compress/qat: fix overflow status return
[dpdk.git] / drivers / common / qat / qat_qp.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2018 Intel Corporation
3  */
4
5 #include <rte_common.h>
6 #include <rte_dev.h>
7 #include <rte_malloc.h>
8 #include <rte_memzone.h>
9 #include <rte_pci.h>
10 #include <rte_bus_pci.h>
11 #include <rte_atomic.h>
12 #include <rte_prefetch.h>
13
14 #include "qat_logs.h"
15 #include "qat_device.h"
16 #include "qat_qp.h"
17 #include "qat_sym.h"
18 #include "qat_asym.h"
19 #include "qat_comp.h"
20 #include "adf_transport_access_macros.h"
21
22
23 #define ADF_MAX_DESC                            4096
24 #define ADF_MIN_DESC                            128
25
26 #define ADF_ARB_REG_SLOT                        0x1000
27 #define ADF_ARB_RINGSRVARBEN_OFFSET             0x19C
28
29 #define WRITE_CSR_ARB_RINGSRVARBEN(csr_addr, index, value) \
30         ADF_CSR_WR(csr_addr, ADF_ARB_RINGSRVARBEN_OFFSET + \
31         (ADF_ARB_REG_SLOT * index), value)
32
33 __extension__
34 const struct qat_qp_hw_data qat_gen1_qps[QAT_MAX_SERVICES]
35                                          [ADF_MAX_QPS_ON_ANY_SERVICE] = {
36         /* queue pairs which provide an asymmetric crypto service */
37         [QAT_SERVICE_ASYMMETRIC] = {
38                 {
39                         .service_type = QAT_SERVICE_ASYMMETRIC,
40                         .hw_bundle_num = 0,
41                         .tx_ring_num = 0,
42                         .rx_ring_num = 8,
43                         .tx_msg_size = 64,
44                         .rx_msg_size = 32,
45
46                 }, {
47                         .service_type = QAT_SERVICE_ASYMMETRIC,
48                         .hw_bundle_num = 0,
49                         .tx_ring_num = 1,
50                         .rx_ring_num = 9,
51                         .tx_msg_size = 64,
52                         .rx_msg_size = 32,
53                 }
54         },
55         /* queue pairs which provide a symmetric crypto service */
56         [QAT_SERVICE_SYMMETRIC] = {
57                 {
58                         .service_type = QAT_SERVICE_SYMMETRIC,
59                         .hw_bundle_num = 0,
60                         .tx_ring_num = 2,
61                         .rx_ring_num = 10,
62                         .tx_msg_size = 128,
63                         .rx_msg_size = 32,
64                 },
65                 {
66                         .service_type = QAT_SERVICE_SYMMETRIC,
67                         .hw_bundle_num = 0,
68                         .tx_ring_num = 3,
69                         .rx_ring_num = 11,
70                         .tx_msg_size = 128,
71                         .rx_msg_size = 32,
72                 }
73         },
74         /* queue pairs which provide a compression service */
75         [QAT_SERVICE_COMPRESSION] = {
76                 {
77                         .service_type = QAT_SERVICE_COMPRESSION,
78                         .hw_bundle_num = 0,
79                         .tx_ring_num = 6,
80                         .rx_ring_num = 14,
81                         .tx_msg_size = 128,
82                         .rx_msg_size = 32,
83                 }, {
84                         .service_type = QAT_SERVICE_COMPRESSION,
85                         .hw_bundle_num = 0,
86                         .tx_ring_num = 7,
87                         .rx_ring_num = 15,
88                         .tx_msg_size = 128,
89                         .rx_msg_size = 32,
90                 }
91         }
92 };
93
94 __extension__
95 const struct qat_qp_hw_data qat_gen3_qps[QAT_MAX_SERVICES]
96                                          [ADF_MAX_QPS_ON_ANY_SERVICE] = {
97         /* queue pairs which provide an asymmetric crypto service */
98         [QAT_SERVICE_ASYMMETRIC] = {
99                 {
100                         .service_type = QAT_SERVICE_ASYMMETRIC,
101                         .hw_bundle_num = 0,
102                         .tx_ring_num = 0,
