crypto/cnxk: move IPsec SA creation to common
[dpdk.git] / drivers / common / qat / qat_qp.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2022 Intel Corporation
3  */
4
5 #include <rte_common.h>
6 #include <rte_cycles.h>
7 #include <rte_dev.h>
8 #include <rte_malloc.h>
9 #include <rte_memzone.h>
10 #include <rte_pci.h>
11 #include <rte_bus_pci.h>
12 #include <rte_atomic.h>
13 #include <rte_prefetch.h>
14
15 #include "qat_logs.h"
16 #include "qat_device.h"
17 #include "qat_qp.h"
18 #include "qat_sym.h"
19 #include "qat_asym.h"
20 #include "qat_comp.h"
21
22 #define QAT_CQ_MAX_DEQ_RETRIES 10
23
24 #define ADF_MAX_DESC                            4096
25 #define ADF_MIN_DESC                            128
26
27 struct qat_qp_hw_spec_funcs*
28         qat_qp_hw_spec[QAT_N_GENS];
29
30 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
31         uint32_t queue_size_bytes);
32 static void qat_queue_delete(struct qat_queue *queue);
33 static int qat_queue_create(struct qat_pci_device *qat_dev,
34         struct qat_queue *queue, struct qat_qp_config *, uint8_t dir);
35 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
36         uint32_t *queue_size_for_csr);
37 static int adf_configure_queues(struct qat_qp *queue,
38         enum qat_device_gen qat_dev_gen);
39 static int adf_queue_arb_enable(struct qat_pci_device *qat_dev,
40         struct qat_queue *txq, void *base_addr, rte_spinlock_t *lock);
41 static int adf_queue_arb_disable(enum qat_device_gen qat_dev_gen,
42         struct qat_queue *txq, void *base_addr, rte_spinlock_t *lock);
43 static int qat_qp_build_ring_base(struct qat_pci_device *qat_dev,
44         void *io_addr, struct qat_queue *queue);
45 static const struct rte_memzone *queue_dma_zone_reserve(const char *queue_name,
46         uint32_t queue_size, int socket_id);
47 static int qat_qp_csr_setup(struct qat_pci_device *qat_dev, void *io_addr,
48         struct qat_qp *qp);
49
50 int
51 qat_qp_setup(struct qat_pci_device *qat_dev,
52                 struct qat_qp **qp_addr,
53                 uint16_t queue_pair_id,
54                 struct qat_qp_config *qat_qp_conf)
55 {
56         struct qat_qp *qp = NULL;
57         struct rte_pci_device *pci_dev =
58                         qat_pci_devs[qat_dev->qat_dev_id].pci_dev;
59         char op_cookie_pool_name[RTE_RING_NAMESIZE];
60         struct qat_dev_hw_spec_funcs *ops_hw =
61                 qat_dev_hw_spec[qat_dev->qat_dev_gen];
62         void *io_addr;
63         uint32_t i;
64
65         QAT_LOG(DEBUG, "Setup qp %u on qat pci device %d gen %d",
66                 queue_pair_id, qat_dev->qat_dev_id, qat_dev->qat_dev_gen);
67
68         if ((qat_qp_conf->nb_descriptors > ADF_MAX_DESC) ||
69                 (qat_qp_conf->nb_descriptors < ADF_MIN_DESC)) {
70                 QAT_LOG(ERR, "Can't create qp for %u descriptors",
71                                 qat_qp_conf->nb_descriptors);
72                 return -EINVAL;
73         }
74
75         if (ops_hw->qat_dev_get_transport_bar == NULL)  {
76                 QAT_LOG(ERR,
77                         "QAT Internal Error: qat_dev_get_transport_bar not set for gen %d",
78                         qat_dev->qat_dev_gen);
79                 goto create_err;
80         }
81
82         io_addr = ops_hw->qat_dev_get_transport_bar(pci_dev)->addr;
83         if (io_addr == NULL) {
84                 QAT_LOG(ERR, "Could not find VF config space "
85                                 "(UIO driver attached?).");
86                 return -EINVAL;
87         }
88
89         /* Allocate the queue pair data structure. */
90         qp = rte_zmalloc_socket("qat PMD qp metadata",
91                                 sizeof(*qp), RTE_CACHE_LINE_SIZE,
92                                 qat_qp_conf->socket_id);
93         if (qp == NULL) {
94                 QAT_LOG(ERR, "Failed to alloc mem for qp struct");
95                 return -ENOMEM;
96         }
97         qp->nb_descriptors = qat_qp_conf->nb_descriptors;
98         qp->op_cookies = rte_zmalloc_socket("qat PMD op cookie pointer",
99                         qat_qp_conf->nb_descriptors * sizeof(*qp->op_cookies),
100                         RTE_CACHE_LINE_SIZE, qat_qp_conf->socket_id);
101         if (qp->op_cookies == NULL) {
102                 QAT_LOG(ERR, "Failed to alloc mem for cookie");
103                 rte_free(qp);
104                 return -ENOMEM;
