net/txgbe: add multi-speed link setup
[dpdk.git] / drivers / common / cpt / cpt_ucode.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #ifndef _CPT_UCODE_H_
6 #define _CPT_UCODE_H_
7 #include <stdbool.h>
8
9 #include "cpt_common.h"
10 #include "cpt_hw_types.h"
11 #include "cpt_mcode_defines.h"
12
13 /*
14  * This file defines functions that are interfaces to microcode spec.
15  *
16  */
17
18 static uint8_t zuc_d[32] = {
19         0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
20         0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
21         0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
22         0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
23 };
24
25 static __rte_always_inline void
26 gen_key_snow3g(const uint8_t *ck, uint32_t *keyx)
27 {
28         int i, base;
29
30         for (i = 0; i < 4; i++) {
31                 base = 4 * i;
32                 keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
33                         (ck[base + 2] << 8) | (ck[base + 3]);
34                 keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
35         }
36 }
37
38 static __rte_always_inline int
39 cpt_mac_len_verify(struct rte_crypto_auth_xform *auth)
40 {
41         uint16_t mac_len = auth->digest_length;
42         int ret;
43
44         switch (auth->algo) {
45         case RTE_CRYPTO_AUTH_MD5:
46         case RTE_CRYPTO_AUTH_MD5_HMAC:
47                 ret = (mac_len == 16) ? 0 : -1;
48                 break;
49         case RTE_CRYPTO_AUTH_SHA1:
50         case RTE_CRYPTO_AUTH_SHA1_HMAC:
51                 ret = (mac_len == 20) ? 0 : -1;
52                 break;
53         case RTE_CRYPTO_AUTH_SHA224:
54         case RTE_CRYPTO_AUTH_SHA224_HMAC:
55                 ret = (mac_len == 28) ? 0 : -1;
56                 break;
57         case RTE_CRYPTO_AUTH_SHA256:
58         case RTE_CRYPTO_AUTH_SHA256_HMAC:
59                 ret = (mac_len == 32) ? 0 : -1;
60                 break;
61         case RTE_CRYPTO_AUTH_SHA384:
62         case RTE_CRYPTO_AUTH_SHA384_HMAC:
63                 ret = (mac_len == 48) ? 0 : -1;
64                 break;
65         case RTE_CRYPTO_AUTH_SHA512:
66         case RTE_CRYPTO_AUTH_SHA512_HMAC:
67                 ret = (mac_len == 64) ? 0 : -1;
68                 break;
69         case RTE_CRYPTO_AUTH_NULL:
70                 ret = 0;
71                 break;
72         default:
73                 ret = -1;
74         }
75
76         return ret;
77 }
78
79 static __rte_always_inline void
80 cpt_fc_salt_update(void *ctx,
81                    uint8_t *salt)
82 {
83         struct cpt_ctx *cpt_ctx = ctx;
84         memcpy(&cpt_ctx->fctx.enc.encr_iv, salt, 4);
85 }
86
87 static __rte_always_inline int
88 cpt_fc_ciph_validate_key_aes(uint16_t key_len)
89 {
90         switch (key_len) {
91         case 16:
92         case 24:
93         case 32:
94                 return 0;
95         default:
96                 return -1;
97         }
98 }
99
100 static __rte_always_inline int
101 cpt_fc_ciph_set_type(cipher_type_t type, struct cpt_ctx *ctx, uint16_t key_len)
102 {
103         int fc_type = 0;
104         switch (type) {
105         case PASSTHROUGH:
106                 fc_type = FC_GEN;
107                 break;
108         case DES3_CBC:
109         case DES3_ECB:
110                 fc_type = FC_GEN;
111                 break;
112         case AES_CBC:
113         case AES_ECB:
114         case AES_CFB:
115         case AES_CTR:
116         case AES_GCM:
117                 if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
118                         return -1;
119                 fc_type = FC_GEN;
120                 break;
121         case CHACHA20:
122                 fc_type = FC_GEN;
123                 break;
124         case AES_XTS:
125                 key_len = key_len / 2;
126                 if (unlikely(key_len == 24)) {
127                         CPT_LOG_DP_ERR("Invalid AES key len for XTS");
128                         return -1;
129                 }
130                 if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
131                         return -1;
132                 fc_type = FC_GEN;
133                 break;
134         case ZUC_EEA3:
135         case SNOW3G_UEA2:
136                 if (unlikely(key_len != 16))
137                         return -1;
138                 /* No support for AEAD yet */
139                 if (unlikely(ctx->hash_type))
140                         return -1;
141                 fc_type = ZUC_SNOW3G;
142                 break;
143         case KASUMI_F8_CBC:
144         case KASUMI_F8_ECB:
145                 if (unlikely(key_len != 16))
146                         return -1;
147                 /* No support for AEAD yet */
148                 if (unlikely(ctx->hash_type))
149                         return -1;
150                 fc_type = KASUMI;
151                 break;
152         default:
153                 return -1;
154         }
155
156         ctx->fc_type = fc_type;
157         return 0;
158 }
159
160 static __rte_always_inline void
161 cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
162 {
163         cpt_ctx->enc_cipher = 0;
164         fctx->enc.enc_cipher = 0;
165 }
166
167 static __rte_always_inline void
168 cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
169 {
170         mc_aes_type_t aes_key_type = 0;
171         switch (key_len) {
172         case 16:
173                 aes_key_type = AES_128_BIT;
174                 break;
175         case 24:
176                 aes_key_type = AES_192_BIT;
177                 break;
178         case 32:
179                 aes_key_type = AES_256_BIT;
180                 break;
181         default:
182                 /* This should not happen */
183                 CPT_LOG_DP_ERR("Invalid AES key len");
184                 return;
185         }
186         fctx->enc.aes_key = aes_key_type;
187 }
188
189 static __rte_always_inline void
190 cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, const uint8_t *key,
191                 uint16_t key_len)
192 {
193         uint32_t keyx[4];
194         cpt_ctx->snow3g = 1;
195         gen_key_snow3g(key, keyx);
196         memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
197         cpt_ctx->zsk_flags = 0;
198 }
199
200 static __rte_always_inline void
201 cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, const uint8_t *key,
202                 uint16_t key_len)
203 {
204         cpt_ctx->snow3g = 0;
205         memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
206         memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
207         cpt_ctx->zsk_flags = 0;
208 }
209
210 static __rte_always_inline void
211 cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, const uint8_t *key,
212                 uint16_t key_len)
213 {
214         cpt_ctx->k_ecb = 1;
215         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
216         cpt_ctx->zsk_flags = 0;
217 }
218
219 static __rte_always_inline void
220 cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, const uint8_t *key,
221                 uint16_t key_len)
222 {
223         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
224         cpt_ctx->zsk_flags = 0;
225 }
226
227 static __rte_always_inline int
228 cpt_fc_ciph_set_key(void *ctx, cipher_type_t type, const uint8_t *key,
229                     uint16_t key_len, uint8_t *salt)
230 {
231         struct cpt_ctx *cpt_ctx = ctx;
232         mc_fc_context_t *fctx = &cpt_ctx->fctx;
233         int ret;
234
235         ret = cpt_fc_ciph_set_type(type, cpt_ctx, key_len);
236         if (unlikely(ret))
237                 return -1;
238
239         if (cpt_ctx->fc_type == FC_GEN) {
240                 /*
241                  * We need to always say IV is from DPTR as user can
242                  * sometimes iverride IV per operation.
243                  */
244                 fctx->enc.iv_source = CPT_FROM_DPTR;
245
246                 if (cpt_ctx->auth_key_len > 64)
247                         return -1;
248         }
249
250         switch (type) {
251         case PASSTHROUGH:
252                 cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
253                 goto success;
254         case DES3_CBC:
255                 /* CPT performs DES using 3DES with the 8B DES-key
256                  * replicated 2 more times to match the 24B 3DES-key.
257                  * Eg. If org. key is "0x0a 0x0b", then new key is
258                  * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
259                  */
260                 if (key_len == 8) {
261                         /* Skipping the first 8B as it will be copied
262                          * in the regular code flow
263                          */
264                         memcpy(fctx->enc.encr_key+key_len, key, key_len);
265                         memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
266                 }
267                 break;
268         case DES3_ECB:
269                 /* For DES3_ECB IV need to be from CTX. */
270                 fctx->enc.iv_source = CPT_FROM_CTX;
271                 break;
272         case AES_CBC:
273         case AES_ECB:
274         case AES_CFB:
275         case AES_CTR:
276         case CHACHA20:
277                 cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
278                 break;
279         case AES_GCM:
280                 /* Even though iv source is from dptr,
281                  * aes_gcm salt is taken from ctx
282                  */
283                 if (salt) {
284                         memcpy(fctx->enc.encr_iv, salt, 4);
285                         /* Assuming it was just salt update
286                          * and nothing else
287                          */
288                         if (!key)
289                                 goto success;
290                 }
291                 cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
292                 break;
293         case AES_XTS:
294                 key_len = key_len / 2;
295                 cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
296
297                 /* Copy key2 for XTS into ipad */
298                 memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
299                 memcpy(fctx->hmac.ipad, &key[key_len], key_len);
300                 break;
301         case SNOW3G_UEA2:
302                 cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
303                 goto success;
304         case ZUC_EEA3:
305                 cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
306                 goto success;
307         case KASUMI_F8_ECB:
308                 cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
309                 goto success;
310         case KASUMI_F8_CBC:
311                 cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
312                 goto success;
313         default:
314                 return -1;
315         }
316
317         /* Only for FC_GEN case */
318
319         /* For GMAC auth, cipher must be NULL */
320         if (cpt_ctx->hash_type != GMAC_TYPE)
321                 fctx->enc.enc_cipher = type;
322
323         memcpy(fctx->enc.encr_key, key, key_len);
324
325 success:
326         cpt_ctx->enc_cipher = type;
327
328         return 0;
329 }
330
331 static __rte_always_inline uint32_t
332 fill_sg_comp(sg_comp_t *list,
333              uint32_t i,
334              phys_addr_t dma_addr,
335              uint32_t size)
336 {
337         sg_comp_t *to = &list[i>>2];
338
339         to->u.s.len[i%4] = rte_cpu_to_be_16(size);
340         to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
341         i++;
342         return i;
343 }
344
345 static __rte_always_inline uint32_t
346 fill_sg_comp_from_buf(sg_comp_t *list,
347                       uint32_t i,
348                       buf_ptr_t *from)
349 {
350         sg_comp_t *to = &list[i>>2];
351
352         to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
353         to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
354         i++;
355         return i;
356 }
357
358 static __rte_always_inline uint32_t
359 fill_sg_comp_from_buf_min(sg_comp_t *list,
360                           uint32_t i,
361                           buf_ptr_t *from,
362                           uint32_t *psize)
363 {
364         sg_comp_t *to = &list[i >> 2];
365         uint32_t size = *psize;
366         uint32_t e_len;
367
368         e_len = (size > from->size) ? from->size : size;
369         to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
370         to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
371         *psize -= e_len;
372         i++;
373         return i;
374 }
375
376 /*
377  * This fills the MC expected SGIO list
378  * from IOV given by user.
379  */
380 static __rte_always_inline uint32_t
381 fill_sg_comp_from_iov(sg_comp_t *list,
382                       uint32_t i,
383                       iov_ptr_t *from, uint32_t from_offset,
384                       uint32_t *psize, buf_ptr_t *extra_buf,
385                       uint32_t extra_offset)
386 {
387         int32_t j;
388         uint32_t extra_len = extra_buf ? extra_buf->size : 0;
389         uint32_t size = *psize;
390         buf_ptr_t *bufs;
391
392         bufs = from->bufs;
393         for (j = 0; (j < from->buf_cnt) && size; j++) {
394                 phys_addr_t e_dma_addr;
395                 uint32_t e_len;
396                 sg_comp_t *to = &list[i >> 2];
397
398                 if (unlikely(from_offset)) {
399                         if (from_offset >= bufs[j].size) {
400                                 from_offset -= bufs[j].size;
401                                 continue;
402                         }
403                         e_dma_addr = bufs[j].dma_addr + from_offset;
404                         e_len = (size > (bufs[j].size - from_offset)) ?
405                                 (bufs[j].size - from_offset) : size;
406                         from_offset = 0;
407                 } else {
408                         e_dma_addr = bufs[j].dma_addr;
409                         e_len = (size > bufs[j].size) ?