103                         .rx_ring_num = 4,
104                         .tx_msg_size = 64,
105                         .rx_msg_size = 32,
106                 }
107         },
108         /* queue pairs which provide a symmetric crypto service */
109         [QAT_SERVICE_SYMMETRIC] = {
110                 {
111                         .service_type = QAT_SERVICE_SYMMETRIC,
112                         .hw_bundle_num = 0,
113                         .tx_ring_num = 1,
114                         .rx_ring_num = 5,
115                         .tx_msg_size = 128,
116                         .rx_msg_size = 32,
117                 }
118         },
119         /* queue pairs which provide a compression service */
120         [QAT_SERVICE_COMPRESSION] = {
121                 {
122                         .service_type = QAT_SERVICE_COMPRESSION,
123                         .hw_bundle_num = 0,
124                         .tx_ring_num = 3,
125                         .rx_ring_num = 7,
126                         .tx_msg_size = 128,
127                         .rx_msg_size = 32,
128                 }
129         }
130 };
131
132 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
133         uint32_t queue_size_bytes);
134 static void qat_queue_delete(struct qat_queue *queue);
135 static int qat_queue_create(struct qat_pci_device *qat_dev,
136         struct qat_queue *queue, struct qat_qp_config *, uint8_t dir);
137 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
138         uint32_t *queue_size_for_csr);
139 static void adf_configure_queues(struct qat_qp *queue);
140 static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
141         rte_spinlock_t *lock);
142 static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
143         rte_spinlock_t *lock);
144
145
146 int qat_qps_per_service(const struct qat_qp_hw_data *qp_hw_data,
147                 enum qat_service_type service)
148 {
149         int i, count;
150
151         for (i = 0, count = 0; i < ADF_MAX_QPS_ON_ANY_SERVICE; i++)
152                 if (qp_hw_data[i].service_type == service)
153                         count++;
154         return count;
155 }
156
157 static const struct rte_memzone *
158 queue_dma_zone_reserve(const char *queue_name, uint32_t queue_size,
159                         int socket_id)
160 {
161         const struct rte_memzone *mz;
162
163         mz = rte_memzone_lookup(queue_name);
164         if (mz != 0) {
165                 if (((size_t)queue_size <= mz->len) &&
166                                 ((socket_id == SOCKET_ID_ANY) ||
167                                         (socket_id == mz->socket_id))) {
168                         QAT_LOG(DEBUG, "re-use memzone already "
169                                         "allocated for %s", queue_name);
170                         return mz;
171                 }
172
173                 QAT_LOG(ERR, "Incompatible memzone already "
174                                 "allocated %s, size %u, socket %d. "
175                                 "Requested size %u, socket %u",
176                                 queue_name, (uint32_t)mz->len,
177                                 mz->socket_id, queue_size, socket_id);
178                 return NULL;
179         }
180
181         QAT_LOG(DEBUG, "Allocate memzone for %s, size %u on socket %u",
182                                         queue_name, queue_size, socket_id);
183         return rte_memzone_reserve_aligned(queue_name, queue_size,
184                 socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
185 }
186
187 int qat_qp_setup(struct qat_pci_device *qat_dev,
188                 struct qat_qp **qp_addr,
189                 uint16_t queue_pair_id,
190                 struct qat_qp_config *qat_qp_conf)
191
192 {
193         struct qat_qp *qp;
194         struct rte_pci_device *pci_dev = qat_dev->pci_dev;
195         char op_cookie_pool_name[RTE_RING_NAMESIZE];
196         uint32_t i;
