_ul_response deint_resp;
878
879                 /* SW decoder accepts only a circular buffer without NULL bytes
880                  * so the input needs to be converted.
881                  */
882                 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
883
884                 deint_req.pharqbuffer = q->deint_input;
885                 deint_req.ncb = ncb_without_null;
886                 deint_resp.pinteleavebuffer = q->deint_output;
887                 bblib_deinterleave_ul(&deint_req, &deint_resp);
888         } else
889                 move_padding_bytes(in, q->deint_output, k, ncb);
890
891         adapter_input = q->deint_output;
892
893         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
894                 adapter_req.isinverted = 1;
895         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
896                 adapter_req.isinverted = 0;
897         else {
898                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
899                 rte_bbdev_log(ERR, "LLR format wasn't specified");
900                 return;
901         }
902
903         adapter_req.ncb = ncb_without_null;
904         adapter_req.pinteleavebuffer = adapter_input;
905         adapter_resp.pharqout = q->adapter_output;
906         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
907
908         out = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3));
909         if (out == NULL) {
910                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
911                 rte_bbdev_log(ERR, "Too little space in output mbuf");
912                 return;
913         }
914         /* rte_bbdev_op_data.offset can be different than the offset of the
915          * appended bytes
916          */
917         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
918         if (check_crc_24b)
919                 turbo_req.c = c + 1;
920         else
921                 turbo_req.c = c;
922         turbo_req.input = (int8_t *)q->adapter_output;
923         turbo_req.k = k;
924         turbo_req.k_idx = k_idx;
925         turbo_req.max_iter_num = dec->iter_max;
926         turbo_resp.ag_buf = q->ag;
927         turbo_resp.cb_buf = q->code_block;
928         turbo_resp.output = out;
929         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
930         dec->hard_output.length += (k >> 3);
931
932         if (iter_cnt > 0) {
933                 /* Temporary solution for returned iter_count from SDK */
934                 iter_cnt = (iter_cnt - 1) / 2;
935                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
936         } else {
937                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
938                 rte_bbdev_log(ERR, "Turbo Decoder failed");
939                 return;
940         }
941 }
942
943 static inline void
944 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
945 {
946         uint8_t c, r = 0;
947         uint16_t kw, k = 0;
948         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
949         struct rte_mbuf *m_in = dec->input.data;
950         struct rte_mbuf *m_out = dec->hard_output.data;
951         uint16_t in_offset = dec->input.offset;
952         uint16_t total_left = dec->input.length;
953         uint16_t out_offset = dec->hard_output.offset;
954
955         /* Clear op status */
956         op->status = 0;
957
958         if (m_in == NULL || m_out == NULL) {
959                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
960                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
961                 return;
962         }
963
964         if (dec->code_block_mode == 0) { /* For Transport Block mode */
965                 c = dec->tb_params.c;
966         } else { /* For Code Block mode */
967                 k = dec->cb_params.k;
968                 c = 1;
969         }
970
971         while (total_left > 0) {
972                 if (dec->code_block_mode == 0)
973                         k = (r < dec->tb_params.c_neg) ?
974                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
975
976                 /* Calculates circular buffer size (Kw).
977                  * According to 3gpp 36.212 section 5.1.4.2
978                  *   Kw = 3 * Kpi,
979                  * where:
980                  *   Kpi = nCol * nRow
981                  * where nCol is 32 and nRow can be calculated from:
982                  *   D =< nCol * nRow
983                  * where D is the size of each output from turbo encoder block
984                  * (k + 4).
985                  */
986                 kw = RTE_ALIGN_CEIL(k + 4, C_SUBBLOCK) * 3;
987
988                 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
989                                 out_offset, check_bit(dec->op_flags,
990                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), total_left);
991                 /* As a result of decoding we get Code Block with included
992                  * decoded CRC24 at the end of Code Block. Type of CRC24 is
993                  * specified by flag.