410                                 bufs[j].size : size;
411                 }
412
413                 to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
414                 to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
415
416                 if (extra_len && (e_len >= extra_offset)) {
417                         /* Break the data at given offset */
418                         uint32_t next_len = e_len - extra_offset;
419                         phys_addr_t next_dma = e_dma_addr + extra_offset;
420
421                         if (!extra_offset) {
422                                 i--;
423                         } else {
424                                 e_len = extra_offset;
425                                 size -= e_len;
426                                 to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
427                         }
428
429                         extra_len = RTE_MIN(extra_len, size);
430                         /* Insert extra data ptr */
431                         if (extra_len) {
432                                 i++;
433                                 to = &list[i >> 2];
434                                 to->u.s.len[i % 4] =
435                                         rte_cpu_to_be_16(extra_len);
436                                 to->ptr[i % 4] =
437                                         rte_cpu_to_be_64(extra_buf->dma_addr);
438                                 size -= extra_len;
439                         }
440
441                         next_len = RTE_MIN(next_len, size);
442                         /* insert the rest of the data */
443                         if (next_len) {
444                                 i++;
445                                 to = &list[i >> 2];
446                                 to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
447                                 to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
448                                 size -= next_len;
449                         }
450                         extra_len = 0;
451
452                 } else {
453                         size -= e_len;
454                 }
455                 if (extra_offset)
456                         extra_offset -= size;
457                 i++;
458         }
459
460         *psize = size;
461         return (uint32_t)i;
462 }
463
464 static __rte_always_inline void
465 cpt_digest_gen_prep(uint32_t flags,
466                     uint64_t d_lens,
467                     digest_params_t *params,
468                     void *op,
469                     void **prep_req)
470 {
471         struct cpt_request_info *req;
472         uint32_t size, i;
473         uint16_t data_len, mac_len, key_len;
474         auth_type_t hash_type;
475         buf_ptr_t *meta_p;
476         struct cpt_ctx *ctx;
477         sg_comp_t *gather_comp;
478         sg_comp_t *scatter_comp;
479         uint8_t *in_buffer;
480         uint32_t g_size_bytes, s_size_bytes;
481         uint64_t dptr_dma, rptr_dma;
482         vq_cmd_word0_t vq_cmd_w0;
483         vq_cmd_word3_t vq_cmd_w3;
484         void *c_vaddr, *m_vaddr;
485         uint64_t c_dma, m_dma;
486         opcode_info_t opcode;
487
488         ctx = params->ctx_buf.vaddr;
489         meta_p = &params->meta_buf;
490
491         m_vaddr = meta_p->vaddr;
492         m_dma = meta_p->dma_addr;
493
494         /*
495          * Save initial space that followed app data for completion code &
496          * alternate completion code to fall in same cache line as app data
497          */
498         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
499         m_dma += COMPLETION_CODE_SIZE;
500         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
501                 (uint8_t *)m_vaddr;
502         c_vaddr = (uint8_t *)m_vaddr + size;
503         c_dma = m_dma + size;
504         size += sizeof(cpt_res_s_t);
505
506         m_vaddr = (uint8_t *)m_vaddr + size;
507         m_dma += size;
508
509         req = m_vaddr;
510
511         size = sizeof(struct cpt_request_info);
512         m_vaddr = (uint8_t *)m_vaddr + size;
513         m_dma += size;
514
515         hash_type = ctx->hash_type;
516         mac_len = ctx->mac_len;
517         key_len = ctx->auth_key_len;
518         data_len = AUTH_DLEN(d_lens);
519
520         /*GP op header */
521         vq_cmd_w0.u64 = 0;
522         vq_cmd_w0.s.param2 = ((uint16_t)hash_type << 8);
523         if (ctx->hmac) {
524                 opcode.s.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
525                 vq_cmd_w0.s.param1 = key_len;
526                 vq_cmd_w0.s.dlen = data_len + ROUNDUP8(key_len);
527         } else {
528                 opcode.s.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
529                 vq_cmd_w0.s.param1 = 0;
530                 vq_cmd_w0.s.dlen = data_len;
531         }
532
533         opcode.s.minor = 0;
534
535         /* Null auth only case enters the if */
536         if (unlikely(!hash_type && !ctx->enc_cipher)) {
537                 opcode.s.major = CPT_MAJOR_OP_MISC;
538                 /* Minor op is passthrough */
539                 opcode.s.minor = 0x03;
540                 /* Send out completion code only */
541                 vq_cmd_w0.s.param2 = 0x1;
542         }
543
544         vq_cmd_w0.s.opcode = opcode.flags;
545
546         /* DPTR has SG list */
547         in_buffer = m_vaddr;
548         dptr_dma = m_dma;
549
550         ((uint16_t *)in_buffer)[0] = 0;
551         ((uint16_t *)in_buffer)[1] = 0;
552
553         /* TODO Add error check if space will be sufficient */
554         gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
555
556         /*
557          * Input gather list
558          */
559
560         i = 0;
561
562         if (ctx->hmac) {
563                 uint64_t k_dma = params->ctx_buf.dma_addr +
564                         offsetof(struct cpt_ctx, auth_key);
565                 /* Key */
566                 i = fill_sg_comp(gather_comp, i, k_dma, ROUNDUP8(key_len));
567         }
568
569         /* input data */
570         size = data_len;
571         if (size) {
572                 i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
573                                           0, &size, NULL, 0);
574                 if (unlikely(size)) {
575                         CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
576                                          " by %dB", size);
577                         return;
578                 }
579         } else {
580                 /*
581                  * Looks like we need to support zero data
582                  * gather ptr in case of hash & hmac
583                  */
584                 i++;
585         }
586         ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
587         g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
588
589         /*
590          * Output Gather list
591          */
592
593         i = 0;
594         scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
595
596         if (flags & VALID_MAC_BUF) {
597                 if (unlikely(params->mac_buf.size < mac_len)) {
598                         CPT_LOG_DP_ERR("Insufficient MAC size");
599                         return;
600                 }
601
602                 size = mac_len;
603                 i = fill_sg_comp_from_buf_min(scatter_comp, i,
604                                               &params->mac_buf, &size);
605         } else {
606                 size = mac_len;
607                 i = fill_sg_comp_from_iov(scatter_comp, i,
608                                           params->src_iov, data_len,
609                                           &size, NULL, 0);
610                 if (unlikely(size)) {
611                         CPT_LOG_DP_ERR("Insufficient dst IOV size, short by"
612                                        " %dB", size);
613                         return;
614                 }
615         }
616
617         ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
618         s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
619
620         size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
621
622         /* This is DPTR len incase of SG mode */
623         vq_cmd_w0.s.dlen = size;
624
625         m_vaddr = (uint8_t *)m_vaddr + size;
626         m_dma += size;
627
628         /* cpt alternate completion address saved earlier */
629         req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
630         *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
631         rptr_dma = c_dma - 8;
632
633         req->ist.ei1 = dptr_dma;
634         req->ist.ei2 = rptr_dma;
635
636         /* vq command w3 */
637         vq_cmd_w3.u64 = 0;
638
639         /* 16 byte aligned cpt res address */
640         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
641         *req->completion_addr = COMPLETION_CODE_INIT;
642         req->comp_baddr  = c_dma;
643
644         /* Fill microcode part of instruction */
645         req->ist.ei0 = vq_cmd_w0.u64;
646         req->ist.ei3 = vq_cmd_w3.u64;
647
648         req->op = op;
649
650         *prep_req = req;
651         return;
652 }
653
654 static __rte_always_inline void
655 cpt_enc_hmac_prep(uint32_t flags,
656                   uint64_t d_offs,
657                   uint64_t d_lens,
658                   fc_params_t *fc_params,
659                   void *op,
660                   void **prep_req)
661 {
662         uint32_t iv_offset = 0;
663         int32_t inputlen, outputlen, enc_dlen, auth_dlen;
664         struct cpt_ctx *cpt_ctx;
665         uint32_t cipher_type, hash_type;
666         uint32_t mac_len, size;
667         uint8_t iv_len = 16;
668         struct cpt_request_info *req;
669         buf_ptr_t *meta_p, *aad_buf = NULL;
670         uint32_t encr_offset, auth_offset;
671         uint32_t encr_data_len, auth_data_len, aad_len = 0;
672         uint32_t passthrough_len = 0;
673         void *m_vaddr, *offset_vaddr;
674         uint64_t m_dma, offset_dma, ctx_dma;
675         vq_cmd_word0_t vq_cmd_w0;
676         vq_cmd_word3_t vq_cmd_w3;
677         void *c_vaddr;
678         uint64_t c_dma;
679         opcode_info_t opcode;
680
681         meta_p = &fc_params->meta_buf;
682         m_vaddr = meta_p->vaddr;
683         m_dma = meta_p->dma_addr;
684
685         encr_offset = ENCR_OFFSET(d_offs);
686         auth_offset = AUTH_OFFSET(d_offs);
687         encr_data_len = ENCR_DLEN(d_lens);
688         auth_data_len = AUTH_DLEN(d_lens);
689         if (unlikely(flags & VALID_AAD_BUF)) {
690                 /*
691                  * We dont support both aad
692                  * and auth data separately
693                  */
694                 auth_data_len = 0;
695                 auth_offset = 0;
696                 aad_len = fc_params->aad_buf.size;
697                 aad_buf = &fc_params->aad_buf;
698         }
699         cpt_ctx = fc_params->ctx_buf.vaddr;
700         cipher_type = cpt_ctx->enc_cipher;
701         hash_type = cpt_ctx->hash_type;
702         mac_len = cpt_ctx->mac_len;
703
704         /*
705          * Save initial space that followed app data for completion code &
706          * alternate completion code to fall in same cache line as app data
707          */
708         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
709         m_dma += COMPLETION_CODE_SIZE;
710         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
711                 (uint8_t *)m_vaddr;
712
713         c_vaddr = (uint8_t *)m_vaddr + size;
714         c_dma = m_dma + size;
715         size += sizeof(cpt_res_s_t);
716
717         m_vaddr = (uint8_t *)m_vaddr + size;
718         m_dma += size;
719
720         /* start cpt request info struct at 8 byte boundary */
721         size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
722                 (uint8_t *)m_vaddr;
723
724         req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
725
726         size += sizeof(struct cpt_request_info);
727         m_vaddr = (uint8_t *)m_vaddr + size;
728         m_dma += size;
729
730         if (unlikely(!(flags & VALID_IV_BUF))) {
731                 iv_len = 0;
732                 iv_offset = ENCR_IV_OFFSET(d_offs);
733         }
734
735         if (unlikely(flags & VALID_AAD_BUF)) {
736                 /*
737                  * When AAD is given, data above encr_offset is pass through
738                  * Since AAD is given as separate pointer and not as offset,
739                  * this is a special case as we need to fragment input data
740                  * into passthrough + encr_data and then insert AAD in between.
741                  */
742                 if (hash_type != GMAC_TYPE) {
743                         passthrough_len = encr_offset;
744                         auth_offset = passthrough_len + iv_len;
745                         encr_offset = passthrough_len + aad_len + iv_len;
746                         auth_data_len = aad_len + encr_data_len;
747                 } else {
748                         passthrough_len = 16 + aad_len;
749                         auth_offset = passthrough_len + iv_len;
750                         auth_data_len = aad_len;
751                 }
752         } else {
753                 encr_offset += iv_len;
754                 auth_offset += iv_len;
755         }
756
757         /* Encryption */
758         opcode.s.major = CPT_MAJOR_OP_FC;
759         opcode.s.minor = 0;
760
761         if (hash_type == GMAC_TYPE) {
762                 encr_offset = 0;
763                 encr_data_len = 0;
764         }
765
766         auth_dlen = auth_offset + auth_data_len;
767         enc_dlen = encr_data_len + encr_offset;
768         if (unlikely(encr_data_len & 0xf)) {
769                 if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
770                         enc_dlen = ROUNDUP8(encr_data_len) + encr_offset;
771                 else if (likely((cipher_type == AES_CBC) ||
772                                 (cipher_type == AES_ECB)))
773                         enc_dlen = ROUNDUP16(encr_data_len) + encr_offset;
774         }
775
776         if (unlikely(auth_dlen > enc_dlen)) {
777                 inputlen = auth_dlen;
778                 outputlen = auth_dlen + mac_len;
779         } else {
780                 inputlen = enc_dlen;
781                 outputlen = enc_dlen + mac_len;
782         }
783
784         /* GP op header */
785         vq_cmd_w0.u64 = 0;
786         vq_cmd_w0.s.param1 = encr_data_len;
787         vq_cmd_w0.s.param2 = auth_data_len;
788         /*
789          * In 83XX since we have a limitation of
790          * IV & Offset control word not part of instruction
791          * and need to be part of Data Buffer, we check if
792          * head room is there and then only do the Direct mode processing
793          */
794         if (likely((flags & SINGLE_BUF_INPLACE) &&
795                    (flags & SINGLE_BUF_HEADTAILROOM))) {
796                 void *dm_vaddr = fc_params->bufs[0].vaddr;
797                 uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
798                 /*
799                  * This flag indicates that there is 24 bytes head room and
800                  * 8 bytes tail room available, so that we get to do
801                  * DIRECT MODE with limitation
802                  */
803
804                 offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
805                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
806
807                 /* DPTR */
808                 req->ist.ei1 = offset_dma;
809                 /* RPTR should just exclude offset control word */
810                 req->ist.ei2 = dm_dma_addr - iv_len;
811                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
812                                                     + outputlen - iv_len);
813
814                 vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
815
816                 vq_cmd_w0.s.opcode = opcode.flags;
817
818                 if (likely(iv_len)) {
819                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
820                                                       + OFF_CTRL_LEN);
821                         uint64_t *src = fc_params->iv_buf;
822                         dest[0] = src[0];
823                         dest[1] = src[1];
824                 }
825
826                 *(uint64_t *)offset_vaddr =
827                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
828                                 ((uint64_t)iv_offset << 8) |
829                                 ((uint64_t)auth_offset));
830
831         } else {
832                 uint32_t i, g_size_bytes, s_size_bytes;
833                 uint64_t dptr_dma, rptr_dma;
834                 sg_comp_t *gather_comp;
835                 sg_comp_t *scatter_comp;
836                 uint8_t *in_buffer;
837
838                 /* This falls under strict SG mode */
839                 offset_vaddr = m_vaddr;
840                 offset_dma = m_dma;
841                 size = OFF_CTRL_LEN + iv_len;
842
843                 m_vaddr = (uint8_t *)m_vaddr + size;
844                 m_dma += size;
845
846                 opcode.s.major |= CPT_DMA_MODE;
847
848                 vq_cmd_w0.s.opcode = opcode.flags;
849
850                 if (likely(iv_len)) {
851                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
852                                                       + OFF_CTRL_LEN);
853                         uint64_t *src = fc_params->iv_buf;
854                         dest[0] = src[0];
855                         dest[1] = src[1];
856                 }
857
858                 *(uint64_t *)offset_vaddr =
859                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
860                                 ((uint64_t)iv_offset << 8) |
861                                 ((uint64_t)auth_offset));
862
863                 /* DPTR has SG list */
864                 in_buffer = m_vaddr;
865                 dptr_dma = m_dma;
866
867                 ((uint16_t *)in_buffer)[0] = 0;
868                 ((uint16_t *)in_buffer)[1] = 0;
869
870                 /* TODO Add error check if space will be sufficient */
871                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
872
873                 /*
874                  * Input Gather List
875                  */
876
877                 i = 0;
878
879                 /* Offset control word that includes iv */
880                 i = fill_sg_comp(gather_comp, i, offset_dma,
881                                  OFF_CTRL_LEN + iv_len);
882
883                 /* Add input data */
884                 size = inputlen - iv_len;
885                 if (likely(size)) {
886                         uint32_t aad_offset = aad_len ? passthrough_len : 0;
887
888                         if (unlikely(flags & SINGLE_BUF_INPLACE)) {
889                                 i = fill_sg_comp_from_buf_min(gather_comp, i,
890                                                               fc_params->bufs,
891                                                               &size);
892                         } else {
893                                 i = fill_sg_comp_from_iov(gather_comp, i,
894                                                           fc_params->src_iov,
895                                                           0, &size,
896                                                           aad_buf, aad_offset);
897                         }
898
899                         if (unlikely(size)) {
900                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
901                                                " size %d needed", size);
902                                 return;
903                         }
904                 }
905                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
906                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
907
908                 /*
909                  * Output Scatter list
910                  */
911                 i = 0;
912                 scatter_comp =
913                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
914