105         }
106
107         qp->mmap_bar_addr = io_addr;
108         qp->enqueued = qp->dequeued = 0;
109
110         if (qat_queue_create(qat_dev, &(qp->tx_q), qat_qp_conf,
111                                         ADF_RING_DIR_TX) != 0) {
112                 QAT_LOG(ERR, "Tx queue create failed "
113                                 "queue_pair_id=%u", queue_pair_id);
114                 goto create_err;
115         }
116
117         qp->max_inflights = ADF_MAX_INFLIGHTS(qp->tx_q.queue_size,
118                                 ADF_BYTES_TO_MSG_SIZE(qp->tx_q.msg_size));
119
120         if (qp->max_inflights < 2) {
121                 QAT_LOG(ERR, "Invalid num inflights");
122                 qat_queue_delete(&(qp->tx_q));
123                 goto create_err;
124         }
125
126         if (qat_queue_create(qat_dev, &(qp->rx_q), qat_qp_conf,
127                                         ADF_RING_DIR_RX) != 0) {
128                 QAT_LOG(ERR, "Rx queue create failed "
129                                 "queue_pair_id=%hu", queue_pair_id);
130                 qat_queue_delete(&(qp->tx_q));
131                 goto create_err;
132         }
133
134         snprintf(op_cookie_pool_name, RTE_RING_NAMESIZE,
135                                         "%s%d_cookies_%s_qp%hu",
136                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
137                 qat_qp_conf->service_str, queue_pair_id);
138
139         QAT_LOG(DEBUG, "cookiepool: %s", op_cookie_pool_name);
140         qp->op_cookie_pool = rte_mempool_lookup(op_cookie_pool_name);
141         if (qp->op_cookie_pool == NULL)
142                 qp->op_cookie_pool = rte_mempool_create(op_cookie_pool_name,
143                                 qp->nb_descriptors,
144                                 qat_qp_conf->cookie_size, 64, 0,
145                                 NULL, NULL, NULL, NULL,
146                                 pci_dev->device.numa_node,
147                                 0);
148         if (!qp->op_cookie_pool) {
149                 QAT_LOG(ERR, "QAT PMD Cannot create"
150                                 " op mempool");
151                 qat_queue_delete(&(qp->tx_q));
152                 qat_queue_delete(&(qp->rx_q));
153                 goto create_err;
154         }
155
156         for (i = 0; i < qp->nb_descriptors; i++) {
157                 if (rte_mempool_get(qp->op_cookie_pool, &qp->op_cookies[i])) {
158                         QAT_LOG(ERR, "QAT PMD Cannot get op_cookie");
159                         goto create_err;
160                 }
161                 memset(qp->op_cookies[i], 0, qat_qp_conf->cookie_size);
162         }
163
164         qp->qat_dev_gen = qat_dev->qat_dev_gen;
165         qp->service_type = qat_qp_conf->hw->service_type;
166         qp->qat_dev = qat_dev;
167
168         QAT_LOG(DEBUG, "QP setup complete: id: %d, cookiepool: %s",
169                         queue_pair_id, op_cookie_pool_name);
170
171         qat_qp_csr_setup(qat_dev, io_addr, qp);
172
173         *qp_addr = qp;
174         return 0;
175
176 create_err:
177         if (qp) {
178                 rte_mempool_free(qp->op_cookie_pool);
179
180                 rte_free(qp->op_cookies);
181
182                 rte_free(qp);
183         }
184
185         return -EFAULT;
186 }
187
188 static int
189 qat_queue_create(struct qat_pci_device *qat_dev, struct qat_queue *queue,
190                 struct qat_qp_config *qp_conf, uint8_t dir)
191 {
192         const struct rte_memzone *qp_mz;
193         struct rte_pci_device *pci_dev =
194                         qat_pci_devs[qat_dev->qat_dev_id].pci_dev;
195         int ret = 0;
196         uint16_t desc_size = (dir == ADF_RING_DIR_TX ?
197                         qp_conf->hw->tx_msg_size : qp_conf->hw->rx_msg_size);
198         uint32_t queue_size_bytes = (qp_conf->nb_descriptors)*(desc_size);
199
200         queue->hw_bundle_number = qp_conf->hw->hw_bundle_num;
201         queue->hw_queue_number = (dir == ADF_RING_DIR_TX ?
202                         qp_conf->hw->tx_ring_num : qp_conf->hw->rx_ring_num);
203
204         if (desc_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) {
205                 QAT_LOG(ERR, "Invalid descriptor size %d", desc_size);
206                 return -EINVAL;
207         }
208
209         /*
210          * Allocate a memzone for the queue - create a unique name.