994                  */
995
996                 /* Update total_left */
997                 total_left -= kw;
998                 /* Update offsets for next CBs (if exist) */
999                 in_offset += kw;
1000                 out_offset += (k >> 3);
1001                 r++;
1002         }
1003         if (total_left != 0) {
1004                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1005                 rte_bbdev_log(ERR,
1006                                 "Mismatch between mbuf length and included Circular buffer sizes");
1007         }
1008 }
1009
1010 static inline uint16_t
1011 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1012                 uint16_t nb_ops)
1013 {
1014         uint16_t i;
1015
1016         for (i = 0; i < nb_ops; ++i)
1017                 enqueue_dec_one_op(q, ops[i]);
1018
1019         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1020                         NULL);
1021 }
1022
1023 /* Enqueue burst */
1024 static uint16_t
1025 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1026                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1027 {
1028         void *queue = q_data->queue_private;
1029         struct turbo_sw_queue *q = queue;
1030         uint16_t nb_enqueued = 0;
1031
1032         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops);
1033
1034         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1035         q_data->queue_stats.enqueued_count += nb_enqueued;
1036
1037         return nb_enqueued;
1038 }
1039
1040 /* Enqueue burst */
1041 static uint16_t
1042 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1043                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1044 {
1045         void *queue = q_data->queue_private;
1046         struct turbo_sw_queue *q = queue;
1047         uint16_t nb_enqueued = 0;
1048
1049         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
1050
1051         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1052         q_data->queue_stats.enqueued_count += nb_enqueued;
1053
1054         return nb_enqueued;
1055 }
1056
1057 /* Dequeue decode burst */
1058 static uint16_t
1059 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1060                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1061 {
1062         struct turbo_sw_queue *q = q_data->queue_private;
1063         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1064                         (void **)ops, nb_ops, NULL);
1065         q_data->queue_stats.dequeued_count += nb_dequeued;
1066
1067         return nb_dequeued;
1068 }
1069
1070 /* Dequeue encode burst */
1071 static uint16_t
1072 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1073                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1074 {
1075         struct turbo_sw_queue *q = q_data->queue_private;
1076         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1077                         (void **)ops, nb_ops, NULL);
1078         q_data->queue_stats.dequeued_count += nb_dequeued;
1079
1080         return nb_dequeued;
1081 }
1082
1083 /* Parse 16bit integer from string argument */
1084 static inline int
1085 parse_u16_arg(const char *key, const char *value, void *extra_args)
1086 {
1087         uint16_t *u16 = extra_args;
1088         unsigned int long result;
1089
1090         if ((value == NULL) || (extra_args == NULL))
1091                 return -EINVAL;
1092         errno = 0;
1093         result = strtoul(value, NULL, 0);
1094         if ((result >= (1 << 16)) || (errno != 0)) {
1095                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1096                 return -ERANGE;
1097         }
1098         *u16 = (uint16_t)result;
1099         return 0;
1100 }
1101
1102 /* Parse parameters used to create device */
1103 static int
1104 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1105 {
1106         struct rte_kvargs *kvlist = NULL;
1107         int ret = 0;
1108
1109         if (params == NULL)
1110                 return -EINVAL;
1111         if (input_args) {
1112                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1113                 if (kvlist == NULL)
1114                         return -EFAULT;
1115
1116                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1117                                         &parse_u16_arg, &params->queues_num);
1118                 if (ret < 0)
1119                         goto exit;
1120
1121                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1122                                         &parse_u16_arg, &params->socket_id);
1123                 if (ret < 0)
1124                         goto exit;
1125
1126                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1127                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1128                                         RTE_MAX_NUMA_NODES);
1129                         goto exit;
1130                 }
1131         }
1132
1133 exit:
1134         if (kvlist)
1135                 rte_kvargs_free(kvlist);
1136         return ret;
1137 }
1138
1139 /* Create device */
1140 static int
1141 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1142                 struct turbo_sw_params *init_params)
1143 {
1144         struct rte_bbdev *bbdev;
1145         const char *name = rte_vdev_device_name(vdev);
1146
1147         bbdev = rte_bbdev_allocate(name);
1148         if (bbdev == NULL)
1149                 return -ENODEV;
1150
1151         bbdev->data->dev_private = rte_zmalloc_socket(name,
1152                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1153                         init_params->socket_id);
1154         if (bbdev->data->dev_private == NULL) {
1155                 rte_bbdev_release(bbdev);
1156                 return -ENOMEM;
1157         }
1158
1159         bbdev->dev_ops = &pmd_ops;
1160         bbdev->device = &vdev->device;
1161         bbdev->data->socket_id = init_params->socket_id;
1162         bbdev->intr_handle = NULL;
1163
1164         /* register rx/tx burst functions for data path */
1165         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1166         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1167         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1168         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1169         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1170                         init_params->queues_num;
1171
1172         return 0;
1173 }
1174
1175 /* Initialise device */
1176 static int
1177 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1178 {
1179         struct turbo_sw_params init_params = {
1180                 rte_socket_id(),
1181                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1182         };
1183         const char *name;
1184         const char *input_args;
1185
1186         if (vdev == NULL)
1187                 return -EINVAL;
1188
1189         name = rte_vdev_device_name(vdev);
1190         if (name == NULL)
1191                 return -EINVAL;
1192         input_args = rte_vdev_device_args(vdev);
1193         parse_turbo_sw_params(&init_params, input_args);
1194
1195         rte_bbdev_log_debug(
1196                         "Initialising %s on NUMA node %d with max queues: %d\n",
1197                         name, init_params.socket_id, init_params.queues_num);
1198
1199         return turbo_sw_bbdev_create(vdev, &init_params);
1200 }
1201
1202 /* Uninitialise device */
1203 static int
1204 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1205 {
1206         struct rte_bbdev *bbdev;
1207         const char *name;
1208
1209         if (vdev == NULL)
1210                 return -EINVAL;
1211
1212         name = rte_vdev_device_name(vdev);
1213         if (name == NULL)
1214                 return -EINVAL;
1215
1216         bbdev = rte_bbdev_get_named_dev(name);
1217         if (bbdev == NULL)
1218                 return -EINVAL;
1219
1220         rte_free(bbdev->data->dev_private);
1221
1222         return rte_bbdev_release(bbdev);
1223 }
1224
1225 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1226         .probe = turbo_sw_bbdev_probe,
1227         .remove = turbo_sw_bbdev_remove
1228 };
1229
1230 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1231 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1232         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1233         TURBO_SW_SOCKET_ID_ARG"=<int>");
1234
1235 RTE_INIT(null_bbdev_init_log);
1236 static void
1237 null_bbdev_init_log(void)
1238 {
1239         bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1240         if (bbdev_turbo_sw_logtype >= 0)
1241                 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1242 }