915                 /* Add IV */
916                 if (likely(iv_len)) {
917                         i = fill_sg_comp(scatter_comp, i,
918                                          offset_dma + OFF_CTRL_LEN,
919                                          iv_len);
920                 }
921
922                 /* output data or output data + digest*/
923                 if (unlikely(flags & VALID_MAC_BUF)) {
924                         size = outputlen - iv_len - mac_len;
925                         if (size) {
926                                 uint32_t aad_offset =
927                                         aad_len ? passthrough_len : 0;
928
929                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
930                                         i = fill_sg_comp_from_buf_min(
931                                                         scatter_comp,
932                                                         i,
933                                                         fc_params->bufs,
934                                                         &size);
935                                 } else {
936                                         i = fill_sg_comp_from_iov(scatter_comp,
937                                                         i,
938                                                         fc_params->dst_iov,
939                                                         0,
940                                                         &size,
941                                                         aad_buf,
942                                                         aad_offset);
943                                 }
944                                 if (unlikely(size)) {
945                                         CPT_LOG_DP_ERR("Insufficient buffer"
946                                                        " space, size %d needed",
947                                                        size);
948                                         return;
949                                 }
950                         }
951                         /* mac_data */
952                         if (mac_len) {
953                                 i = fill_sg_comp_from_buf(scatter_comp, i,
954                                                           &fc_params->mac_buf);
955                         }
956                 } else {
957                         /* Output including mac */
958                         size = outputlen - iv_len;
959                         if (likely(size)) {
960                                 uint32_t aad_offset =
961                                         aad_len ? passthrough_len : 0;
962
963                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
964                                         i = fill_sg_comp_from_buf_min(
965                                                         scatter_comp,
966                                                         i,
967                                                         fc_params->bufs,
968                                                         &size);
969                                 } else {
970                                         i = fill_sg_comp_from_iov(scatter_comp,
971                                                         i,
972                                                         fc_params->dst_iov,
973                                                         0,
974                                                         &size,
975                                                         aad_buf,
976                                                         aad_offset);
977                                 }
978                                 if (unlikely(size)) {
979                                         CPT_LOG_DP_ERR("Insufficient buffer"
980                                                        " space, size %d needed",
981                                                        size);
982                                         return;
983                                 }
984                         }
985                 }
986                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
987                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
988
989                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
990
991                 /* This is DPTR len incase of SG mode */
992                 vq_cmd_w0.s.dlen = size;
993
994                 m_vaddr = (uint8_t *)m_vaddr + size;
995                 m_dma += size;
996
997                 /* cpt alternate completion address saved earlier */
998                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
999                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1000                 rptr_dma = c_dma - 8;
1001
1002                 req->ist.ei1 = dptr_dma;
1003                 req->ist.ei2 = rptr_dma;
1004         }
1005
1006         ctx_dma = fc_params->ctx_buf.dma_addr +
1007                 offsetof(struct cpt_ctx, fctx);
1008         /* vq command w3 */
1009         vq_cmd_w3.u64 = 0;
1010         vq_cmd_w3.s.grp = 0;
1011         vq_cmd_w3.s.cptr = ctx_dma;
1012
1013         /* 16 byte aligned cpt res address */
1014         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1015         *req->completion_addr = COMPLETION_CODE_INIT;
1016         req->comp_baddr  = c_dma;
1017
1018         /* Fill microcode part of instruction */
1019         req->ist.ei0 = vq_cmd_w0.u64;
1020         req->ist.ei3 = vq_cmd_w3.u64;
1021
1022         req->op  = op;
1023
1024         *prep_req = req;
1025         return;
1026 }
1027
1028 static __rte_always_inline void
1029 cpt_dec_hmac_prep(uint32_t flags,
1030                   uint64_t d_offs,
1031                   uint64_t d_lens,
1032                   fc_params_t *fc_params,
1033                   void *op,
1034                   void **prep_req)
1035 {
1036         uint32_t iv_offset = 0, size;
1037         int32_t inputlen, outputlen, enc_dlen, auth_dlen;
1038         struct cpt_ctx *cpt_ctx;
1039         int32_t hash_type, mac_len;
1040         uint8_t iv_len = 16;
1041         struct cpt_request_info *req;
1042         buf_ptr_t *meta_p, *aad_buf = NULL;
1043         uint32_t encr_offset, auth_offset;
1044         uint32_t encr_data_len, auth_data_len, aad_len = 0;
1045         uint32_t passthrough_len = 0;
1046         void *m_vaddr, *offset_vaddr;
1047         uint64_t m_dma, offset_dma, ctx_dma;
1048         opcode_info_t opcode;
1049         vq_cmd_word0_t vq_cmd_w0;
1050         vq_cmd_word3_t vq_cmd_w3;
1051         void *c_vaddr;
1052         uint64_t c_dma;
1053
1054         meta_p = &fc_params->meta_buf;
1055         m_vaddr = meta_p->vaddr;
1056         m_dma = meta_p->dma_addr;
1057
1058         encr_offset = ENCR_OFFSET(d_offs);
1059         auth_offset = AUTH_OFFSET(d_offs);
1060         encr_data_len = ENCR_DLEN(d_lens);
1061         auth_data_len = AUTH_DLEN(d_lens);
1062
1063         if (unlikely(flags & VALID_AAD_BUF)) {
1064                 /*
1065                  * We dont support both aad
1066                  * and auth data separately
1067                  */
1068                 auth_data_len = 0;
1069                 auth_offset = 0;
1070                 aad_len = fc_params->aad_buf.size;
1071                 aad_buf = &fc_params->aad_buf;
1072         }
1073
1074         cpt_ctx = fc_params->ctx_buf.vaddr;
1075         hash_type = cpt_ctx->hash_type;
1076         mac_len = cpt_ctx->mac_len;
1077
1078         if (unlikely(!(flags & VALID_IV_BUF))) {
1079                 iv_len = 0;
1080                 iv_offset = ENCR_IV_OFFSET(d_offs);
1081         }
1082
1083         if (unlikely(flags & VALID_AAD_BUF)) {
1084                 /*
1085                  * When AAD is given, data above encr_offset is pass through
1086                  * Since AAD is given as separate pointer and not as offset,
1087                  * this is a special case as we need to fragment input data
1088                  * into passthrough + encr_data and then insert AAD in between.
1089                  */
1090                 if (hash_type != GMAC_TYPE) {
1091                         passthrough_len = encr_offset;
1092                         auth_offset = passthrough_len + iv_len;
1093                         encr_offset = passthrough_len + aad_len + iv_len;
1094                         auth_data_len = aad_len + encr_data_len;
1095                 } else {
1096                         passthrough_len = 16 + aad_len;
1097                         auth_offset = passthrough_len + iv_len;
1098                         auth_data_len = aad_len;
1099                 }
1100         } else {
1101                 encr_offset += iv_len;
1102                 auth_offset += iv_len;
1103         }
1104
1105         /*
1106          * Save initial space that followed app data for completion code &
1107          * alternate completion code to fall in same cache line as app data
1108          */
1109         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1110         m_dma += COMPLETION_CODE_SIZE;
1111         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1112                (uint8_t *)m_vaddr;
1113         c_vaddr = (uint8_t *)m_vaddr + size;
1114         c_dma = m_dma + size;
1115         size += sizeof(cpt_res_s_t);
1116
1117         m_vaddr = (uint8_t *)m_vaddr + size;
1118         m_dma += size;
1119
1120         /* start cpt request info structure at 8 byte alignment */
1121         size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
1122                 (uint8_t *)m_vaddr;
1123
1124         req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
1125
1126         size += sizeof(struct cpt_request_info);
1127         m_vaddr = (uint8_t *)m_vaddr + size;
1128         m_dma += size;
1129
1130         /* Decryption */
1131         opcode.s.major = CPT_MAJOR_OP_FC;
1132         opcode.s.minor = 1;
1133
1134         if (hash_type == GMAC_TYPE) {
1135                 encr_offset = 0;
1136                 encr_data_len = 0;
1137         }
1138
1139         enc_dlen = encr_offset + encr_data_len;
1140         auth_dlen = auth_offset + auth_data_len;
1141
1142         if (auth_dlen > enc_dlen) {
1143                 inputlen = auth_dlen + mac_len;
1144                 outputlen = auth_dlen;
1145         } else {
1146                 inputlen = enc_dlen + mac_len;
1147                 outputlen = enc_dlen;
1148         }
1149
1150         vq_cmd_w0.u64 = 0;
1151         vq_cmd_w0.s.param1 = encr_data_len;
1152         vq_cmd_w0.s.param2 = auth_data_len;
1153
1154         /*
1155          * In 83XX since we have a limitation of
1156          * IV & Offset control word not part of instruction
1157          * and need to be part of Data Buffer, we check if
1158          * head room is there and then only do the Direct mode processing
1159          */
1160         if (likely((flags & SINGLE_BUF_INPLACE) &&
1161                    (flags & SINGLE_BUF_HEADTAILROOM))) {
1162                 void *dm_vaddr = fc_params->bufs[0].vaddr;
1163                 uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
1164                 /*
1165                  * This flag indicates that there is 24 bytes head room and
1166                  * 8 bytes tail room available, so that we get to do
1167                  * DIRECT MODE with limitation
1168                  */
1169
1170                 offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
1171                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1172                 req->ist.ei1 = offset_dma;
1173
1174                 /* RPTR should just exclude offset control word */
1175                 req->ist.ei2 = dm_dma_addr - iv_len;
1176
1177                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
1178                                         outputlen - iv_len);
1179                 /* since this is decryption,
1180                  * don't touch the content of
1181                  * alternate ccode space as it contains
1182                  * hmac.
1183                  */
1184
1185                 vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1186
1187                 vq_cmd_w0.s.opcode = opcode.flags;
1188
1189                 if (likely(iv_len)) {
1190                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1191                                                       OFF_CTRL_LEN);
1192                         uint64_t *src = fc_params->iv_buf;
1193                         dest[0] = src[0];
1194                         dest[1] = src[1];
1195                 }
1196
1197                 *(uint64_t *)offset_vaddr =
1198                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1199                                 ((uint64_t)iv_offset << 8) |
1200                                 ((uint64_t)auth_offset));
1201
1202         } else {
1203                 uint64_t dptr_dma, rptr_dma;
1204                 uint32_t g_size_bytes, s_size_bytes;
1205                 sg_comp_t *gather_comp;
1206                 sg_comp_t *scatter_comp;
1207                 uint8_t *in_buffer;
1208                 uint8_t i = 0;
1209
1210                 /* This falls under strict SG mode */
1211                 offset_vaddr = m_vaddr;
1212                 offset_dma = m_dma;
1213                 size = OFF_CTRL_LEN + iv_len;
1214
1215                 m_vaddr = (uint8_t *)m_vaddr + size;
1216                 m_dma += size;
1217
1218                 opcode.s.major |= CPT_DMA_MODE;
1219
1220                 vq_cmd_w0.s.opcode = opcode.flags;
1221
1222                 if (likely(iv_len)) {
1223                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1224                                                       OFF_CTRL_LEN);
1225                         uint64_t *src = fc_params->iv_buf;
1226                         dest[0] = src[0];
1227                         dest[1] = src[1];
1228                 }
1229
1230                 *(uint64_t *)offset_vaddr =
1231                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1232                                 ((uint64_t)iv_offset << 8) |
1233                                 ((uint64_t)auth_offset));
1234
1235                 /* DPTR has SG list */
1236                 in_buffer = m_vaddr;
1237                 dptr_dma = m_dma;
1238
1239                 ((uint16_t *)in_buffer)[0] = 0;
1240                 ((uint16_t *)in_buffer)[1] = 0;
1241
1242                 /* TODO Add error check if space will be sufficient */
1243                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1244
1245                 /*
1246                  * Input Gather List
1247                  */
1248                 i = 0;
1249
1250                 /* Offset control word that includes iv */
1251                 i = fill_sg_comp(gather_comp, i, offset_dma,
1252                                  OFF_CTRL_LEN + iv_len);
1253
1254                 /* Add input data */
1255                 if (flags & VALID_MAC_BUF) {
1256                         size = inputlen - iv_len - mac_len;
1257                         if (size) {
1258                                 /* input data only */
1259                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1260                                         i = fill_sg_comp_from_buf_min(
1261                                                         gather_comp, i,
1262                                                         fc_params->bufs,
1263                                                         &size);
1264                                 } else {
1265                                         uint32_t aad_offset = aad_len ?
1266                                                 passthrough_len : 0;
1267
1268                                         i = fill_sg_comp_from_iov(gather_comp,
1269                                                         i,
1270                                                         fc_params->src_iov,
1271                                                         0, &size,
1272                                                         aad_buf,
1273                                                         aad_offset);
1274                                 }
1275                                 if (unlikely(size)) {
1276                                         CPT_LOG_DP_ERR("Insufficient buffer"
1277                                                        " space, size %d needed",
1278                                                        size);
1279                                         return;
1280                                 }
1281                         }
1282
1283                         /* mac data */
1284                         if (mac_len) {
1285                                 i = fill_sg_comp_from_buf(gather_comp, i,
1286                                                           &fc_params->mac_buf);
1287                         }
1288                 } else {
1289                         /* input data + mac */
1290                         size = inputlen - iv_len;
1291                         if (size) {
1292                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1293                                         i = fill_sg_comp_from_buf_min(
1294                                                         gather_comp, i,
1295                                                         fc_params->bufs,
1296                                                         &size);
1297                                 } else {
1298                                         uint32_t aad_offset = aad_len ?
1299                                                 passthrough_len : 0;
1300
1301                                         if (unlikely(!fc_params->src_iov)) {
1302                                                 CPT_LOG_DP_ERR("Bad input args");
1303                                                 return;
1304                                         }
1305
1306                                         i = fill_sg_comp_from_iov(
1307                                                         gather_comp, i,
1308                                                         fc_params->src_iov,
1309                                                         0, &size,
1310                                                         aad_buf,
1311                                                         aad_offset);
1312                                 }
1313
1314                                 if (unlikely(size)) {
1315                                         CPT_LOG_DP_ERR("Insufficient buffer"
1316                                                        " space, size %d needed",
1317                                                        size);
1318                                         return;
1319                                 }
1320                         }
1321                 }
1322                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1323                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1324
1325                 /*
1326                  * Output Scatter List
1327                  */
1328
1329                 i = 0;
1330                 scatter_comp =
1331                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1332
1333                 /* Add iv */
1334                 if (iv_len) {
1335                         i = fill_sg_comp(scatter_comp, i,
1336                                          offset_dma + OFF_CTRL_LEN,
1337                                          iv_len);
1338                 }
1339
1340                 /* Add output data */
1341                 size = outputlen - iv_len;
1342                 if (size) {
1343                         if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1344                                 /* handle single buffer here */
1345                                 i = fill_sg_comp_from_buf_min(scatter_comp, i,
1346                                                               fc_params->bufs,
1347                                                               &size);
1348                         } else {
1349                                 uint32_t aad_offset = aad_len ?