211          */
212         snprintf(queue->memz_name, sizeof(queue->memz_name),
213                         "%s_%d_%s_%s_%d_%d",
214                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
215                 qp_conf->service_str, "qp_mem",
216                 queue->hw_bundle_number, queue->hw_queue_number);
217         qp_mz = queue_dma_zone_reserve(queue->memz_name, queue_size_bytes,
218                         pci_dev->device.numa_node);
219         if (qp_mz == NULL) {
220                 QAT_LOG(ERR, "Failed to allocate ring memzone");
221                 return -ENOMEM;
222         }
223
224         queue->base_addr = (char *)qp_mz->addr;
225         queue->base_phys_addr = qp_mz->iova;
226         if (qat_qp_check_queue_alignment(queue->base_phys_addr,
227                         queue_size_bytes)) {
228                 QAT_LOG(ERR, "Invalid alignment on queue create "
229                                         " 0x%"PRIx64"\n",
230                                         queue->base_phys_addr);
231                 ret = -EFAULT;
232                 goto queue_create_err;
233         }
234
235         if (adf_verify_queue_size(desc_size, qp_conf->nb_descriptors,
236                         &(queue->queue_size)) != 0) {
237                 QAT_LOG(ERR, "Invalid num inflights");
238                 ret = -EINVAL;
239                 goto queue_create_err;
240         }
241
242         queue->modulo_mask = (1 << ADF_RING_SIZE_MODULO(queue->queue_size)) - 1;
243         queue->head = 0;
244         queue->tail = 0;
245         queue->msg_size = desc_size;
246
247         /* For fast calculation of cookie index, relies on msg_size being 2^n */
248         queue->trailz = __builtin_ctz(desc_size);
249
250         /*
251          * Write an unused pattern to the queue memory.
252          */
253         memset(queue->base_addr, 0x7F, queue_size_bytes);
254
255         QAT_LOG(DEBUG, "RING: Name:%s, size in CSR: %u, in bytes %u,"
256                 " nb msgs %u, msg_size %u, modulo mask %u",
257                         queue->memz_name,
258                         queue->queue_size, queue_size_bytes,
259                         qp_conf->nb_descriptors, desc_size,
260                         queue->modulo_mask);
261
262         return 0;
263
264 queue_create_err:
265         rte_memzone_free(qp_mz);
266         return ret;
267 }
268
269 static const struct rte_memzone *
270 queue_dma_zone_reserve(const char *queue_name, uint32_t queue_size,
271                 int socket_id)
272 {
273         const struct rte_memzone *mz;
274
275         mz = rte_memzone_lookup(queue_name);
276         if (mz != 0) {
277                 if (((size_t)queue_size <= mz->len) &&
278                                 ((socket_id == SOCKET_ID_ANY) ||
279                                         (socket_id == mz->socket_id))) {
280                         QAT_LOG(DEBUG, "re-use memzone already "
281                                         "allocated for %s", queue_name);
282                         return mz;
283                 }
284
285                 QAT_LOG(ERR, "Incompatible memzone already "
286                                 "allocated %s, size %u, socket %d. "
287                                 "Requested size %u, socket %u",
288                                 queue_name, (uint32_t)mz->len,
289                                 mz->socket_id, queue_size, socket_id);
290                 return NULL;
291         }
292
293         QAT_LOG(DEBUG, "Allocate memzone for %s, size %u on socket %u",
294                                         queue_name, queue_size, socket_id);
295         return rte_memzone_reserve_aligned(queue_name, queue_size,
296                 socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
297 }
298
299 int
300 qat_qp_release(enum qat_device_gen qat_dev_gen, struct qat_qp **qp_addr)
301 {
302         int ret;
303         struct qat_qp *qp = *qp_addr;
304         uint32_t i;
305
306         if (qp == NULL) {
307                 QAT_LOG(DEBUG, "qp already freed");
308                 return 0;
309         }
310
311         QAT_LOG(DEBUG, "Free qp on qat_pci device %d",
312                                 qp->qat_dev->qat_dev_id);
313
314         /* Don't free memory if there are still responses to be processed */
315         if ((qp->enqueued - qp->dequeued) == 0) {
316                 qat_queue_delete(&(qp->tx_q));
317                 qat_queue_delete(&(qp->rx_q));
318         } else {
319                 return -EAGAIN;
320         }
321
322         ret = adf_queue_arb_disable(qat_dev_gen, &(qp->tx_q),
323                         qp->mmap_bar_addr, &qp->qat_dev->arb_csr_lock);
324         if (ret)
325                 return ret;
326
327         for (i = 0; i < qp->nb_descriptors; i++)
328                 rte_mempool_put(qp->op_cookie_pool, qp->op_cookies[i]);
329
330         rte_mempool_free(qp->op_cookie_pool);
331
332         rte_free(qp->op_cookies);
333         rte_free(qp);
334         *qp_addr = NULL;
335         return 0;
336 }
337
338
339 static void
340 qat_queue_delete(struct qat_queue *queue)
341 {
342         const struct rte_memzone *mz;
343         int status = 0;
344
345         if (queue == NULL) {
346                 QAT_LOG(DEBUG, "Invalid queue");
347                 return;
348         }
349         QAT_LOG(DEBUG, "Free ring %d, memzone: %s",
350                         queue->hw_queue_number, queue->memz_name);