197
198         QAT_LOG(DEBUG, "Setup qp %u on qat pci device %d gen %d",
199                 queue_pair_id, qat_dev->qat_dev_id, qat_dev->qat_dev_gen);
200
201         if ((qat_qp_conf->nb_descriptors > ADF_MAX_DESC) ||
202                 (qat_qp_conf->nb_descriptors < ADF_MIN_DESC)) {
203                 QAT_LOG(ERR, "Can't create qp for %u descriptors",
204                                 qat_qp_conf->nb_descriptors);
205                 return -EINVAL;
206         }
207
208         if (pci_dev->mem_resource[0].addr == NULL) {
209                 QAT_LOG(ERR, "Could not find VF config space "
210                                 "(UIO driver attached?).");
211                 return -EINVAL;
212         }
213
214         /* Allocate the queue pair data structure. */
215         qp = rte_zmalloc_socket("qat PMD qp metadata",
216                                 sizeof(*qp), RTE_CACHE_LINE_SIZE,
217                                 qat_qp_conf->socket_id);
218         if (qp == NULL) {
219                 QAT_LOG(ERR, "Failed to alloc mem for qp struct");
220                 return -ENOMEM;
221         }
222         qp->nb_descriptors = qat_qp_conf->nb_descriptors;
223         qp->op_cookies = rte_zmalloc_socket("qat PMD op cookie pointer",
224                         qat_qp_conf->nb_descriptors * sizeof(*qp->op_cookies),
225                         RTE_CACHE_LINE_SIZE, qat_qp_conf->socket_id);
226         if (qp->op_cookies == NULL) {
227                 QAT_LOG(ERR, "Failed to alloc mem for cookie");
228                 rte_free(qp);
229                 return -ENOMEM;
230         }
231
232         qp->mmap_bar_addr = pci_dev->mem_resource[0].addr;
233         qp->inflights16 = 0;
234
235         if (qat_queue_create(qat_dev, &(qp->tx_q), qat_qp_conf,
236                                         ADF_RING_DIR_TX) != 0) {
237                 QAT_LOG(ERR, "Tx queue create failed "
238                                 "queue_pair_id=%u", queue_pair_id);
239                 goto create_err;
240         }
241
242         if (qat_queue_create(qat_dev, &(qp->rx_q), qat_qp_conf,
243                                         ADF_RING_DIR_RX) != 0) {
244                 QAT_LOG(ERR, "Rx queue create failed "
245                                 "queue_pair_id=%hu", queue_pair_id);
246                 qat_queue_delete(&(qp->tx_q));
247                 goto create_err;
248         }
249
250         adf_configure_queues(qp);
251         adf_queue_arb_enable(&qp->tx_q, qp->mmap_bar_addr,
252                                         &qat_dev->arb_csr_lock);
253
254         snprintf(op_cookie_pool_name, RTE_RING_NAMESIZE,
255                                         "%s%d_cookies_%s_qp%hu",
256                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
257                 qat_qp_conf->service_str, queue_pair_id);
258
259         QAT_LOG(DEBUG, "cookiepool: %s", op_cookie_pool_name);
260         qp->op_cookie_pool = rte_mempool_lookup(op_cookie_pool_name);
261         if (qp->op_cookie_pool == NULL)
262                 qp->op_cookie_pool = rte_mempool_create(op_cookie_pool_name,
263                                 qp->nb_descriptors,
264                                 qat_qp_conf->cookie_size, 64, 0,
265                                 NULL, NULL, NULL, NULL,
266                                 qat_dev->pci_dev->device.numa_node,
267                                 0);
268         if (!qp->op_cookie_pool) {
269                 QAT_LOG(ERR, "QAT PMD Cannot create"
270                                 " op mempool");
271                 goto create_err;
272         }
273
274         for (i = 0; i < qp->nb_descriptors; i++) {
275                 if (rte_mempool_get(qp->op_cookie_pool, &qp->op_cookies[i])) {
276                         QAT_LOG(ERR, "QAT PMD Cannot get op_cookie");
277                         goto create_err;
278                 }
279                 memset(qp->op_cookies[i], 0, qat_qp_conf->cookie_size);