1350                                         passthrough_len : 0;
1351
1352                                 if (unlikely(!fc_params->dst_iov)) {
1353                                         CPT_LOG_DP_ERR("Bad input args");
1354                                         return;
1355                                 }
1356
1357                                 i = fill_sg_comp_from_iov(scatter_comp, i,
1358                                                           fc_params->dst_iov, 0,
1359                                                           &size, aad_buf,
1360                                                           aad_offset);
1361                         }
1362
1363                         if (unlikely(size)) {
1364                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1365                                                " size %d needed", size);
1366                                 return;
1367                         }
1368                 }
1369
1370                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1371                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1372
1373                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1374
1375                 /* This is DPTR len incase of SG mode */
1376                 vq_cmd_w0.s.dlen = size;
1377
1378                 m_vaddr = (uint8_t *)m_vaddr + size;
1379                 m_dma += size;
1380
1381                 /* cpt alternate completion address saved earlier */
1382                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1383                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1384                 rptr_dma = c_dma - 8;
1385                 size += COMPLETION_CODE_SIZE;
1386
1387                 req->ist.ei1 = dptr_dma;
1388                 req->ist.ei2 = rptr_dma;
1389         }
1390
1391         ctx_dma = fc_params->ctx_buf.dma_addr +
1392                 offsetof(struct cpt_ctx, fctx);
1393         /* vq command w3 */
1394         vq_cmd_w3.u64 = 0;
1395         vq_cmd_w3.s.grp = 0;
1396         vq_cmd_w3.s.cptr = ctx_dma;
1397
1398         /* 16 byte aligned cpt res address */
1399         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1400         *req->completion_addr = COMPLETION_CODE_INIT;
1401         req->comp_baddr  = c_dma;
1402
1403         /* Fill microcode part of instruction */
1404         req->ist.ei0 = vq_cmd_w0.u64;
1405         req->ist.ei3 = vq_cmd_w3.u64;
1406
1407         req->op = op;
1408
1409         *prep_req = req;
1410         return;
1411 }
1412
1413 static __rte_always_inline void
1414 cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
1415                         uint64_t d_offs,
1416                         uint64_t d_lens,
1417                         fc_params_t *params,
1418                         void *op,
1419                         void **prep_req)
1420 {
1421         uint32_t size;
1422         int32_t inputlen, outputlen;
1423         struct cpt_ctx *cpt_ctx;
1424         uint32_t mac_len = 0;
1425         uint8_t snow3g, j;
1426         struct cpt_request_info *req;
1427         buf_ptr_t *buf_p;
1428         uint32_t encr_offset = 0, auth_offset = 0;
1429         uint32_t encr_data_len = 0, auth_data_len = 0;
1430         int flags, iv_len = 16;
1431         void *m_vaddr, *c_vaddr;
1432         uint64_t m_dma, c_dma, offset_ctrl;
1433         uint64_t *offset_vaddr, offset_dma;
1434         uint32_t *iv_s, iv[4];
1435         vq_cmd_word0_t vq_cmd_w0;
1436         vq_cmd_word3_t vq_cmd_w3;
1437         opcode_info_t opcode;
1438
1439         buf_p = &params->meta_buf;
1440         m_vaddr = buf_p->vaddr;
1441         m_dma = buf_p->dma_addr;
1442
1443         cpt_ctx = params->ctx_buf.vaddr;
1444         flags = cpt_ctx->zsk_flags;
1445         mac_len = cpt_ctx->mac_len;
1446         snow3g = cpt_ctx->snow3g;
1447
1448         /*
1449          * Save initial space that followed app data for completion code &
1450          * alternate completion code to fall in same cache line as app data
1451          */
1452         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1453         m_dma += COMPLETION_CODE_SIZE;
1454         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1455                 (uint8_t *)m_vaddr;
1456
1457         c_vaddr = (uint8_t *)m_vaddr + size;
1458         c_dma = m_dma + size;
1459         size += sizeof(cpt_res_s_t);
1460
1461         m_vaddr = (uint8_t *)m_vaddr + size;
1462         m_dma += size;
1463
1464         /* Reserve memory for cpt request info */
1465         req = m_vaddr;
1466
1467         size = sizeof(struct cpt_request_info);
1468         m_vaddr = (uint8_t *)m_vaddr + size;
1469         m_dma += size;
1470
1471         opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1472
1473         /* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1474
1475         opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1476                           (0 << 3) | (flags & 0x7));
1477
1478         if (flags == 0x1) {
1479                 /*
1480                  * Microcode expects offsets in bytes
1481                  * TODO: Rounding off
1482                  */
1483                 auth_data_len = AUTH_DLEN(d_lens);
1484
1485                 /* EIA3 or UIA2 */
1486                 auth_offset = AUTH_OFFSET(d_offs);
1487                 auth_offset = auth_offset / 8;
1488
1489                 /* consider iv len */
1490                 auth_offset += iv_len;
1491
1492                 inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
1493                 outputlen = mac_len;
1494
1495                 offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
1496
1497         } else {
1498                 /* EEA3 or UEA2 */
1499                 /*
1500                  * Microcode expects offsets in bytes
1501                  * TODO: Rounding off
1502                  */
1503                 encr_data_len = ENCR_DLEN(d_lens);
1504
1505                 encr_offset = ENCR_OFFSET(d_offs);
1506                 encr_offset = encr_offset / 8;
1507                 /* consider iv len */
1508                 encr_offset += iv_len;
1509
1510                 inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
1511                 outputlen = inputlen;
1512
1513                 /* iv offset is 0 */
1514                 offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1515         }
1516
1517         /* IV */
1518         iv_s = (flags == 0x1) ? params->auth_iv_buf :
1519                 params->iv_buf;
1520
1521         if (snow3g) {
1522                 /*
1523                  * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1524                  * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1525                  */
1526
1527                 for (j = 0; j < 4; j++)
1528                         iv[j] = iv_s[3 - j];
1529         } else {
1530                 /* ZUC doesn't need a swap */
1531                 for (j = 0; j < 4; j++)
1532                         iv[j] = iv_s[j];
1533         }
1534
1535         /*
1536          * GP op header, lengths are expected in bits.
1537          */
1538         vq_cmd_w0.u64 = 0;
1539         vq_cmd_w0.s.param1 = encr_data_len;
1540         vq_cmd_w0.s.param2 = auth_data_len;
1541
1542         /*
1543          * In 83XX since we have a limitation of
1544          * IV & Offset control word not part of instruction
1545          * and need to be part of Data Buffer, we check if
1546          * head room is there and then only do the Direct mode processing
1547          */
1548         if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1549                    (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1550                 void *dm_vaddr = params->bufs[0].vaddr;
1551                 uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1552                 /*
1553                  * This flag indicates that there is 24 bytes head room and
1554                  * 8 bytes tail room available, so that we get to do
1555                  * DIRECT MODE with limitation
1556                  */
1557
1558                 offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1559                                             OFF_CTRL_LEN - iv_len);
1560                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1561
1562                 /* DPTR */
1563                 req->ist.ei1 = offset_dma;
1564                 /* RPTR should just exclude offset control word */
1565                 req->ist.ei2 = dm_dma_addr - iv_len;
1566                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1567                                                     + outputlen - iv_len);
1568
1569                 vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1570
1571                 vq_cmd_w0.s.opcode = opcode.flags;
1572
1573                 if (likely(iv_len)) {
1574                         uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1575                                                       + OFF_CTRL_LEN);
1576                         memcpy(iv_d, iv, 16);
1577                 }
1578
1579                 *offset_vaddr = offset_ctrl;
1580         } else {
1581                 uint32_t i, g_size_bytes, s_size_bytes;
1582                 uint64_t dptr_dma, rptr_dma;
1583                 sg_comp_t *gather_comp;
1584                 sg_comp_t *scatter_comp;
1585                 uint8_t *in_buffer;
1586                 uint32_t *iv_d;
1587
1588                 /* save space for iv */
1589                 offset_vaddr = m_vaddr;
1590                 offset_dma = m_dma;
1591
1592                 m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1593                 m_dma += OFF_CTRL_LEN + iv_len;
1594
1595                 opcode.s.major |= CPT_DMA_MODE;
1596
1597                 vq_cmd_w0.s.opcode = opcode.flags;
1598
1599                 /* DPTR has SG list */
1600                 in_buffer = m_vaddr;
1601                 dptr_dma = m_dma;
1602
1603                 ((uint16_t *)in_buffer)[0] = 0;
1604                 ((uint16_t *)in_buffer)[1] = 0;
1605
1606                 /* TODO Add error check if space will be sufficient */
1607                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1608
1609                 /*
1610                  * Input Gather List
1611                  */
1612                 i = 0;
1613
1614                 /* Offset control word followed by iv */
1615
1616                 i = fill_sg_comp(gather_comp, i, offset_dma,
1617                                  OFF_CTRL_LEN + iv_len);
1618
1619                 /* iv offset is 0 */
1620                 *offset_vaddr = offset_ctrl;
1621
1622                 iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1623                 memcpy(iv_d, iv, 16);
1624
1625                 /* input data */
1626                 size = inputlen - iv_len;
1627                 if (size) {
1628                         i = fill_sg_comp_from_iov(gather_comp, i,
1629                                                   params->src_iov,
1630                                                   0, &size, NULL, 0);
1631                         if (unlikely(size)) {
1632                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1633                                                " size %d needed", size);
1634                                 return;
1635                         }
1636                 }
1637                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1638                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1639
1640                 /*
1641                  * Output Scatter List
1642                  */
1643
1644                 i = 0;
1645                 scatter_comp =
1646                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1647
1648                 if (flags == 0x1) {
1649                         /* IV in SLIST only for EEA3 & UEA2 */
1650                         iv_len = 0;
1651                 }
1652
1653                 if (iv_len) {
1654                         i = fill_sg_comp(scatter_comp, i,
1655                                          offset_dma + OFF_CTRL_LEN, iv_len);
1656                 }
1657
1658                 /* Add output data */
1659                 if (req_flags & VALID_MAC_BUF) {
1660                         size = outputlen - iv_len - mac_len;
1661                         if (size) {
1662                                 i = fill_sg_comp_from_iov(scatter_comp, i,
1663                                                           params->dst_iov, 0,
1664                                                           &size, NULL, 0);
1665
1666                                 if (unlikely(size)) {
1667                                         CPT_LOG_DP_ERR("Insufficient buffer space,"
1668                                                        " size %d needed", size);
1669                                         return;
1670                                 }
1671                         }
1672
1673                         /* mac data */
1674                         if (mac_len) {
1675                                 i = fill_sg_comp_from_buf(scatter_comp, i,
1676                                                           &params->mac_buf);
1677                         }
1678                 } else {
1679                         /* Output including mac */
1680                         size = outputlen - iv_len;
1681                         if (size) {
1682                                 i = fill_sg_comp_from_iov(scatter_comp, i,
1683                                                           params->dst_iov, 0,
1684                                                           &size, NULL, 0);
1685
1686                                 if (unlikely(size)) {
1687                                         CPT_LOG_DP_ERR("Insufficient buffer space,"
1688                                                        " size %d needed", size);
1689                                         return;
1690                                 }
1691                         }
1692                 }
1693                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1694                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1695
1696                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1697
1698                 /* This is DPTR len incase of SG mode */
1699                 vq_cmd_w0.s.dlen = size;
1700
1701                 m_vaddr = (uint8_t *)m_vaddr + size;
1702                 m_dma += size;
1703
1704                 /* cpt alternate completion address saved earlier */
1705                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1706                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1707                 rptr_dma = c_dma - 8;
1708
1709                 req->ist.ei1 = dptr_dma;
1710                 req->ist.ei2 = rptr_dma;
1711         }
1712
1713         /* vq command w3 */
1714         vq_cmd_w3.u64 = 0;
1715         vq_cmd_w3.s.grp = 0;
1716         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1717                 offsetof(struct cpt_ctx, zs_ctx);
1718
1719         /* 16 byte aligned cpt res address */
1720         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1721         *req->completion_addr = COMPLETION_CODE_INIT;
1722         req->comp_baddr  = c_dma;
1723
1724         /* Fill microcode part of instruction */
1725         req->ist.ei0 = vq_cmd_w0.u64;
1726         req->ist.ei3 = vq_cmd_w3.u64;
1727
1728         req->op = op;
1729
1730         *prep_req = req;
1731         return;
1732 }
1733
1734 static __rte_always_inline void
1735 cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
1736                         uint64_t d_offs,
1737                         uint64_t d_lens,
1738                         fc_params_t *params,
1739                         void *op,
1740                         void **prep_req)
1741 {
1742         uint32_t size;
1743         int32_t inputlen = 0, outputlen;
1744         struct cpt_ctx *cpt_ctx;
1745         uint8_t snow3g, iv_len = 16;
1746         struct cpt_request_info *req;
1747         buf_ptr_t *buf_p;
1748         uint32_t encr_offset;
1749         uint32_t encr_data_len;
1750         int flags;
1751         void *m_vaddr, *c_vaddr;
1752         uint64_t m_dma, c_dma;
1753         uint64_t *offset_vaddr, offset_dma;
1754         uint32_t *iv_s, iv[4], j;
1755         vq_cmd_word0_t vq_cmd_w0;
1756         vq_cmd_word3_t vq_cmd_w3;
1757         opcode_info_t opcode;
1758
1759         buf_p = &params->meta_buf;
1760         m_vaddr = buf_p->vaddr;
1761         m_dma = buf_p->dma_addr;
1762
1763         /*
1764          * Microcode expects offsets in bytes
1765          * TODO: Rounding off
1766          */
1767         encr_offset = ENCR_OFFSET(d_offs) / 8;
1768         encr_data_len = ENCR_DLEN(d_lens);
1769
1770         cpt_ctx = params->ctx_buf.vaddr;
1771         flags = cpt_ctx->zsk_flags;
1772         snow3g = cpt_ctx->snow3g;
1773         /*
1774          * Save initial space that followed app data for completion code &
1775          * alternate completion code to fall in same cache line as app data
1776          */
1777         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1778         m_dma += COMPLETION_CODE_SIZE;
1779         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1780                 (uint8_t *)m_vaddr;
1781
1782         c_vaddr = (uint8_t *)m_vaddr + size;
1783         c_dma = m_dma + size;
1784         size += sizeof(cpt_res_s_t);
1785
1786         m_vaddr = (uint8_t *)m_vaddr + size;
1787         m_dma += size;
1788
1789         /* Reserve memory for cpt request info */
1790         req = m_vaddr;
1791
1792         size = sizeof(struct cpt_request_info);
1793         m_vaddr = (uint8_t *)m_vaddr + size;
1794         m_dma += size;
1795
1796         opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1797
1798         /* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1799
1800         opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
1801                           (0 << 3) | (flags & 0x7));
1802
1803         /* consider iv len */
1804         encr_offset += iv_len;
1805
1806         inputlen = encr_offset +
1807                 (RTE_ALIGN(encr_data_len, 8) / 8);
1808         outputlen = inputlen;
1809
1810         /* IV */
1811         iv_s = params->iv_buf;
1812         if (snow3g) {
1813                 /*
1814                  * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1815                  * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1816                  */
1817
1818                 for (j = 0; j < 4; j++)
1819                         iv[j] = iv_s[3 - j];
1820         } else {
1821                 /* ZUC doesn't need a swap */
1822                 for (j = 0; j < 4; j++)
1823                         iv[j] = iv_s[j];
1824         }
1825
1826         /*
1827          * GP op header, lengths are expected in bits.