351
352         mz = rte_memzone_lookup(queue->memz_name);
353         if (mz != NULL) {
354                 /* Write an unused pattern to the queue memory. */
355                 memset(queue->base_addr, 0x7F, queue->queue_size);
356                 status = rte_memzone_free(mz);
357                 if (status != 0)
358                         QAT_LOG(ERR, "Error %d on freeing queue %s",
359                                         status, queue->memz_name);
360         } else {
361                 QAT_LOG(DEBUG, "queue %s doesn't exist",
362                                 queue->memz_name);
363         }
364 }
365
366 static int __rte_unused
367 adf_queue_arb_enable(struct qat_pci_device *qat_dev, struct qat_queue *txq,
368                 void *base_addr, rte_spinlock_t *lock)
369 {
370         struct qat_qp_hw_spec_funcs *ops =
371                 qat_qp_hw_spec[qat_dev->qat_dev_gen];
372
373         RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_adf_arb_enable,
374                         -ENOTSUP);
375         ops->qat_qp_adf_arb_enable(txq, base_addr, lock);
376         return 0;
377 }
378
379 static int
380 adf_queue_arb_disable(enum qat_device_gen qat_dev_gen, struct qat_queue *txq,
381                 void *base_addr, rte_spinlock_t *lock)
382 {
383         struct qat_qp_hw_spec_funcs *ops =
384                 qat_qp_hw_spec[qat_dev_gen];
385
386         RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_adf_arb_disable,
387                         -ENOTSUP);
388         ops->qat_qp_adf_arb_disable(txq, base_addr, lock);
389         return 0;
390 }
391
392 static int __rte_unused
393 qat_qp_build_ring_base(struct qat_pci_device *qat_dev, void *io_addr,
394                 struct qat_queue *queue)
395 {
396         struct qat_qp_hw_spec_funcs *ops =
397                 qat_qp_hw_spec[qat_dev->qat_dev_gen];
398
399         RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_build_ring_base,
400                         -ENOTSUP);
401         ops->qat_qp_build_ring_base(io_addr, queue);
402         return 0;
403 }
404
405 int
406 qat_qps_per_service(struct qat_pci_device *qat_dev,
407                 enum qat_service_type service)
408 {
409         struct qat_qp_hw_spec_funcs *ops =
410                 qat_qp_hw_spec[qat_dev->qat_dev_gen];
411
412         RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_rings_per_service,
413                         -ENOTSUP);
414         return ops->qat_qp_rings_per_service(qat_dev, service);
415 }
416
417 const struct qat_qp_hw_data *
418 qat_qp_get_hw_data(struct qat_pci_device *qat_dev,
419                 enum qat_service_type service, uint16_t qp_id)
420 {
421         struct qat_qp_hw_spec_funcs *ops =
422                 qat_qp_hw_spec[qat_dev->qat_dev_gen];
423
424         RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_get_hw_data, NULL);
425         return ops->qat_qp_get_hw_data(qat_dev, service, qp_id);
426 }
427
428 int
429 qat_read_qp_config(struct qat_pci_device *qat_dev)
430 {
431         struct qat_dev_hw_spec_funcs *ops_hw =
432                 qat_dev_hw_spec[qat_dev->qat_dev_gen];
433
434         RTE_FUNC_PTR_OR_ERR_RET(ops_hw->qat_dev_read_config,
435                         -ENOTSUP);
436         return ops_hw->qat_dev_read_config(qat_dev);
437 }
438
439 static int __rte_unused
440 adf_configure_queues(struct qat_qp *qp, enum qat_device_gen qat_dev_gen)
441 {
442         struct qat_qp_hw_spec_funcs *ops =
443                 qat_qp_hw_spec[qat_dev_gen];
444
445         RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_adf_configure_queues,
446                         -ENOTSUP);
447         ops->qat_qp_adf_configure_queues(qp);
448         return 0;
449 }
450
451 static inline void
452 txq_write_tail(enum qat_device_gen qat_dev_gen,
453                 struct qat_qp *qp, struct qat_queue *q)
454 {
455         struct qat_qp_hw_spec_funcs *ops =
456                 qat_qp_hw_spec[qat_dev_gen];
457
458         /*
459          * Pointer check should be done during
460          * initialization
461          */
462         ops->qat_qp_csr_write_tail(qp, q);
463 }
464
465 static inline void
466 qat_qp_csr_write_head(enum qat_device_gen qat_dev_gen, struct qat_qp *qp,
467                         struct qat_queue *q, uint32_t new_head)
468 {
469         struct qat_qp_hw_spec_funcs *ops =
470                 qat_qp_hw_spec[qat_dev_gen];
471
472         /*
473          * Pointer check should be done during
474          * initialization
475          */
476         ops->qat_qp_csr_write_head(qp, q, new_head);
477 }
478
479 static int
480 qat_qp_csr_setup(struct qat_pci_device *qat_dev,
481                 void *io_addr, struct qat_qp *qp)
482 {
483         struct qat_qp_hw_spec_funcs *ops =
484                 qat_qp_hw_spec[qat_dev->qat_dev_gen];
485
486         RTE_FUNC_PTR_OR_ERR_RET(ops->qat_qp_csr_setup,
487                         -ENOTSUP);
488         ops->qat_qp_csr_setup(qat_dev, io_addr, qp);
489         return 0;
490 }
491
492
493 static inline
494 void rxq_free_desc(enum qat_device_gen qat_dev_gen, struct qat_qp *qp,
495                                 struct qat_queue *q)
496 {
497         uint32_t old_head, new_head;
498         uint32_t max_head;
499
500         old_head = q->csr_head;
501         new_head = q->head;
502         max_head = qp->nb_descriptors * q->msg_size;
503
504         /* write out free descriptors */