280         }
281
282         qp->qat_dev_gen = qat_dev->qat_dev_gen;
283         qp->build_request = qat_qp_conf->build_request;
284         qp->service_type = qat_qp_conf->hw->service_type;
285         qp->qat_dev = qat_dev;
286
287         QAT_LOG(DEBUG, "QP setup complete: id: %d, cookiepool: %s",
288                         queue_pair_id, op_cookie_pool_name);
289
290         *qp_addr = qp;
291         return 0;
292
293 create_err:
294         if (qp->op_cookie_pool)
295                 rte_mempool_free(qp->op_cookie_pool);
296         rte_free(qp->op_cookies);
297         rte_free(qp);
298         return -EFAULT;
299 }
300
301 int qat_qp_release(struct qat_qp **qp_addr)
302 {
303         struct qat_qp *qp = *qp_addr;
304         uint32_t i;
305
306         if (qp == NULL) {
307                 QAT_LOG(DEBUG, "qp already freed");
308                 return 0;
309         }
310
311         QAT_LOG(DEBUG, "Free qp on qat_pci device %d",
312                                 qp->qat_dev->qat_dev_id);
313
314         /* Don't free memory if there are still responses to be processed */
315         if (qp->inflights16 == 0) {
316                 qat_queue_delete(&(qp->tx_q));
317                 qat_queue_delete(&(qp->rx_q));
318         } else {
319                 return -EAGAIN;
320         }
321
322         adf_queue_arb_disable(&(qp->tx_q), qp->mmap_bar_addr,
323                                         &qp->qat_dev->arb_csr_lock);
324
325         for (i = 0; i < qp->nb_descriptors; i++)
326                 rte_mempool_put(qp->op_cookie_pool, qp->op_cookies[i]);
327
328         if (qp->op_cookie_pool)
329                 rte_mempool_free(qp->op_cookie_pool);
330
331         rte_free(qp->op_cookies);
332         rte_free(qp);
333         *qp_addr = NULL;
334         return 0;
335 }
336
337
338 static void qat_queue_delete(struct qat_queue *queue)
339 {
340         const struct rte_memzone *mz;
341         int status = 0;
342
343         if (queue == NULL) {
344                 QAT_LOG(DEBUG, "Invalid queue");
345                 return;
346         }
347         QAT_LOG(DEBUG, "Free ring %d, memzone: %s",
348                         queue->hw_queue_number, queue->memz_name);
349
350         mz = rte_memzone_lookup(queue->memz_name);
351         if (mz != NULL) {
352                 /* Write an unused pattern to the queue memory. */
353                 memset(queue->base_addr, 0x7F, queue->queue_size);
354                 status = rte_memzone_free(mz);
355                 if (status != 0)
356                         QAT_LOG(ERR, "Error %d on freeing queue %s",
357                                         status, queue->memz_name);
358         } else {
359                 QAT_LOG(DEBUG, "queue %s doesn't exist",
360                                 queue->memz_name);
361         }
362 }
363
364 static int
365 qat_queue_create(struct qat_pci_device *qat_dev, struct qat_queue *queue,
366                 struct qat_qp_config *qp_conf, uint8_t dir)
367 {
368         uint64_t queue_base;
369         void *io_addr;
370         const struct rte_memzone *qp_mz;
371         struct rte_pci_device *pci_dev = qat_dev->pci_dev;
372         int ret = 0;
373         uint16_t desc_size = (dir == ADF_RING_DIR_TX ?
374                         qp_conf->hw->tx_msg_size : qp_conf->hw->rx_msg_size);
375         uint32_t queue_size_bytes = (qp_conf->nb_descriptors)*(desc_size);
376
377         queue->hw_bundle_number = qp_conf->hw->hw_bundle_num;
378         queue->hw_queue_number = (dir == ADF_RING_DIR_TX ?
379                         qp_conf->hw->tx_ring_num : qp_conf->hw->rx_ring_num);
380
381         if (desc_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) {
382                 QAT_LOG(ERR, "Invalid descriptor size %d", desc_size);
383                 return -EINVAL;
384         }
385
386         /*
387          * Allocate a memzone for the queue - create a unique name.