1828          */
1829         vq_cmd_w0.u64 = 0;
1830         vq_cmd_w0.s.param1 = encr_data_len;
1831
1832         /*
1833          * In 83XX since we have a limitation of
1834          * IV & Offset control word not part of instruction
1835          * and need to be part of Data Buffer, we check if
1836          * head room is there and then only do the Direct mode processing
1837          */
1838         if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1839                    (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1840                 void *dm_vaddr = params->bufs[0].vaddr;
1841                 uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1842                 /*
1843                  * This flag indicates that there is 24 bytes head room and
1844                  * 8 bytes tail room available, so that we get to do
1845                  * DIRECT MODE with limitation
1846                  */
1847
1848                 offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1849                                             OFF_CTRL_LEN - iv_len);
1850                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1851
1852                 /* DPTR */
1853                 req->ist.ei1 = offset_dma;
1854                 /* RPTR should just exclude offset control word */
1855                 req->ist.ei2 = dm_dma_addr - iv_len;
1856                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1857                                                     + outputlen - iv_len);
1858
1859                 vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
1860
1861                 vq_cmd_w0.s.opcode = opcode.flags;
1862
1863                 if (likely(iv_len)) {
1864                         uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1865                                                       + OFF_CTRL_LEN);
1866                         memcpy(iv_d, iv, 16);
1867                 }
1868
1869                 /* iv offset is 0 */
1870                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1871         } else {
1872                 uint32_t i, g_size_bytes, s_size_bytes;
1873                 uint64_t dptr_dma, rptr_dma;
1874                 sg_comp_t *gather_comp;
1875                 sg_comp_t *scatter_comp;
1876                 uint8_t *in_buffer;
1877                 uint32_t *iv_d;
1878
1879                 /* save space for offset and iv... */
1880                 offset_vaddr = m_vaddr;
1881                 offset_dma = m_dma;
1882
1883                 m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1884                 m_dma += OFF_CTRL_LEN + iv_len;
1885
1886                 opcode.s.major |= CPT_DMA_MODE;
1887
1888                 vq_cmd_w0.s.opcode = opcode.flags;
1889
1890                 /* DPTR has SG list */
1891                 in_buffer = m_vaddr;
1892                 dptr_dma = m_dma;
1893
1894                 ((uint16_t *)in_buffer)[0] = 0;
1895                 ((uint16_t *)in_buffer)[1] = 0;
1896
1897                 /* TODO Add error check if space will be sufficient */
1898                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1899
1900                 /*
1901                  * Input Gather List
1902                  */
1903                 i = 0;
1904
1905                 /* Offset control word */
1906
1907                 /* iv offset is 0 */
1908                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1909
1910                 i = fill_sg_comp(gather_comp, i, offset_dma,
1911                                  OFF_CTRL_LEN + iv_len);
1912
1913                 iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1914                 memcpy(iv_d, iv, 16);
1915
1916                 /* Add input data */
1917                 size = inputlen - iv_len;
1918                 if (size) {
1919                         i = fill_sg_comp_from_iov(gather_comp, i,
1920                                                   params->src_iov,
1921                                                   0, &size, NULL, 0);
1922                         if (unlikely(size)) {
1923                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1924                                                " size %d needed", size);
1925                                 return;
1926                         }
1927                 }
1928                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1929                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1930
1931                 /*
1932                  * Output Scatter List
1933                  */
1934
1935                 i = 0;
1936                 scatter_comp =
1937                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1938
1939                 /* IV */
1940                 i = fill_sg_comp(scatter_comp, i,
1941                                  offset_dma + OFF_CTRL_LEN,
1942                                  iv_len);
1943
1944                 /* Add output data */
1945                 size = outputlen - iv_len;
1946                 if (size) {
1947                         i = fill_sg_comp_from_iov(scatter_comp, i,
1948                                                   params->dst_iov, 0,
1949                                                   &size, NULL, 0);
1950
1951                         if (unlikely(size)) {
1952                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1953                                                " size %d needed", size);
1954                                 return;
1955                         }
1956                 }
1957                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1958                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1959
1960                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1961
1962                 /* This is DPTR len incase of SG mode */
1963                 vq_cmd_w0.s.dlen = size;
1964
1965                 m_vaddr = (uint8_t *)m_vaddr + size;
1966                 m_dma += size;
1967
1968                 /* cpt alternate completion address saved earlier */
1969                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1970                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1971                 rptr_dma = c_dma - 8;
1972
1973                 req->ist.ei1 = dptr_dma;
1974                 req->ist.ei2 = rptr_dma;
1975         }
1976
1977         /* vq command w3 */
1978         vq_cmd_w3.u64 = 0;
1979         vq_cmd_w3.s.grp = 0;
1980         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1981                 offsetof(struct cpt_ctx, zs_ctx);
1982
1983         /* 16 byte aligned cpt res address */
1984         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1985         *req->completion_addr = COMPLETION_CODE_INIT;
1986         req->comp_baddr  = c_dma;
1987
1988         /* Fill microcode part of instruction */
1989         req->ist.ei0 = vq_cmd_w0.u64;
1990         req->ist.ei3 = vq_cmd_w3.u64;
1991
1992         req->op = op;
1993
1994         *prep_req = req;
1995         return;
1996 }
1997
1998 static __rte_always_inline void
1999 cpt_kasumi_enc_prep(uint32_t req_flags,
2000                     uint64_t d_offs,
2001                     uint64_t d_lens,
2002                     fc_params_t *params,
2003                     void *op,
2004                     void **prep_req)
2005 {
2006         uint32_t size;
2007         int32_t inputlen = 0, outputlen = 0;
2008         struct cpt_ctx *cpt_ctx;
2009         uint32_t mac_len = 0;
2010         uint8_t i = 0;
2011         struct cpt_request_info *req;
2012         buf_ptr_t *buf_p;
2013         uint32_t encr_offset, auth_offset;
2014         uint32_t encr_data_len, auth_data_len;
2015         int flags;
2016         uint8_t *iv_s, *iv_d, iv_len = 8;
2017         uint8_t dir = 0;
2018         void *m_vaddr, *c_vaddr;
2019         uint64_t m_dma, c_dma;
2020         uint64_t *offset_vaddr, offset_dma;
2021         vq_cmd_word0_t vq_cmd_w0;
2022         vq_cmd_word3_t vq_cmd_w3;
2023         opcode_info_t opcode;
2024         uint8_t *in_buffer;
2025         uint32_t g_size_bytes, s_size_bytes;
2026         uint64_t dptr_dma, rptr_dma;
2027         sg_comp_t *gather_comp;
2028         sg_comp_t *scatter_comp;
2029
2030         buf_p = &params->meta_buf;
2031         m_vaddr = buf_p->vaddr;
2032         m_dma = buf_p->dma_addr;
2033
2034         encr_offset = ENCR_OFFSET(d_offs) / 8;
2035         auth_offset = AUTH_OFFSET(d_offs) / 8;
2036         encr_data_len = ENCR_DLEN(d_lens);
2037         auth_data_len = AUTH_DLEN(d_lens);
2038
2039         cpt_ctx = params->ctx_buf.vaddr;
2040         flags = cpt_ctx->zsk_flags;
2041         mac_len = cpt_ctx->mac_len;
2042
2043         if (flags == 0x0)
2044                 iv_s = params->iv_buf;
2045         else
2046                 iv_s = params->auth_iv_buf;
2047
2048         dir = iv_s[8] & 0x1;
2049
2050         /*
2051          * Save initial space that followed app data for completion code &
2052          * alternate completion code to fall in same cache line as app data
2053          */
2054         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2055         m_dma += COMPLETION_CODE_SIZE;
2056         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2057                 (uint8_t *)m_vaddr;
2058
2059         c_vaddr = (uint8_t *)m_vaddr + size;
2060         c_dma = m_dma + size;
2061         size += sizeof(cpt_res_s_t);
2062
2063         m_vaddr = (uint8_t *)m_vaddr + size;
2064         m_dma += size;
2065
2066         /* Reserve memory for cpt request info */
2067         req = m_vaddr;
2068
2069         size = sizeof(struct cpt_request_info);
2070         m_vaddr = (uint8_t *)m_vaddr + size;
2071         m_dma += size;
2072
2073         opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2074
2075         /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2076         opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2077                           (dir << 4) | (0 << 3) | (flags & 0x7));
2078
2079         /*
2080          * GP op header, lengths are expected in bits.
2081          */
2082         vq_cmd_w0.u64 = 0;
2083         vq_cmd_w0.s.param1 = encr_data_len;
2084         vq_cmd_w0.s.param2 = auth_data_len;
2085         vq_cmd_w0.s.opcode = opcode.flags;
2086
2087         /* consider iv len */
2088         if (flags == 0x0) {
2089                 encr_offset += iv_len;
2090                 auth_offset += iv_len;
2091         }
2092
2093         /* save space for offset ctrl and iv */
2094         offset_vaddr = m_vaddr;
2095         offset_dma = m_dma;
2096
2097         m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2098         m_dma += OFF_CTRL_LEN + iv_len;
2099
2100         /* DPTR has SG list */
2101         in_buffer = m_vaddr;
2102         dptr_dma = m_dma;
2103
2104         ((uint16_t *)in_buffer)[0] = 0;
2105         ((uint16_t *)in_buffer)[1] = 0;
2106
2107         /* TODO Add error check if space will be sufficient */
2108         gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2109
2110         /*
2111          * Input Gather List
2112          */
2113         i = 0;
2114
2115         /* Offset control word followed by iv */
2116
2117         if (flags == 0x0) {
2118                 inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
2119                 outputlen = inputlen;
2120                 /* iv offset is 0 */
2121                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2122         } else {
2123                 inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
2124                 outputlen = mac_len;
2125                 /* iv offset is 0 */
2126                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
2127         }
2128
2129         i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2130
2131         /* IV */
2132         iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
2133         memcpy(iv_d, iv_s, iv_len);
2134
2135         /* input data */
2136         size = inputlen - iv_len;
2137         if (size) {
2138                 i = fill_sg_comp_from_iov(gather_comp, i,
2139                                           params->src_iov, 0,
2140                                           &size, NULL, 0);
2141
2142                 if (unlikely(size)) {
2143                         CPT_LOG_DP_ERR("Insufficient buffer space,"
2144                                        " size %d needed", size);
2145                         return;
2146                 }
2147         }
2148         ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2149         g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2150
2151         /*
2152          * Output Scatter List
2153          */
2154
2155         i = 0;
2156         scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2157
2158         if (flags == 0x1) {
2159                 /* IV in SLIST only for F8 */
2160                 iv_len = 0;
2161         }
2162
2163         /* IV */
2164         if (iv_len) {
2165                 i = fill_sg_comp(scatter_comp, i,
2166                                  offset_dma + OFF_CTRL_LEN,
2167                                  iv_len);
2168         }
2169
2170         /* Add output data */
2171         if (req_flags & VALID_MAC_BUF) {
2172                 size = outputlen - iv_len - mac_len;
2173                 if (size) {
2174                         i = fill_sg_comp_from_iov(scatter_comp, i,
2175                                                   params->dst_iov, 0,
2176                                                   &size, NULL, 0);
2177
2178                         if (unlikely(size)) {
2179                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
2180                                                " size %d needed", size);
2181                                 return;
2182                         }
2183                 }
2184
2185                 /* mac data */
2186                 if (mac_len) {
2187                         i = fill_sg_comp_from_buf(scatter_comp, i,
2188                                                   &params->mac_buf);
2189                 }
2190         } else {
2191                 /* Output including mac */
2192                 size = outputlen - iv_len;
2193                 if (size) {
2194                         i = fill_sg_comp_from_iov(scatter_comp, i,
2195                                                   params->dst_iov, 0,
2196                                                   &size, NULL, 0);
2197
2198                         if (unlikely(size)) {
2199                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
2200                                                " size %d needed", size);
2201                                 return;
2202                         }
2203                 }
2204         }
2205         ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2206         s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2207
2208         size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2209
2210         /* This is DPTR len incase of SG mode */
2211         vq_cmd_w0.s.dlen = size;
2212
2213         m_vaddr = (uint8_t *)m_vaddr + size;
2214         m_dma += size;
2215
2216         /* cpt alternate completion address saved earlier */
2217         req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2218         *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2219         rptr_dma = c_dma - 8;
2220
2221         req->ist.ei1 = dptr_dma;
2222         req->ist.ei2 = rptr_dma;
2223
2224         /* vq command w3 */
2225         vq_cmd_w3.u64 = 0;
2226         vq_cmd_w3.s.grp = 0;
2227         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2228                 offsetof(struct cpt_ctx, k_ctx);
2229
2230         /* 16 byte aligned cpt res address */
2231         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2232         *req->completion_addr = COMPLETION_CODE_INIT;
2233         req->comp_baddr  = c_dma;
2234
2235         /* Fill microcode part of instruction */
2236         req->ist.ei0 = vq_cmd_w0.u64;
2237         req->ist.ei3 = vq_cmd_w3.u64;
2238
2239         req->op = op;
2240
2241         *prep_req = req;
2242         return;
2243 }
2244
2245 static __rte_always_inline void
2246 cpt_kasumi_dec_prep(uint64_t d_offs,
2247                     uint64_t d_lens,
2248                     fc_params_t *params,
2249                     void *op,
2250                     void **prep_req)
2251 {
2252         uint32_t size;
2253         int32_t inputlen = 0, outputlen;
2254         struct cpt_ctx *cpt_ctx;
2255         uint8_t i = 0, iv_len = 8;
2256         struct cpt_request_info *req;
2257         buf_ptr_t *buf_p;
2258         uint32_t encr_offset;
2259         uint32_t encr_data_len;
2260         int flags;
2261         uint8_t dir = 0;
2262         void *m_vaddr, *c_vaddr;
2263         uint64_t m_dma, c_dma;
2264         uint64_t *offset_vaddr, offset_dma;
2265         vq_cmd_word0_t vq_cmd_w0;
2266         vq_cmd_word3_t vq_cmd_w3;
2267         opcode_info_t opcode;
2268         uint8_t *in_buffer;
2269         uint32_t g_size_bytes, s_size_bytes;
2270         uint64_t dptr_dma, rptr_dma;
2271         sg_comp_t *gather_comp;
2272         sg_comp_t *scatter_comp;
2273
2274         buf_p = &params->meta_buf;
2275         m_vaddr = buf_p->vaddr;
2276         m_dma = buf_p->dma_addr;
2277
2278         encr_offset = ENCR_OFFSET(d_offs) / 8;
2279         encr_data_len = ENCR_DLEN(d_lens);
2280
2281         cpt_ctx = params->ctx_buf.vaddr;
2282         flags = cpt_ctx->zsk_flags;
2283         /*
2284          * Save initial space that followed app data for completion code &
2285          * alternate completion code to fall in same cache line as app data
2286          */
2287         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2288         m_dma += COMPLETION_CODE_SIZE;
2289         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2290                 (uint8_t *)m_vaddr;
2291
2292         c_vaddr = (uint8_t *)m_vaddr + size;
2293         c_dma = m_dma + size;
2294         size += sizeof(cpt_res_s_t);
2295
2296         m_vaddr = (uint8_t *)m_vaddr + size;
2297         m_dma += size;
2298
2299         /* Reserve memory for cpt request info */
2300         req = m_vaddr;
2301
2302         size = sizeof(struct cpt_request_info);
2303         m_vaddr = (uint8_t *)m_vaddr + size;
2304         m_dma += size;
2305
2306         opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2307
2308         /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2309         opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2310                           (dir << 4) | (0 << 3) | (flags & 0x7));
2311
2312         /*
2313          * GP op header, lengths are expected in bits.