505         void *cur_desc = (uint8_t *)q->base_addr + old_head;
506
507         if (new_head < old_head) {
508                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, max_head - old_head);
509                 memset(q->base_addr, ADF_RING_EMPTY_SIG_BYTE, new_head);
510         } else {
511                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head - old_head);
512         }
513         q->nb_processed_responses = 0;
514         q->csr_head = new_head;
515
516         qat_qp_csr_write_head(qat_dev_gen, qp, q, new_head);
517 }
518
519 static int
520 qat_qp_check_queue_alignment(uint64_t phys_addr, uint32_t queue_size_bytes)
521 {
522         if (((queue_size_bytes - 1) & phys_addr) != 0)
523                 return -EINVAL;
524         return 0;
525 }
526
527 static int
528 adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
529                 uint32_t *p_queue_size_for_csr)
530 {
531         uint8_t i = ADF_MIN_RING_SIZE;
532
533         for (; i <= ADF_MAX_RING_SIZE; i++)
534                 if ((msg_size * msg_num) ==
535                                 (uint32_t)ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) {
536                         *p_queue_size_for_csr = i;
537                         return 0;
538                 }
539         QAT_LOG(ERR, "Invalid ring size %d", msg_size * msg_num);
540         return -EINVAL;
541 }
542
543 static inline uint32_t
544 adf_modulo(uint32_t data, uint32_t modulo_mask)
545 {
546         return data & modulo_mask;
547 }
548
549 uint16_t
550 qat_enqueue_op_burst(void *qp, qat_op_build_request_t op_build_request,
551                 void **ops, uint16_t nb_ops)
552 {
553         register struct qat_queue *queue;
554         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
555         register uint32_t nb_ops_sent = 0;
556         register int ret = -1;
557         uint16_t nb_ops_possible = nb_ops;
558         register uint8_t *base_addr;
559         register uint32_t tail;
560
561         if (unlikely(nb_ops == 0))
562                 return 0;
563
564         /* read params used a lot in main loop into registers */
565         queue = &(tmp_qp->tx_q);
566         base_addr = (uint8_t *)queue->base_addr;
567         tail = queue->tail;
568
569         /* Find how many can actually fit on the ring */
570         {
571                 /* dequeued can only be written by one thread, but it may not
572                  * be this thread. As it's 4-byte aligned it will be read
573                  * atomically here by any Intel CPU.
574                  * enqueued can wrap before dequeued, but cannot
575                  * lap it as var size of enq/deq (uint32_t) > var size of
576                  * max_inflights (uint16_t). In reality inflights is never
577                  * even as big as max uint16_t, as it's <= ADF_MAX_DESC.
578                  * On wrapping, the calculation still returns the correct
579                  * positive value as all three vars are unsigned.
580                  */
581                 uint32_t inflights =
582                         tmp_qp->enqueued - tmp_qp->dequeued;
583
584                 if ((inflights + nb_ops) > tmp_qp->max_inflights) {
585                         nb_ops_possible = tmp_qp->max_inflights - inflights;
586                         if (nb_ops_possible == 0)
587                                 return 0;
588                 }
589                 /* QAT has plenty of work queued already, so don't waste cycles
590                  * enqueueing, wait til the application has gathered a bigger
591                  * burst or some completed ops have been dequeued
592                  */
593                 if (tmp_qp->min_enq_burst_threshold && inflights >
594                                 QAT_QP_MIN_INFL_THRESHOLD && nb_ops_possible <
595                                 tmp_qp->min_enq_burst_threshold) {
596                         tmp_qp->stats.threshold_hit_count++;
597                         return 0;
598                 }
599         }
600
601 #ifdef RTE_LIB_SECURITY
602         if (tmp_qp->service_type == QAT_SERVICE_SYMMETRIC)
603                 qat_sym_preprocess_requests(ops, nb_ops_possible);
604 #endif
605
606         memset(tmp_qp->opaque, 0xff, sizeof(tmp_qp->opaque));
607
608         while (nb_ops_sent != nb_ops_possible) {
609                 ret = op_build_request(*ops, base_addr + tail,
610                                 tmp_qp->op_cookies[tail >> queue->trailz],
611                                 tmp_qp->opaque, tmp_qp->qat_dev_gen);
612
613                 if (ret != 0) {
614                         tmp_qp->stats.enqueue_err_count++;
615                         /* This message cannot be enqueued */
616                         if (nb_ops_sent == 0)
617                                 return 0;
618                         goto kick_tail;
619                 }
620
621                 tail = adf_modulo(tail + queue->msg_size, queue->modulo_mask);
622                 ops++;
623                 nb_ops_sent++;
624         }
625 kick_tail:
626         queue->tail = tail;
627         tmp_qp->enqueued += nb_ops_sent;
628         tmp_qp->stats.enqueued_count += nb_ops_sent;
629         txq_write_tail(tmp_qp->qat_dev_gen, tmp_qp, queue);
630         return nb_ops_sent;
631 }
632
633 /* Use this for compression only - but keep consistent with above common
634  * function as much as possible.