388          */
389         snprintf(queue->memz_name, sizeof(queue->memz_name),
390                         "%s_%d_%s_%s_%d_%d",
391                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
392                 qp_conf->service_str, "qp_mem",
393                 queue->hw_bundle_number, queue->hw_queue_number);
394         qp_mz = queue_dma_zone_reserve(queue->memz_name, queue_size_bytes,
395                         qat_dev->pci_dev->device.numa_node);
396         if (qp_mz == NULL) {
397                 QAT_LOG(ERR, "Failed to allocate ring memzone");
398                 return -ENOMEM;
399         }
400
401         queue->base_addr = (char *)qp_mz->addr;
402         queue->base_phys_addr = qp_mz->iova;
403         if (qat_qp_check_queue_alignment(queue->base_phys_addr,
404                         queue_size_bytes)) {
405                 QAT_LOG(ERR, "Invalid alignment on queue create "
406                                         " 0x%"PRIx64"\n",
407                                         queue->base_phys_addr);
408                 ret = -EFAULT;
409                 goto queue_create_err;
410         }
411
412         if (adf_verify_queue_size(desc_size, qp_conf->nb_descriptors,
413                         &(queue->queue_size)) != 0) {
414                 QAT_LOG(ERR, "Invalid num inflights");
415                 ret = -EINVAL;
416                 goto queue_create_err;
417         }
418
419         queue->max_inflights = ADF_MAX_INFLIGHTS(queue->queue_size,
420                                         ADF_BYTES_TO_MSG_SIZE(desc_size));
421         queue->modulo_mask = (1 << ADF_RING_SIZE_MODULO(queue->queue_size)) - 1;
422
423         if (queue->max_inflights < 2) {
424                 QAT_LOG(ERR, "Invalid num inflights");
425                 ret = -EINVAL;
426                 goto queue_create_err;
427         }
428         queue->head = 0;
429         queue->tail = 0;
430         queue->msg_size = desc_size;
431
432         /*
433          * Write an unused pattern to the queue memory.
434          */
435         memset(queue->base_addr, 0x7F, queue_size_bytes);
436
437         queue_base = BUILD_RING_BASE_ADDR(queue->base_phys_addr,
438                                         queue->queue_size);
439
440         io_addr = pci_dev->mem_resource[0].addr;
441
442         WRITE_CSR_RING_BASE(io_addr, queue->hw_bundle_number,
443                         queue->hw_queue_number, queue_base);
444
445         QAT_LOG(DEBUG, "RING: Name:%s, size in CSR: %u, in bytes %u,"
446                 " nb msgs %u, msg_size %u, max_inflights %u modulo mask %u",
447                         queue->memz_name,
448                         queue->queue_size, queue_size_bytes,
449                         qp_conf->nb_descriptors, desc_size,
450                         queue->max_inflights, queue->modulo_mask);
451
452         return 0;
453
454 queue_create_err:
455         rte_memzone_free(qp_mz);
456         return ret;
457 }
458
459 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
460                                         uint32_t queue_size_bytes)
461 {
462         if (((queue_size_bytes - 1) & phys_addr) != 0)
463                 return -EINVAL;
464         return 0;
465 }
466
467 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
468         uint32_t *p_queue_size_for_csr)
469 {
470         uint8_t i = ADF_MIN_RING_SIZE;
471
472         for (; i <= ADF_MAX_RING_SIZE; i++)
473                 if ((msg_size * msg_num) ==
474                                 (uint32_t)ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) {
475                         *p_queue_size_for_csr = i;
476                         return 0;
477                 }
478         QAT_LOG(ERR, "Invalid ring size %d", msg_size * msg_num);
479         return -EINVAL;
480 }
481
482 static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
483                                         rte_spinlock_t *lock)
484 {
485         uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
486                                         (ADF_ARB_REG_SLOT *
487                                                         txq->hw_bundle_number);