2314          */
2315         vq_cmd_w0.u64 = 0;
2316         vq_cmd_w0.s.param1 = encr_data_len;
2317         vq_cmd_w0.s.opcode = opcode.flags;
2318
2319         /* consider iv len */
2320         encr_offset += iv_len;
2321
2322         inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
2323         outputlen = inputlen;
2324
2325         /* save space for offset ctrl & iv */
2326         offset_vaddr = m_vaddr;
2327         offset_dma = m_dma;
2328
2329         m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2330         m_dma += OFF_CTRL_LEN + iv_len;
2331
2332         /* DPTR has SG list */
2333         in_buffer = m_vaddr;
2334         dptr_dma = m_dma;
2335
2336         ((uint16_t *)in_buffer)[0] = 0;
2337         ((uint16_t *)in_buffer)[1] = 0;
2338
2339         /* TODO Add error check if space will be sufficient */
2340         gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2341
2342         /*
2343          * Input Gather List
2344          */
2345         i = 0;
2346
2347         /* Offset control word followed by iv */
2348         *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2349
2350         i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2351
2352         /* IV */
2353         memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
2354                params->iv_buf, iv_len);
2355
2356         /* Add input data */
2357         size = inputlen - iv_len;
2358         if (size) {
2359                 i = fill_sg_comp_from_iov(gather_comp, i,
2360                                           params->src_iov,
2361                                           0, &size, NULL, 0);
2362                 if (unlikely(size)) {
2363                         CPT_LOG_DP_ERR("Insufficient buffer space,"
2364                                        " size %d needed", size);
2365                         return;
2366                 }
2367         }
2368         ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2369         g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2370
2371         /*
2372          * Output Scatter List
2373          */
2374
2375         i = 0;
2376         scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2377
2378         /* IV */
2379         i = fill_sg_comp(scatter_comp, i,
2380                          offset_dma + OFF_CTRL_LEN,
2381                          iv_len);
2382
2383         /* Add output data */
2384         size = outputlen - iv_len;
2385         if (size) {
2386                 i = fill_sg_comp_from_iov(scatter_comp, i,
2387                                           params->dst_iov, 0,
2388                                           &size, NULL, 0);
2389                 if (unlikely(size)) {
2390                         CPT_LOG_DP_ERR("Insufficient buffer space,"
2391                                        " size %d needed", size);
2392                         return;
2393                 }
2394         }
2395         ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2396         s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2397
2398         size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2399
2400         /* This is DPTR len incase of SG mode */
2401         vq_cmd_w0.s.dlen = size;
2402
2403         m_vaddr = (uint8_t *)m_vaddr + size;
2404         m_dma += size;
2405
2406         /* cpt alternate completion address saved earlier */
2407         req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2408         *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2409         rptr_dma = c_dma - 8;
2410
2411         req->ist.ei1 = dptr_dma;
2412         req->ist.ei2 = rptr_dma;
2413
2414         /* vq command w3 */
2415         vq_cmd_w3.u64 = 0;
2416         vq_cmd_w3.s.grp = 0;
2417         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2418                 offsetof(struct cpt_ctx, k_ctx);
2419
2420         /* 16 byte aligned cpt res address */
2421         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2422         *req->completion_addr = COMPLETION_CODE_INIT;
2423         req->comp_baddr  = c_dma;
2424
2425         /* Fill microcode part of instruction */
2426         req->ist.ei0 = vq_cmd_w0.u64;
2427         req->ist.ei3 = vq_cmd_w3.u64;
2428
2429         req->op = op;
2430
2431         *prep_req = req;
2432         return;
2433 }
2434
2435 static __rte_always_inline void *
2436 cpt_fc_dec_hmac_prep(uint32_t flags,
2437                      uint64_t d_offs,
2438                      uint64_t d_lens,
2439                      fc_params_t *fc_params,
2440                      void *op)
2441 {
2442         struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2443         uint8_t fc_type;
2444         void *prep_req = NULL;
2445
2446         fc_type = ctx->fc_type;
2447
2448         if (likely(fc_type == FC_GEN)) {
2449                 cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2450                                   &prep_req);
2451         } else if (fc_type == ZUC_SNOW3G) {
2452                 cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op,
2453                                         &prep_req);
2454         } else if (fc_type == KASUMI) {
2455                 cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req);
2456         }
2457
2458         /*
2459          * For AUTH_ONLY case,
2460          * MC only supports digest generation and verification
2461          * should be done in software by memcmp()
2462          */
2463
2464         return prep_req;
2465 }
2466
2467 static __rte_always_inline void *__rte_hot
2468 cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
2469                      fc_params_t *fc_params, void *op)
2470 {
2471         struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2472         uint8_t fc_type;
2473         void *prep_req = NULL;
2474
2475         fc_type = ctx->fc_type;
2476
2477         /* Common api for rest of the ops */
2478         if (likely(fc_type == FC_GEN)) {
2479                 cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2480                                   &prep_req);
2481         } else if (fc_type == ZUC_SNOW3G) {
2482                 cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op,
2483                                         &prep_req);
2484         } else if (fc_type == KASUMI) {
2485                 cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op,
2486                                     &prep_req);
2487         } else if (fc_type == HASH_HMAC) {
2488                 cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req);
2489         }
2490
2491         return prep_req;
2492 }
2493
2494 static __rte_always_inline int
2495 cpt_fc_auth_set_key(void *ctx, auth_type_t type, const uint8_t *key,
2496                     uint16_t key_len, uint16_t mac_len)
2497 {
2498         struct cpt_ctx *cpt_ctx = ctx;
2499         mc_fc_context_t *fctx = &cpt_ctx->fctx;
2500
2501         if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
2502                 uint32_t keyx[4];
2503
2504                 if (key_len != 16)
2505                         return -1;
2506                 /* No support for AEAD yet */
2507                 if (cpt_ctx->enc_cipher)
2508                         return -1;
2509                 /* For ZUC/SNOW3G/Kasumi */
2510                 switch (type) {
2511                 case SNOW3G_UIA2:
2512                         cpt_ctx->snow3g = 1;
2513                         gen_key_snow3g(key, keyx);
2514                         memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
2515                         cpt_ctx->fc_type = ZUC_SNOW3G;
2516                         cpt_ctx->zsk_flags = 0x1;
2517                         break;
2518                 case ZUC_EIA3:
2519                         cpt_ctx->snow3g = 0;
2520                         memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
2521                         memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
2522                         cpt_ctx->fc_type = ZUC_SNOW3G;
2523                         cpt_ctx->zsk_flags = 0x1;
2524                         break;
2525                 case KASUMI_F9_ECB:
2526                         /* Kasumi ECB mode */
2527                         cpt_ctx->k_ecb = 1;
2528                         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2529                         cpt_ctx->fc_type = KASUMI;
2530                         cpt_ctx->zsk_flags = 0x1;
2531                         break;
2532                 case KASUMI_F9_CBC:
2533                         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2534                         cpt_ctx->fc_type = KASUMI;
2535                         cpt_ctx->zsk_flags = 0x1;
2536                         break;
2537                 default:
2538                         return -1;
2539                 }
2540                 cpt_ctx->mac_len = 4;
2541                 cpt_ctx->hash_type = type;
2542                 return 0;
2543         }
2544
2545         if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
2546                 if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
2547                         cpt_ctx->fc_type = HASH_HMAC;
2548         }
2549
2550         if (cpt_ctx->fc_type == FC_GEN && key_len > 64)
2551                 return -1;
2552
2553         /* For GMAC auth, cipher must be NULL */
2554         if (type == GMAC_TYPE)
2555                 fctx->enc.enc_cipher = 0;
2556
2557         fctx->enc.hash_type = cpt_ctx->hash_type = type;
2558         fctx->enc.mac_len = cpt_ctx->mac_len = mac_len;
2559
2560         if (key_len) {
2561                 cpt_ctx->hmac = 1;
2562                 memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key));
2563                 memcpy(cpt_ctx->auth_key, key, key_len);
2564                 cpt_ctx->auth_key_len = key_len;
2565                 memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
2566                 memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
2567
2568                 if (key_len <= 64)
2569                         memcpy(fctx->hmac.opad, key, key_len);
2570                 fctx->enc.auth_input_type = 1;
2571         }
2572         return 0;
2573 }
2574
2575 static __rte_always_inline int
2576 fill_sess_aead(struct rte_crypto_sym_xform *xform,
2577                  struct cpt_sess_misc *sess)
2578 {
2579         struct rte_crypto_aead_xform *aead_form;
2580         cipher_type_t enc_type = 0; /* NULL Cipher type */
2581         auth_type_t auth_type = 0; /* NULL Auth type */
2582         uint32_t cipher_key_len = 0;
2583         uint8_t aes_gcm = 0;
2584         aead_form = &xform->aead;
2585         void *ctx = SESS_PRIV(sess);
2586
2587         if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT) {
2588                 sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2589                 sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2590         } else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT) {
2591                 sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2592                 sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2593         } else {
2594                 CPT_LOG_DP_ERR("Unknown aead operation\n");
2595                 return -1;
2596         }
2597         switch (aead_form->algo) {
2598         case RTE_CRYPTO_AEAD_AES_GCM:
2599                 enc_type = AES_GCM;
2600                 cipher_key_len = 16;
2601                 aes_gcm = 1;
2602                 break;
2603         case RTE_CRYPTO_AEAD_AES_CCM:
2604                 CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2605                                aead_form->algo);
2606                 return -1;
2607         case RTE_CRYPTO_AEAD_CHACHA20_POLY1305:
2608                 enc_type = CHACHA20;
2609                 auth_type = POLY1305;
2610                 cipher_key_len = 32;
2611                 sess->chacha_poly = 1;
2612                 break;
2613         default:
2614                 CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2615                                aead_form->algo);
2616                 return -1;
2617         }
2618         if (aead_form->key.length < cipher_key_len) {
2619                 CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2620                                (unsigned int long)aead_form->key.length);
2621                 return -1;
2622         }
2623         sess->zsk_flag = 0;
2624         sess->aes_gcm = aes_gcm;
2625         sess->mac_len = aead_form->digest_length;
2626         sess->iv_offset = aead_form->iv.offset;
2627         sess->iv_length = aead_form->iv.length;
2628         sess->aad_length = aead_form->aad_length;
2629
2630         if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
2631                         aead_form->key.length, NULL)))
2632                 return -1;
2633
2634         if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2635                         aead_form->digest_length)))
2636                 return -1;
2637
2638         return 0;
2639 }
2640
2641 static __rte_always_inline int
2642 fill_sess_cipher(struct rte_crypto_sym_xform *xform,
2643                  struct cpt_sess_misc *sess)
2644 {
2645         struct rte_crypto_cipher_xform *c_form;
2646         cipher_type_t enc_type = 0; /* NULL Cipher type */
2647         uint32_t cipher_key_len = 0;
2648         uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0;
2649
2650         c_form = &xform->cipher;
2651
2652         if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2653                 sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2654         else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT)
2655                 sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2656         else {
2657                 CPT_LOG_DP_ERR("Unknown cipher operation\n");
2658                 return -1;
2659         }
2660
2661         switch (c_form->algo) {
2662         case RTE_CRYPTO_CIPHER_AES_CBC:
2663                 enc_type = AES_CBC;
2664                 cipher_key_len = 16;
2665                 break;
2666         case RTE_CRYPTO_CIPHER_3DES_CBC:
2667                 enc_type = DES3_CBC;
2668                 cipher_key_len = 24;
2669                 break;
2670         case RTE_CRYPTO_CIPHER_DES_CBC:
2671                 /* DES is implemented using 3DES in hardware */
2672                 enc_type = DES3_CBC;
2673                 cipher_key_len = 8;
2674                 break;
2675         case RTE_CRYPTO_CIPHER_AES_CTR:
2676                 enc_type = AES_CTR;
2677                 cipher_key_len = 16;
2678                 aes_ctr = 1;
2679                 break;
2680         case RTE_CRYPTO_CIPHER_NULL:
2681                 enc_type = 0;
2682                 is_null = 1;
2683                 break;
2684         case RTE_CRYPTO_CIPHER_KASUMI_F8:
2685                 enc_type = KASUMI_F8_ECB;
2686                 cipher_key_len = 16;
2687                 zsk_flag = K_F8;
2688                 break;
2689         case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
2690                 enc_type = SNOW3G_UEA2;
2691                 cipher_key_len = 16;
2692                 zsk_flag = ZS_EA;
2693                 break;
2694         case RTE_CRYPTO_CIPHER_ZUC_EEA3:
2695                 enc_type = ZUC_EEA3;
2696                 cipher_key_len = 16;
2697                 zsk_flag = ZS_EA;
2698                 break;
2699         case RTE_CRYPTO_CIPHER_AES_XTS:
2700                 enc_type = AES_XTS;
2701                 cipher_key_len = 16;
2702                 break;
2703         case RTE_CRYPTO_CIPHER_3DES_ECB:
2704                 enc_type = DES3_ECB;
2705                 cipher_key_len = 24;
2706                 break;
2707         case RTE_CRYPTO_CIPHER_AES_ECB:
2708                 enc_type = AES_ECB;
2709                 cipher_key_len = 16;
2710                 break;
2711         case RTE_CRYPTO_CIPHER_3DES_CTR:
2712         case RTE_CRYPTO_CIPHER_AES_F8:
2713         case RTE_CRYPTO_CIPHER_ARC4:
2714                 CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2715                                c_form->algo);
2716                 return -1;
2717         default:
2718                 CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2719                                c_form->algo);
2720                 return -1;
2721         }
2722
2723         if (c_form->key.length < cipher_key_len) {
2724                 CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2725                                (unsigned long) c_form->key.length);
2726                 return -1;
2727         }
2728
2729         sess->zsk_flag = zsk_flag;
2730         sess->aes_gcm = 0;
2731         sess->aes_ctr = aes_ctr;
2732         sess->iv_offset = c_form->iv.offset;
2733         sess->iv_length = c_form->iv.length;
2734         sess->is_null = is_null;
2735
2736         if (unlikely(cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type,