635  */
636 uint16_t
637 qat_enqueue_comp_op_burst(void *qp, void **ops, uint16_t nb_ops)
638 {
639         register struct qat_queue *queue;
640         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
641         register uint32_t nb_ops_sent = 0;
642         register int nb_desc_to_build;
643         uint16_t nb_ops_possible = nb_ops;
644         register uint8_t *base_addr;
645         register uint32_t tail;
646
647         int descriptors_built, total_descriptors_built = 0;
648         int nb_remaining_descriptors;
649         int overflow = 0;
650
651         if (unlikely(nb_ops == 0))
652                 return 0;
653
654         /* read params used a lot in main loop into registers */
655         queue = &(tmp_qp->tx_q);
656         base_addr = (uint8_t *)queue->base_addr;
657         tail = queue->tail;
658
659         /* Find how many can actually fit on the ring */
660         {
661                 /* dequeued can only be written by one thread, but it may not
662                  * be this thread. As it's 4-byte aligned it will be read
663                  * atomically here by any Intel CPU.
664                  * enqueued can wrap before dequeued, but cannot
665                  * lap it as var size of enq/deq (uint32_t) > var size of
666                  * max_inflights (uint16_t). In reality inflights is never
667                  * even as big as max uint16_t, as it's <= ADF_MAX_DESC.
668                  * On wrapping, the calculation still returns the correct
669                  * positive value as all three vars are unsigned.
670                  */
671                 uint32_t inflights =
672                         tmp_qp->enqueued - tmp_qp->dequeued;
673
674                 /* Find how many can actually fit on the ring */
675                 overflow = (inflights + nb_ops) - tmp_qp->max_inflights;
676                 if (overflow > 0) {
677                         nb_ops_possible = nb_ops - overflow;
678                         if (nb_ops_possible == 0)
679                                 return 0;
680                 }
681
682                 /* QAT has plenty of work queued already, so don't waste cycles
683                  * enqueueing, wait til the application has gathered a bigger
684                  * burst or some completed ops have been dequeued
685                  */
686                 if (tmp_qp->min_enq_burst_threshold && inflights >
687                                 QAT_QP_MIN_INFL_THRESHOLD && nb_ops_possible <
688                                 tmp_qp->min_enq_burst_threshold) {
689                         tmp_qp->stats.threshold_hit_count++;
690                         return 0;
691                 }
692         }
693
694         /* At this point nb_ops_possible is assuming a 1:1 mapping
695          * between ops and descriptors.
696          * Fewer may be sent if some ops have to be split.
697          * nb_ops_possible is <= burst size.
698          * Find out how many spaces are actually available on the qp in case
699          * more are needed.