488         uint32_t value;
489
490         rte_spinlock_lock(lock);
491         value = ADF_CSR_RD(base_addr, arb_csr_offset);
492         value |= (0x01 << txq->hw_queue_number);
493         ADF_CSR_WR(base_addr, arb_csr_offset, value);
494         rte_spinlock_unlock(lock);
495 }
496
497 static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
498                                         rte_spinlock_t *lock)
499 {
500         uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
501                                         (ADF_ARB_REG_SLOT *
502                                                         txq->hw_bundle_number);
503         uint32_t value;
504
505         rte_spinlock_lock(lock);
506         value = ADF_CSR_RD(base_addr, arb_csr_offset);
507         value &= ~(0x01 << txq->hw_queue_number);
508         ADF_CSR_WR(base_addr, arb_csr_offset, value);
509         rte_spinlock_unlock(lock);
510 }
511
512 static void adf_configure_queues(struct qat_qp *qp)
513 {
514         uint32_t queue_config;
515         struct qat_queue *queue = &qp->tx_q;
516
517         queue_config = BUILD_RING_CONFIG(queue->queue_size);
518
519         WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
520                         queue->hw_queue_number, queue_config);
521
522         queue = &qp->rx_q;
523         queue_config =
524                         BUILD_RESP_RING_CONFIG(queue->queue_size,
525                                         ADF_RING_NEAR_WATERMARK_512,
526                                         ADF_RING_NEAR_WATERMARK_0);
527
528         WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
529                         queue->hw_queue_number, queue_config);
530 }
531
532 static inline uint32_t adf_modulo(uint32_t data, uint32_t modulo_mask)
533 {
534         return data & modulo_mask;
535 }
536
537 static inline void
538 txq_write_tail(struct qat_qp *qp, struct qat_queue *q) {
539         WRITE_CSR_RING_TAIL(qp->mmap_bar_addr, q->hw_bundle_number,
540                         q->hw_queue_number, q->tail);
541         q->nb_pending_requests = 0;
542         q->csr_tail = q->tail;
543 }
544
545 static inline
546 void rxq_free_desc(struct qat_qp *qp, struct qat_queue *q)
547 {
548         uint32_t old_head, new_head;
549         uint32_t max_head;
550
551         old_head = q->csr_head;
552         new_head = q->head;
553         max_head = qp->nb_descriptors * q->msg_size;
554
555         /* write out free descriptors */
556         void *cur_desc = (uint8_t *)q->base_addr + old_head;
557
558         if (new_head < old_head) {
559                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, max_head - old_head);
560                 memset(q->base_addr, ADF_RING_EMPTY_SIG_BYTE, new_head);
561         } else {
562                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head - old_head);
563         }
564         q->nb_processed_responses = 0;
565         q->csr_head = new_head;
566
567         /* write current head to CSR */
568         WRITE_CSR_RING_HEAD(qp->mmap_bar_addr, q->hw_bundle_number,
569                             q->hw_queue_number, new_head);
570 }
571
572 uint16_t
573 qat_enqueue_op_burst(void *qp, void **ops, uint16_t nb_ops)
574 {
575         register struct qat_queue *queue;
576         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
577         register uint32_t nb_ops_sent = 0;
578         register int ret;
579         uint16_t nb_ops_possible = nb_ops;
580         register uint8_t *base_addr;
581         register uint32_t tail;
582         int overflow;
583
584         if (unlikely(nb_ops == 0))
585                 return 0;
586
587         /* read params used a lot in main loop into registers */
588         queue = &(tmp_qp->tx_q);
589         base_addr = (uint8_t *)queue->base_addr;
590         tail = queue->tail;
591
592         /* Find how many can actually fit on the ring */
593         tmp_qp->inflights16 += nb_ops;
594         overflow = tmp_qp->inflights16 - queue->max_inflights;
595         if (overflow > 0) {
596                 tmp_qp->inflights16 -= overflow;
597                 nb_ops_possible = nb_ops - overflow;