2737                         c_form->key.data, c_form->key.length, NULL)))
2738                 return -1;
2739
2740         return 0;
2741 }
2742
2743 static __rte_always_inline int
2744 fill_sess_auth(struct rte_crypto_sym_xform *xform,
2745                struct cpt_sess_misc *sess)
2746 {
2747         struct rte_crypto_auth_xform *a_form;
2748         auth_type_t auth_type = 0; /* NULL Auth type */
2749         uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
2750
2751         a_form = &xform->auth;
2752
2753         if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2754                 sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2755         else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2756                 sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2757         else {
2758                 CPT_LOG_DP_ERR("Unknown auth operation");
2759                 return -1;
2760         }
2761
2762         switch (a_form->algo) {
2763         case RTE_CRYPTO_AUTH_SHA1_HMAC:
2764                 /* Fall through */
2765         case RTE_CRYPTO_AUTH_SHA1:
2766                 auth_type = SHA1_TYPE;
2767                 break;
2768         case RTE_CRYPTO_AUTH_SHA256_HMAC:
2769         case RTE_CRYPTO_AUTH_SHA256:
2770                 auth_type = SHA2_SHA256;
2771                 break;
2772         case RTE_CRYPTO_AUTH_SHA512_HMAC:
2773         case RTE_CRYPTO_AUTH_SHA512:
2774                 auth_type = SHA2_SHA512;
2775                 break;
2776         case RTE_CRYPTO_AUTH_AES_GMAC:
2777                 auth_type = GMAC_TYPE;
2778                 aes_gcm = 1;
2779                 break;
2780         case RTE_CRYPTO_AUTH_SHA224_HMAC:
2781         case RTE_CRYPTO_AUTH_SHA224:
2782                 auth_type = SHA2_SHA224;
2783                 break;
2784         case RTE_CRYPTO_AUTH_SHA384_HMAC:
2785         case RTE_CRYPTO_AUTH_SHA384:
2786                 auth_type = SHA2_SHA384;
2787                 break;
2788         case RTE_CRYPTO_AUTH_MD5_HMAC:
2789         case RTE_CRYPTO_AUTH_MD5:
2790                 auth_type = MD5_TYPE;
2791                 break;
2792         case RTE_CRYPTO_AUTH_KASUMI_F9:
2793                 auth_type = KASUMI_F9_ECB;
2794                 /*
2795                  * Indicate that direction needs to be taken out
2796                  * from end of src
2797                  */
2798                 zsk_flag = K_F9;
2799                 break;
2800         case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
2801                 auth_type = SNOW3G_UIA2;
2802                 zsk_flag = ZS_IA;
2803                 break;
2804         case RTE_CRYPTO_AUTH_ZUC_EIA3:
2805                 auth_type = ZUC_EIA3;
2806                 zsk_flag = ZS_IA;
2807                 break;
2808         case RTE_CRYPTO_AUTH_NULL:
2809                 auth_type = 0;
2810                 is_null = 1;
2811                 break;
2812         case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
2813         case RTE_CRYPTO_AUTH_AES_CMAC:
2814         case RTE_CRYPTO_AUTH_AES_CBC_MAC:
2815                 CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
2816                                a_form->algo);
2817                 return -1;
2818         default:
2819                 CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
2820                                a_form->algo);
2821                 return -1;
2822         }
2823
2824         sess->zsk_flag = zsk_flag;
2825         sess->aes_gcm = aes_gcm;
2826         sess->mac_len = a_form->digest_length;
2827         sess->is_null = is_null;
2828         if (zsk_flag) {
2829                 sess->auth_iv_offset = a_form->iv.offset;
2830                 sess->auth_iv_length = a_form->iv.length;
2831         }
2832         if (unlikely(cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type,
2833                         a_form->key.data, a_form->key.length,
2834                         a_form->digest_length)))
2835                 return -1;
2836
2837         return 0;
2838 }
2839
2840 static __rte_always_inline int
2841 fill_sess_gmac(struct rte_crypto_sym_xform *xform,
2842                  struct cpt_sess_misc *sess)
2843 {
2844         struct rte_crypto_auth_xform *a_form;
2845         cipher_type_t enc_type = 0; /* NULL Cipher type */
2846         auth_type_t auth_type = 0; /* NULL Auth type */
2847         void *ctx = SESS_PRIV(sess);
2848
2849         a_form = &xform->auth;
2850
2851         if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2852                 sess->cpt_op |= CPT_OP_ENCODE;
2853         else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2854                 sess->cpt_op |= CPT_OP_DECODE;
2855         else {
2856                 CPT_LOG_DP_ERR("Unknown auth operation");
2857                 return -1;
2858         }
2859
2860         switch (a_form->algo) {
2861         case RTE_CRYPTO_AUTH_AES_GMAC:
2862                 enc_type = AES_GCM;
2863                 auth_type = GMAC_TYPE;
2864                 break;
2865         default:
2866                 CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2867                                a_form->algo);
2868                 return -1;
2869         }
2870
2871         sess->zsk_flag = 0;
2872         sess->aes_gcm = 0;
2873         sess->is_gmac = 1;
2874         sess->iv_offset = a_form->iv.offset;
2875         sess->iv_length = a_form->iv.length;
2876         sess->mac_len = a_form->digest_length;
2877
2878         if (unlikely(cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
2879                         a_form->key.length, NULL)))
2880                 return -1;
2881
2882         if (unlikely(cpt_fc_auth_set_key(ctx, auth_type, NULL, 0,
2883                         a_form->digest_length)))
2884                 return -1;
2885
2886         return 0;
2887 }
2888
2889 static __rte_always_inline void *
2890 alloc_op_meta(struct rte_mbuf *m_src,
2891               buf_ptr_t *buf,
2892               int32_t len,
2893               struct rte_mempool *cpt_meta_pool)
2894 {
2895         uint8_t *mdata;
2896
2897 #ifndef CPT_ALWAYS_USE_SEPARATE_BUF
2898         if (likely(m_src && (m_src->nb_segs == 1))) {
2899                 int32_t tailroom;
2900                 phys_addr_t mphys;
2901
2902                 /* Check if tailroom is sufficient to hold meta data */
2903                 tailroom = rte_pktmbuf_tailroom(m_src);
2904                 if (likely(tailroom > len + 8)) {
2905                         mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
2906                         mphys = m_src->buf_iova + m_src->buf_len;
2907                         mdata -= len;
2908                         mphys -= len;
2909                         buf->vaddr = mdata;
2910                         buf->dma_addr = mphys;
2911                         buf->size = len;
2912                         /* Indicate that this is a mbuf allocated mdata */
2913                         mdata = (uint8_t *)((uint64_t)mdata | 1ull);
2914                         return mdata;
2915                 }
2916         }
2917 #else
2918         RTE_SET_USED(m_src);
2919 #endif
2920
2921         if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
2922                 return NULL;
2923
2924         buf->vaddr = mdata;
2925         buf->dma_addr = rte_mempool_virt2iova(mdata);
2926         buf->size = len;
2927
2928         return mdata;
2929 }
2930
2931 /**
2932  * cpt_free_metabuf - free metabuf to mempool.
2933  * @param instance: pointer to instance.
2934  * @param objp: pointer to the metabuf.
2935  */
2936 static __rte_always_inline void
2937 free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
2938 {
2939         bool nofree = ((uintptr_t)mdata & 1ull);
2940
2941         if (likely(nofree))
2942                 return;
2943         rte_mempool_put(cpt_meta_pool, mdata);
2944 }
2945
2946 static __rte_always_inline uint32_t
2947 prepare_iov_from_pkt(struct rte_mbuf *pkt,
2948                      iov_ptr_t *iovec, uint32_t start_offset)
2949 {
2950         uint16_t index = 0;
2951         void *seg_data = NULL;
2952         phys_addr_t seg_phys;
2953         int32_t seg_size = 0;
2954
2955         if (!pkt) {
2956                 iovec->buf_cnt = 0;
2957                 return 0;
2958         }
2959
2960         if (!start_offset) {
2961                 seg_data = rte_pktmbuf_mtod(pkt, void *);
2962                 seg_phys = rte_pktmbuf_iova(pkt);
2963                 seg_size = pkt->data_len;
2964         } else {
2965                 while (start_offset >= pkt->data_len) {
2966                         start_offset -= pkt->data_len;
2967                         pkt = pkt->next;
2968                 }
2969
2970                 seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
2971                 seg_phys = rte_pktmbuf_iova_offset(pkt, start_offset);
2972                 seg_size = pkt->data_len - start_offset;
2973                 if (!seg_size)
2974                         return 1;
2975         }
2976
2977         /* first seg */
2978         iovec->bufs[index].vaddr = seg_data;
2979         iovec->bufs[index].dma_addr = seg_phys;
2980         iovec->bufs[index].size = seg_size;
2981         index++;
2982         pkt = pkt->next;
2983
2984         while (unlikely(pkt != NULL)) {
2985                 seg_data = rte_pktmbuf_mtod(pkt, void *);
2986                 seg_phys = rte_pktmbuf_iova(pkt);
2987                 seg_size = pkt->data_len;
2988                 if (!seg_size)
2989                         break;
2990
2991                 iovec->bufs[index].vaddr = seg_data;
2992                 iovec->bufs[index].dma_addr = seg_phys;
2993                 iovec->bufs[index].size = seg_size;
2994
2995                 index++;
2996
2997                 pkt = pkt->next;
2998         }
2999
3000         iovec->buf_cnt = index;
3001         return 0;
3002 }
3003
3004 static __rte_always_inline uint32_t
3005 prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
3006                              fc_params_t *param,
3007                              uint32_t *flags)
3008 {
3009         uint16_t index = 0;
3010         void *seg_data = NULL;
3011         phys_addr_t seg_phys;
3012         uint32_t seg_size = 0;
3013         iov_ptr_t *iovec;
3014
3015         seg_data = rte_pktmbuf_mtod(pkt, void *);
3016         seg_phys = rte_pktmbuf_iova(pkt);
3017         seg_size = pkt->data_len;
3018
3019         /* first seg */
3020         if (likely(!pkt->next)) {
3021                 uint32_t headroom, tailroom;
3022
3023                 *flags |= SINGLE_BUF_INPLACE;
3024                 headroom = rte_pktmbuf_headroom(pkt);
3025                 tailroom = rte_pktmbuf_tailroom(pkt);
3026                 if (likely((headroom >= 24) &&
3027                     (tailroom >= 8))) {
3028                         /* In 83XX this is prerequivisit for Direct mode */
3029                         *flags |= SINGLE_BUF_HEADTAILROOM;
3030                 }
3031                 param->bufs[0].vaddr = seg_data;
3032                 param->bufs[0].dma_addr = seg_phys;
3033                 param->bufs[0].size = seg_size;
3034                 return 0;
3035         }
3036         iovec = param->src_iov;
3037         iovec->bufs[index].vaddr = seg_data;
3038         iovec->bufs[index].dma_addr = seg_phys;
3039         iovec->bufs[index].size = seg_size;
3040         index++;
3041         pkt = pkt->next;
3042
3043         while (unlikely(pkt != NULL)) {
3044                 seg_data = rte_pktmbuf_mtod(pkt, void *);
3045                 seg_phys = rte_pktmbuf_iova(pkt);
3046                 seg_size = pkt->data_len;
3047
3048                 if (!seg_size)
3049                         break;
3050
3051                 iovec->bufs[index].vaddr = seg_data;
3052                 iovec->bufs[index].dma_addr = seg_phys;
3053                 iovec->bufs[index].size = seg_size;
3054
3055                 index++;
3056
3057                 pkt = pkt->next;
3058         }
3059
3060         iovec->buf_cnt = index;
3061         return 0;
3062 }
3063
3064 static __rte_always_inline int
3065 fill_fc_params(struct rte_crypto_op *cop,
3066                struct cpt_sess_misc *sess_misc,
3067                struct cpt_qp_meta_info *m_info,
3068                void **mdata_ptr,
3069                void **prep_req)
3070 {
3071         uint32_t space = 0;
3072         struct rte_crypto_sym_op *sym_op = cop->sym;
3073         void *mdata = NULL;
3074         uintptr_t *op;
3075         uint32_t mc_hash_off;
3076         uint32_t flags = 0;
3077         uint64_t d_offs, d_lens;
3078         struct rte_mbuf *m_src, *m_dst;
3079         uint8_t cpt_op = sess_misc->cpt_op;
3080 #ifdef CPT_ALWAYS_USE_SG_MODE
3081         uint8_t inplace = 0;
3082 #else
3083         uint8_t inplace = 1;
3084 #endif
3085         fc_params_t fc_params;
3086         char src[SRC_IOV_SIZE];
3087         char dst[SRC_IOV_SIZE];
3088         uint32_t iv_buf[4];
3089         int ret;
3090
3091         if (likely(sess_misc->iv_length)) {
3092                 flags |= VALID_IV_BUF;
3093                 fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
3094                                    uint8_t *, sess_misc->iv_offset);
3095                 if (sess_misc->aes_ctr &&
3096                     unlikely(sess_misc->iv_length != 16)) {
3097                         memcpy((uint8_t *)iv_buf,
3098                                 rte_crypto_op_ctod_offset(cop,
3099                                 uint8_t *, sess_misc->iv_offset), 12);
3100                         iv_buf[3] = rte_cpu_to_be_32(0x1);
3101                         fc_params.iv_buf = iv_buf;
3102                 }
3103         }
3104
3105         if (sess_misc->zsk_flag) {
3106                 fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3107                                         uint8_t *,
3108                                         sess_misc->auth_iv_offset);
3109                 if (sess_misc->zsk_flag != ZS_EA)
3110                         inplace = 0;
3111         }
3112         m_src = sym_op->m_src;
3113         m_dst = sym_op->m_dst;
3114
3115         if (sess_misc->aes_gcm || sess_misc->chacha_poly) {
3116                 uint8_t *salt;
3117                 uint8_t *aad_data;
3118                 uint16_t aad_len;
3119
3120                 d_offs = sym_op->aead.data.offset;
3121                 d_lens = sym_op->aead.data.length;
3122                 mc_hash_off = sym_op->aead.data.offset +
3123                               sym_op->aead.data.length;
3124
3125                 aad_data = sym_op->aead.aad.data;
3126                 aad_len = sess_misc->aad_length;
3127                 if (likely((aad_data + aad_len) ==
3128                            rte_pktmbuf_mtod_offset(m_src,
3129                                 uint8_t *,
3130                                 sym_op->aead.data.offset))) {
3131                         d_offs = (d_offs - aad_len) | (d_offs << 16);
3132                         d_lens = (d_lens + aad_len) | (d_lens << 32);
3133                 } else {
3134                         fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
3135                         fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
3136                         fc_params.aad_buf.size = aad_len;
3137                         flags |= VALID_AAD_BUF;
3138                         inplace = 0;
3139                         d_offs = d_offs << 16;
3140                         d_lens = d_lens << 32;
3141                 }
3142
3143                 salt = fc_params.iv_buf;
3144                 if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3145                         cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3146                         sess_misc->salt = *(uint32_t *)salt;
3147                 }
3148                 fc_params.iv_buf = salt + 4;
3149                 if (likely(sess_misc->mac_len)) {
3150                         struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
3151                                              m_src;
3152
3153                         if (!m)
3154                                 m = m_src;
3155
3156                         /* hmac immediately following data is best case */
3157                         if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3158                             mc_hash_off !=
3159                             (uint8_t *)sym_op->aead.digest.data)) {
3160                                 flags |= VALID_MAC_BUF;
3161                                 fc_params.mac_buf.size = sess_misc->mac_len;
3162                                 fc_params.mac_buf.vaddr =
3163                                   sym_op->aead.digest.data;
3164                                 fc_params.mac_buf.dma_addr =
3165                                  sym_op->aead.digest.phys_addr;
3166                                 inplace = 0;
3167                         }
3168                 }
3169         } else {
3170                 d_offs = sym_op->cipher.data.offset;