700          */
701         nb_remaining_descriptors = nb_ops_possible
702                          + ((overflow >= 0) ? 0 : overflow * (-1));
703         QAT_DP_LOG(DEBUG, "Nb ops requested %d, nb descriptors remaining %d",
704                         nb_ops, nb_remaining_descriptors);
705
706         while (nb_ops_sent != nb_ops_possible &&
707                                 nb_remaining_descriptors > 0) {
708                 struct qat_comp_op_cookie *cookie =
709                                 tmp_qp->op_cookies[tail >> queue->trailz];
710
711                 descriptors_built = 0;
712
713                 QAT_DP_LOG(DEBUG, "--- data length: %u",
714                            ((struct rte_comp_op *)*ops)->src.length);
715
716                 nb_desc_to_build = qat_comp_build_request(*ops,
717                                 base_addr + tail, cookie, tmp_qp->qat_dev_gen);
718                 QAT_DP_LOG(DEBUG, "%d descriptors built, %d remaining, "
719                         "%d ops sent, %d descriptors needed",
720                         total_descriptors_built, nb_remaining_descriptors,
721                         nb_ops_sent, nb_desc_to_build);
722
723                 if (unlikely(nb_desc_to_build < 0)) {
724                         /* this message cannot be enqueued */
725                         tmp_qp->stats.enqueue_err_count++;
726                         if (nb_ops_sent == 0)
727                                 return 0;
728                         goto kick_tail;
729                 } else if (unlikely(nb_desc_to_build > 1)) {
730                         /* this op is too big and must be split - get more
731                          * descriptors and retry
732                          */
733
734                         QAT_DP_LOG(DEBUG, "Build %d descriptors for this op",
735                                         nb_desc_to_build);
736
737                         nb_remaining_descriptors -= nb_desc_to_build;
738                         if (nb_remaining_descriptors >= 0) {
739                                 /* There are enough remaining descriptors
740                                  * so retry
741                                  */
742                                 int ret2 = qat_comp_build_multiple_requests(
743                                                 *ops, tmp_qp, tail,
744                                                 nb_desc_to_build);
745
746                                 if (unlikely(ret2 < 1)) {
747                                         QAT_DP_LOG(DEBUG,
748                                                         "Failed to build (%d) descriptors, status %d",
749                                                         nb_desc_to_build, ret2);
750
751                                         qat_comp_free_split_op_memzones(cookie,
752                                                         nb_desc_to_build - 1);
753
754                                         tmp_qp->stats.enqueue_err_count++;
755
756                                         /* This message cannot be enqueued */
757                                         if (nb_ops_sent == 0)
758                                                 return 0;
759                                         goto kick_tail;
760                                 } else {
761                                         descriptors_built = ret2;
762                                         total_descriptors_built +=
763                                                         descriptors_built;
764                                         nb_remaining_descriptors -=
765                                                         descriptors_built;
766                                         QAT_DP_LOG(DEBUG,
767                                                         "Multiple descriptors (%d) built ok",
768                                                         descriptors_built);
769                                 }
770                         } else {
771                                 QAT_DP_LOG(ERR, "For the current op, number of requested descriptors (%d) "
772                                                 "exceeds number of available descriptors (%d)",
773                                                 nb_desc_to_build,
774                                                 nb_remaining_descriptors +
775                                                         nb_desc_to_build);
776
777                                 qat_comp_free_split_op_memzones(cookie,
778                                                 nb_desc_to_build - 1);
779
780                                 /* Not enough extra descriptors */
781                                 if (nb_ops_sent == 0)
782                                         return 0;
783                                 goto kick_tail;
784                         }
785                 } else {
786                         descriptors_built = 1;
787                         total_descriptors_built++;
788                         nb_remaining_descriptors--;
789                         QAT_DP_LOG(DEBUG, "Single descriptor built ok");
790                 }
791
792                 tail = adf_modulo(tail + (queue->msg_size * descriptors_built),
793                                   queue->modulo_mask);
794                 ops++;
795                 nb_ops_sent++;
796         }
797
798 kick_tail:
799         queue->tail = tail;
800         tmp_qp->enqueued += total_descriptors_built;
801         tmp_qp->stats.enqueued_count += nb_ops_sent;
802         txq_write_tail(tmp_qp->qat_dev_gen, tmp_qp, queue);
803         return nb_ops_sent;
804 }
805
806 uint16_t
807 qat_dequeue_op_burst(void *qp, void **ops,
808                 qat_op_dequeue_t qat_dequeue_process_response, uint16_t nb_ops)
809 {
810         struct qat_queue *rx_queue;
811         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
812         uint32_t head;
813         uint32_t op_resp_counter = 0, fw_resp_counter = 0;
814         uint8_t *resp_msg;
815         int nb_fw_responses;
816
817         rx_queue = &(tmp_qp->rx_q);
818         head = rx_queue->head;
819         resp_msg = (uint8_t *)rx_queue->base_addr + rx_queue->head;
820
821         while (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG &&
822                         op_resp_counter != nb_ops) {
823
824                 nb_fw_responses = 1;
825
826                 nb_fw_responses = qat_dequeue_process_response(
827                                 ops, resp_msg,
828                                 tmp_qp->op_cookies[head >> rx_queue->trailz],
829                                 &tmp_qp->stats.dequeue_err_count);
830
831                 head = adf_modulo(head + rx_queue->msg_size,
832                                   rx_queue->modulo_mask);
833
834                 resp_msg = (uint8_t *)rx_queue->base_addr + head;
835
836                 if (nb_fw_responses) {
837                         /* only move on to next op if one was ready to return
838                          * to API
839                          */
840                         ops++;
841                         op_resp_counter++;
842                 }
843
844                  /* A compression op may be broken up into multiple fw requests.
845                   * Only count fw responses as complete once ALL the responses
846                   * associated with an op have been processed, as the cookie
847                   * data from the first response must be available until
848                   * finished with all firmware responses.