598                 if (nb_ops_possible == 0)
599                         return 0;
600         }
601
602         while (nb_ops_sent != nb_ops_possible) {
603                 ret = tmp_qp->build_request(*ops, base_addr + tail,
604                                 tmp_qp->op_cookies[tail / queue->msg_size],
605                                 tmp_qp->qat_dev_gen);
606                 if (ret != 0) {
607                         tmp_qp->stats.enqueue_err_count++;
608                         /*
609                          * This message cannot be enqueued,
610                          * decrease number of ops that wasn't sent
611                          */
612                         tmp_qp->inflights16 -= nb_ops_possible - nb_ops_sent;
613                         if (nb_ops_sent == 0)
614                                 return 0;
615                         goto kick_tail;
616                 }
617
618                 tail = adf_modulo(tail + queue->msg_size, queue->modulo_mask);
619                 ops++;
620                 nb_ops_sent++;
621         }
622 kick_tail:
623         queue->tail = tail;
624         tmp_qp->stats.enqueued_count += nb_ops_sent;
625         queue->nb_pending_requests += nb_ops_sent;
626         if (tmp_qp->inflights16 < QAT_CSR_TAIL_FORCE_WRITE_THRESH ||
627                     queue->nb_pending_requests > QAT_CSR_TAIL_WRITE_THRESH) {
628                 txq_write_tail(tmp_qp, queue);
629         }
630         return nb_ops_sent;
631 }
632
633 uint16_t
634 qat_dequeue_op_burst(void *qp, void **ops, uint16_t nb_ops)
635 {
636         struct qat_queue *rx_queue, *tx_queue;
637         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
638         uint32_t head;
639         uint32_t resp_counter = 0;
640         uint8_t *resp_msg;
641
642         rx_queue = &(tmp_qp->rx_q);
643         tx_queue = &(tmp_qp->tx_q);
644         head = rx_queue->head;
645         resp_msg = (uint8_t *)rx_queue->base_addr + rx_queue->head;
646
647         while (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG &&
648                         resp_counter != nb_ops) {
649
650                 if (tmp_qp->service_type == QAT_SERVICE_SYMMETRIC)
651                         qat_sym_process_response(ops, resp_msg);
652                 else if (tmp_qp->service_type == QAT_SERVICE_COMPRESSION)
653                         qat_comp_process_response(ops, resp_msg,
654                                 tmp_qp->op_cookies[head / rx_queue->msg_size],
655                                 &tmp_qp->stats.dequeue_err_count);
656                 else if (tmp_qp->service_type == QAT_SERVICE_ASYMMETRIC) {
657 #ifdef BUILD_QAT_ASYM
658                         qat_asym_process_response(ops, resp_msg,
659                                 tmp_qp->op_cookies[head / rx_queue->msg_size]);
660 #endif
661                 }
662
663                 head = adf_modulo(head + rx_queue->msg_size,
664                                   rx_queue->modulo_mask);
665
666                 resp_msg = (uint8_t *)rx_queue->base_addr + head;
667                 ops++;
668                 resp_counter++;
669         }
670         if (resp_counter > 0) {
671                 rx_queue->head = head;
672                 tmp_qp->stats.dequeued_count += resp_counter;
673                 rx_queue->nb_processed_responses += resp_counter;
674                 tmp_qp->inflights16 -= resp_counter;
675
676                 if (rx_queue->nb_processed_responses >
677                                                 QAT_CSR_HEAD_WRITE_THRESH)
678                         rxq_free_desc(tmp_qp, rx_queue);
679         }
680         /* also check if tail needs to be advanced */
681         if (tmp_qp->inflights16 <= QAT_CSR_TAIL_FORCE_WRITE_THRESH &&
682                 tx_queue->tail != tx_queue->csr_tail) {
683                 txq_write_tail(tmp_qp, tx_queue);
684         }
685         return resp_counter;
686 }
687
688 __rte_weak int
689 qat_comp_process_response(void **op __rte_unused, uint8_t *resp __rte_unused,
690                           void *op_cookie __rte_unused,
691                           uint64_t *dequeue_err_count __rte_unused)
692 {
693         return  0;
694 }