3171                 d_lens = sym_op->cipher.data.length;
3172                 mc_hash_off = sym_op->cipher.data.offset +
3173                               sym_op->cipher.data.length;
3174                 d_offs = (d_offs << 16) | sym_op->auth.data.offset;
3175                 d_lens = (d_lens << 32) | sym_op->auth.data.length;
3176
3177                 if (mc_hash_off < (sym_op->auth.data.offset +
3178                                    sym_op->auth.data.length)){
3179                         mc_hash_off = (sym_op->auth.data.offset +
3180                                        sym_op->auth.data.length);
3181                 }
3182                 /* for gmac, salt should be updated like in gcm */
3183                 if (unlikely(sess_misc->is_gmac)) {
3184                         uint8_t *salt;
3185                         salt = fc_params.iv_buf;
3186                         if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3187                                 cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3188                                 sess_misc->salt = *(uint32_t *)salt;
3189                         }
3190                         fc_params.iv_buf = salt + 4;
3191                 }
3192                 if (likely(sess_misc->mac_len)) {
3193                         struct rte_mbuf *m;
3194
3195                         m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
3196                         if (!m)
3197                                 m = m_src;
3198
3199                         /* hmac immediately following data is best case */
3200                         if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3201                             mc_hash_off !=
3202                              (uint8_t *)sym_op->auth.digest.data)) {
3203                                 flags |= VALID_MAC_BUF;
3204                                 fc_params.mac_buf.size =
3205                                         sess_misc->mac_len;
3206                                 fc_params.mac_buf.vaddr =
3207                                         sym_op->auth.digest.data;
3208                                 fc_params.mac_buf.dma_addr =
3209                                 sym_op->auth.digest.phys_addr;
3210                                 inplace = 0;
3211                         }
3212                 }
3213         }
3214         fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
3215         fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
3216
3217         if (unlikely(sess_misc->is_null || sess_misc->cpt_op == CPT_OP_DECODE))
3218                 inplace = 0;
3219
3220         if (likely(!m_dst && inplace)) {
3221                 /* Case of single buffer without AAD buf or
3222                  * separate mac buf in place and
3223                  * not air crypto
3224                  */
3225                 fc_params.dst_iov = fc_params.src_iov = (void *)src;
3226
3227                 if (unlikely(prepare_iov_from_pkt_inplace(m_src,
3228                                                           &fc_params,
3229                                                           &flags))) {
3230                         CPT_LOG_DP_ERR("Prepare inplace src iov failed");
3231                         ret = -EINVAL;
3232                         goto err_exit;
3233                 }
3234
3235         } else {
3236                 /* Out of place processing */
3237                 fc_params.src_iov = (void *)src;
3238                 fc_params.dst_iov = (void *)dst;
3239
3240                 /* Store SG I/O in the api for reuse */
3241                 if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
3242                         CPT_LOG_DP_ERR("Prepare src iov failed");
3243                         ret = -EINVAL;
3244                         goto err_exit;
3245                 }
3246
3247                 if (unlikely(m_dst != NULL)) {
3248                         uint32_t pkt_len;
3249
3250                         /* Try to make room as much as src has */
3251                         pkt_len = rte_pktmbuf_pkt_len(m_dst);
3252
3253                         if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
3254                                 pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
3255                                 if (!rte_pktmbuf_append(m_dst, pkt_len)) {
3256                                         CPT_LOG_DP_ERR("Not enough space in "
3257                                                        "m_dst %p, need %u"
3258                                                        " more",
3259                                                        m_dst, pkt_len);
3260                                         ret = -EINVAL;
3261                                         goto err_exit;
3262                                 }
3263                         }
3264
3265                         if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
3266                                 CPT_LOG_DP_ERR("Prepare dst iov failed for "
3267                                                "m_dst %p", m_dst);
3268                                 ret = -EINVAL;
3269                                 goto err_exit;
3270                         }
3271                 } else {
3272                         fc_params.dst_iov = (void *)src;
3273                 }
3274         }
3275
3276         if (likely(flags & SINGLE_BUF_HEADTAILROOM))
3277                 mdata = alloc_op_meta(m_src, &fc_params.meta_buf,
3278                                       m_info->lb_mlen, m_info->pool);
3279         else
3280                 mdata = alloc_op_meta(NULL, &fc_params.meta_buf,
3281                                       m_info->sg_mlen, m_info->pool);
3282
3283         if (unlikely(mdata == NULL)) {
3284                 CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3285                 ret = -ENOMEM;
3286                 goto err_exit;
3287         }
3288
3289         op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
3290         op[0] = (uintptr_t)mdata;
3291         op[1] = (uintptr_t)cop;
3292         op[2] = op[3] = 0; /* Used to indicate auth verify */
3293         space += 4 * sizeof(uint64_t);
3294
3295         fc_params.meta_buf.vaddr = (uint8_t *)op + space;
3296         fc_params.meta_buf.dma_addr += space;
3297         fc_params.meta_buf.size -= space;
3298
3299         /* Finally prepare the instruction */
3300         if (cpt_op & CPT_OP_ENCODE)
3301                 *prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3302                                                  &fc_params, op);
3303         else
3304                 *prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
3305                                                  &fc_params, op);
3306
3307         if (unlikely(*prep_req == NULL)) {
3308                 CPT_LOG_DP_ERR("Preparing request failed due to bad input arg");
3309                 ret = -EINVAL;
3310                 goto free_mdata_and_exit;
3311         }
3312
3313         *mdata_ptr = mdata;
3314
3315         return 0;
3316
3317 free_mdata_and_exit:
3318         free_op_meta(mdata, m_info->pool);
3319 err_exit:
3320         return ret;
3321 }
3322
3323 static __rte_always_inline void
3324 compl_auth_verify(struct rte_crypto_op *op,
3325                       uint8_t *gen_mac,
3326                       uint64_t mac_len)
3327 {
3328         uint8_t *mac;
3329         struct rte_crypto_sym_op *sym_op = op->sym;
3330
3331         if (sym_op->auth.digest.data)
3332                 mac = sym_op->auth.digest.data;
3333         else
3334                 mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
3335                                               uint8_t *,
3336                                               sym_op->auth.data.length +
3337                                               sym_op->auth.data.offset);
3338         if (!mac) {
3339                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
3340                 return;
3341         }
3342
3343         if (memcmp(mac, gen_mac, mac_len))
3344                 op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
3345         else
3346                 op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
3347 }
3348
3349 static __rte_always_inline void
3350 find_kasumif9_direction_and_length(uint8_t *src,
3351                                    uint32_t counter_num_bytes,
3352                                    uint32_t *addr_length_in_bits,
3353                                    uint8_t *addr_direction)
3354 {
3355         uint8_t found = 0;
3356         uint32_t pos;
3357         uint8_t last_byte;
3358         while (!found && counter_num_bytes > 0) {
3359                 counter_num_bytes--;
3360                 if (src[counter_num_bytes] == 0x00)
3361                         continue;
3362                 pos = rte_bsf32(src[counter_num_bytes]);
3363                 if (pos == 7) {
3364                         if (likely(counter_num_bytes > 0)) {
3365                                 last_byte = src[counter_num_bytes - 1];
3366                                 *addr_direction  =  last_byte & 0x1;
3367                                 *addr_length_in_bits = counter_num_bytes * 8
3368                                                         - 1;
3369                         }
3370                 } else {
3371                         last_byte = src[counter_num_bytes];
3372                         *addr_direction = (last_byte >> (pos + 1)) & 0x1;
3373                         *addr_length_in_bits = counter_num_bytes * 8
3374                                                 + (8 - (pos + 2));
3375                 }
3376                 found = 1;
3377         }
3378 }
3379
3380 /*
3381  * This handles all auth only except AES_GMAC
3382  */
3383 static __rte_always_inline int
3384 fill_digest_params(struct rte_crypto_op *cop,
3385                    struct cpt_sess_misc *sess,
3386                    struct cpt_qp_meta_info *m_info,
3387                    void **mdata_ptr,
3388                    void **prep_req)
3389 {
3390         uint32_t space = 0;
3391         struct rte_crypto_sym_op *sym_op = cop->sym;
3392         void *mdata;
3393         phys_addr_t mphys;
3394         uint64_t *op;
3395         uint32_t auth_range_off;
3396         uint32_t flags = 0;
3397         uint64_t d_offs = 0, d_lens;
3398         struct rte_mbuf *m_src, *m_dst;
3399         uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
3400         uint16_t mac_len = sess->mac_len;
3401         fc_params_t params;
3402         char src[SRC_IOV_SIZE];
3403         uint8_t iv_buf[16];
3404         int ret;
3405
3406         memset(&params, 0, sizeof(fc_params_t));
3407
3408         m_src = sym_op->m_src;
3409
3410         /* For just digest lets force mempool alloc */
3411         mdata = alloc_op_meta(NULL, &params.meta_buf, m_info->sg_mlen,
3412                               m_info->pool);
3413         if (mdata == NULL) {
3414                 ret = -ENOMEM;
3415                 goto err_exit;
3416         }
3417
3418         mphys = params.meta_buf.dma_addr;
3419
3420         op = mdata;
3421         op[0] = (uintptr_t)mdata;
3422         op[1] = (uintptr_t)cop;
3423         op[2] = op[3] = 0; /* Used to indicate auth verify */
3424         space += 4 * sizeof(uint64_t);
3425
3426         auth_range_off = sym_op->auth.data.offset;
3427
3428         flags = VALID_MAC_BUF;
3429         params.src_iov = (void *)src;
3430         if (unlikely(sess->zsk_flag)) {
3431                 /*
3432                  * Since for Zuc, Kasumi, Snow3g offsets are in bits
3433                  * we will send pass through even for auth only case,
3434                  * let MC handle it
3435                  */
3436                 d_offs = auth_range_off;
3437                 auth_range_off = 0;
3438                 params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3439                                         uint8_t *, sess->auth_iv_offset);
3440                 if (sess->zsk_flag == K_F9) {
3441                         uint32_t length_in_bits, num_bytes;
3442                         uint8_t *src, direction = 0;
3443
3444                         memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
3445                                                         uint8_t *), 8);
3446                         /*
3447                          * This is kasumi f9, take direction from
3448                          * source buffer
3449                          */
3450                         length_in_bits = cop->sym->auth.data.length;
3451                         num_bytes = (length_in_bits >> 3);
3452                         src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
3453                         find_kasumif9_direction_and_length(src,
3454                                                 num_bytes,
3455                                                 &length_in_bits,
3456                                                 &direction);
3457                         length_in_bits -= 64;
3458                         cop->sym->auth.data.offset += 64;
3459                         d_offs = cop->sym->auth.data.offset;
3460                         auth_range_off = d_offs / 8;
3461                         cop->sym->auth.data.length = length_in_bits;
3462
3463                         /* Store it at end of auth iv */
3464                         iv_buf[8] = direction;
3465                         params.auth_iv_buf = iv_buf;
3466                 }
3467         }
3468
3469         d_lens = sym_op->auth.data.length;
3470
3471         params.ctx_buf.vaddr = SESS_PRIV(sess);
3472         params.ctx_buf.dma_addr = sess->ctx_dma_addr;
3473
3474         if (auth_op == CPT_OP_AUTH_GENERATE) {
3475                 if (sym_op->auth.digest.data) {
3476                         /*
3477                          * Digest to be generated
3478                          * in separate buffer
3479                          */
3480                         params.mac_buf.size =
3481                                 sess->mac_len;
3482                         params.mac_buf.vaddr =
3483                                 sym_op->auth.digest.data;
3484                         params.mac_buf.dma_addr =
3485                                 sym_op->auth.digest.phys_addr;
3486                 } else {
3487                         uint32_t off = sym_op->auth.data.offset +
3488                                 sym_op->auth.data.length;
3489                         int32_t dlen, space;
3490
3491                         m_dst = sym_op->m_dst ?
3492                                 sym_op->m_dst : sym_op->m_src;
3493                         dlen = rte_pktmbuf_pkt_len(m_dst);
3494
3495                         space = off + mac_len - dlen;
3496                         if (space > 0)
3497                                 if (!rte_pktmbuf_append(m_dst, space)) {
3498                                         CPT_LOG_DP_ERR("Failed to extend "
3499                                                        "mbuf by %uB", space);
3500                                         ret = -EINVAL;
3501                                         goto free_mdata_and_exit;
3502                                 }
3503
3504                         params.mac_buf.vaddr =
3505                                 rte_pktmbuf_mtod_offset(m_dst, void *, off);
3506                         params.mac_buf.dma_addr =
3507                                 rte_pktmbuf_iova_offset(m_dst, off);
3508                         params.mac_buf.size = mac_len;
3509                 }
3510         } else {
3511                 /* Need space for storing generated mac */
3512                 params.mac_buf.vaddr = (uint8_t *)mdata + space;
3513                 params.mac_buf.dma_addr = mphys + space;
3514                 params.mac_buf.size = mac_len;
3515                 space += RTE_ALIGN_CEIL(mac_len, 8);
3516                 op[2] = (uintptr_t)params.mac_buf.vaddr;
3517                 op[3] = mac_len;
3518         }
3519
3520         params.meta_buf.vaddr = (uint8_t *)mdata + space;
3521         params.meta_buf.dma_addr = mphys + space;
3522         params.meta_buf.size -= space;
3523
3524         /* Out of place processing */
3525         params.src_iov = (void *)src;
3526
3527         /*Store SG I/O in the api for reuse */
3528         if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
3529                 CPT_LOG_DP_ERR("Prepare src iov failed");
3530                 ret = -EINVAL;
3531                 goto free_mdata_and_exit;
3532         }
3533
3534         *prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &params, op);
3535         if (unlikely(*prep_req == NULL)) {
3536                 ret = -EINVAL;
3537                 goto free_mdata_and_exit;
3538         }
3539
3540         *mdata_ptr = mdata;
3541
3542         return 0;
3543
3544 free_mdata_and_exit:
3545         free_op_meta(mdata, m_info->pool);
3546 err_exit:
3547         return ret;
3548 }
3549
3550 #endif /*_CPT_UCODE_H_ */