849                   */
850                 fw_resp_counter += nb_fw_responses;
851
852                 rx_queue->nb_processed_responses++;
853         }
854
855         tmp_qp->dequeued += fw_resp_counter;
856         tmp_qp->stats.dequeued_count += op_resp_counter;
857
858         rx_queue->head = head;
859         if (rx_queue->nb_processed_responses > QAT_CSR_HEAD_WRITE_THRESH)
860                 rxq_free_desc(tmp_qp->qat_dev_gen, tmp_qp, rx_queue);
861
862         QAT_DP_LOG(DEBUG, "Dequeue burst return: %u, QAT responses: %u",
863                         op_resp_counter, fw_resp_counter);
864
865         return op_resp_counter;
866 }
867
868 /* This is almost same as dequeue_op_burst, without the atomic, without stats
869  * and without the op. Dequeues one response.
870  */
871 static uint8_t
872 qat_cq_dequeue_response(struct qat_qp *qp, void *out_data)
873 {
874         uint8_t result = 0;
875         uint8_t retries = 0;
876         struct qat_queue *queue = &(qp->rx_q);
877         struct icp_qat_fw_comn_resp *resp_msg = (struct icp_qat_fw_comn_resp *)
878                         ((uint8_t *)queue->base_addr + queue->head);
879
880         while (retries++ < QAT_CQ_MAX_DEQ_RETRIES &&
881                         *(uint32_t *)resp_msg == ADF_RING_EMPTY_SIG) {
882                 /* loop waiting for response until we reach the timeout */
883                 rte_delay_ms(20);
884         }
885
886         if (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG) {
887                 /* response received */
888                 result = 1;
889
890                 /* check status flag */
891                 if (ICP_QAT_FW_COMN_RESP_CRYPTO_STAT_GET(
892                                 resp_msg->comn_hdr.comn_status) ==
893                                 ICP_QAT_FW_COMN_STATUS_FLAG_OK) {
894                         /* success */
895                         memcpy(out_data, resp_msg, queue->msg_size);
896                 } else {
897                         memset(out_data, 0, queue->msg_size);
898                 }
899
900                 queue->head = adf_modulo(queue->head + queue->msg_size,
901                                 queue->modulo_mask);
902                 rxq_free_desc(qp->qat_dev_gen, qp, queue);
903         }
904
905         return result;
906 }
907
908 /* Sends a NULL message and extracts QAT fw version from the response.
909  * Used to determine detailed capabilities based on the fw version number.
910  * This assumes that there are no inflight messages, i.e. assumes there's space
911  * on the qp, one message is sent and only one response collected.
912  * Returns fw version number or 0 for unknown version or a negative error code.
913  */
914 int
915 qat_cq_get_fw_version(struct qat_qp *qp)
916 {
917         struct qat_queue *queue = &(qp->tx_q);
918         uint8_t *base_addr = (uint8_t *)queue->base_addr;
919         struct icp_qat_fw_comn_req null_msg;
920         struct icp_qat_fw_comn_resp response;
921
922         /* prepare the NULL request */
923         memset(&null_msg, 0, sizeof(null_msg));
924         null_msg.comn_hdr.hdr_flags =
925                 ICP_QAT_FW_COMN_HDR_FLAGS_BUILD(ICP_QAT_FW_COMN_REQ_FLAG_SET);
926         null_msg.comn_hdr.service_type = ICP_QAT_FW_COMN_REQ_NULL;
927         null_msg.comn_hdr.service_cmd_id = ICP_QAT_FW_NULL_REQ_SERV_ID;
928
929 #if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
930         QAT_DP_HEXDUMP_LOG(DEBUG, "NULL request", &null_msg, sizeof(null_msg));
931 #endif
932
933         /* send the NULL request */
934         memcpy(base_addr + queue->tail, &null_msg, sizeof(null_msg));
935         queue->tail = adf_modulo(queue->tail + queue->msg_size,
936                         queue->modulo_mask);
937         txq_write_tail(qp->qat_dev_gen, qp, queue);
938
939         /* receive a response */
940         if (qat_cq_dequeue_response(qp, &response)) {
941
942 #if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
943                 QAT_DP_HEXDUMP_LOG(DEBUG, "NULL response:", &response,
944                                 sizeof(response));
945 #endif
946                 /* if LW0 bit 24 is set - then the fw version was returned */
947                 if (QAT_FIELD_GET(response.comn_hdr.hdr_flags,
948                                 ICP_QAT_FW_COMN_NULL_VERSION_FLAG_BITPOS,
949                                 ICP_QAT_FW_COMN_NULL_VERSION_FLAG_MASK))
950                         return response.resrvd[0]; /* return LW4 */
951                 else
952                         return 0; /* not set - we don't know fw version */
953         }
954
955         QAT_LOG(ERR, "No response received");
956         return -EINVAL;
957 }
958
959 __rte_weak int
960 qat_comp_process_response(void **op __rte_unused, uint8_t *resp __rte_unused,
961                           void *op_cookie __rte_unused,
962                           uint64_t *dequeue_err_count __rte_unused)
963 {
964         return  0;
965 }