b0a2064344078c06856d19fc2c7ea8c76ffa9fb7
[dpdk.git] / drivers / common / qat / qat_qp.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2015-2018 Intel Corporation
3  */
4
5 #include <rte_common.h>
6 #include <rte_dev.h>
7 #include <rte_malloc.h>
8 #include <rte_memzone.h>
9 #include <rte_pci.h>
10 #include <rte_bus_pci.h>
11 #include <rte_atomic.h>
12 #include <rte_prefetch.h>
13
14 #include "qat_logs.h"
15 #include "qat_device.h"
16 #include "qat_qp.h"
17 #include "qat_sym.h"
18 #include "qat_asym.h"
19 #include "qat_comp.h"
20 #include "adf_transport_access_macros.h"
21
22
23 #define ADF_MAX_DESC                            4096
24 #define ADF_MIN_DESC                            128
25
26 #define ADF_ARB_REG_SLOT                        0x1000
27 #define ADF_ARB_RINGSRVARBEN_OFFSET             0x19C
28
29 #define WRITE_CSR_ARB_RINGSRVARBEN(csr_addr, index, value) \
30         ADF_CSR_WR(csr_addr, ADF_ARB_RINGSRVARBEN_OFFSET + \
31         (ADF_ARB_REG_SLOT * index), value)
32
33 __extension__
34 const struct qat_qp_hw_data qat_gen1_qps[QAT_MAX_SERVICES]
35                                          [ADF_MAX_QPS_ON_ANY_SERVICE] = {
36         /* queue pairs which provide an asymmetric crypto service */
37         [QAT_SERVICE_ASYMMETRIC] = {
38                 {
39                         .service_type = QAT_SERVICE_ASYMMETRIC,
40                         .hw_bundle_num = 0,
41                         .tx_ring_num = 0,
42                         .rx_ring_num = 8,
43                         .tx_msg_size = 64,
44                         .rx_msg_size = 32,
45
46                 }, {
47                         .service_type = QAT_SERVICE_ASYMMETRIC,
48                         .hw_bundle_num = 0,
49                         .tx_ring_num = 1,
50                         .rx_ring_num = 9,
51                         .tx_msg_size = 64,
52                         .rx_msg_size = 32,
53                 }
54         },
55         /* queue pairs which provide a symmetric crypto service */
56         [QAT_SERVICE_SYMMETRIC] = {
57                 {
58                         .service_type = QAT_SERVICE_SYMMETRIC,
59                         .hw_bundle_num = 0,
60                         .tx_ring_num = 2,
61                         .rx_ring_num = 10,
62                         .tx_msg_size = 128,
63                         .rx_msg_size = 32,
64                 },
65                 {
66                         .service_type = QAT_SERVICE_SYMMETRIC,
67                         .hw_bundle_num = 0,
68                         .tx_ring_num = 3,
69                         .rx_ring_num = 11,
70                         .tx_msg_size = 128,
71                         .rx_msg_size = 32,
72                 }
73         },
74         /* queue pairs which provide a compression service */
75         [QAT_SERVICE_COMPRESSION] = {
76                 {
77                         .service_type = QAT_SERVICE_COMPRESSION,
78                         .hw_bundle_num = 0,
79                         .tx_ring_num = 6,
80                         .rx_ring_num = 14,
81                         .tx_msg_size = 128,
82                         .rx_msg_size = 32,
83                 }, {
84                         .service_type = QAT_SERVICE_COMPRESSION,
85                         .hw_bundle_num = 0,
86                         .tx_ring_num = 7,
87                         .rx_ring_num = 15,
88                         .tx_msg_size = 128,
89                         .rx_msg_size = 32,
90                 }
91         }
92 };
93
94 __extension__
95 const struct qat_qp_hw_data qat_gen3_qps[QAT_MAX_SERVICES]
96                                          [ADF_MAX_QPS_ON_ANY_SERVICE] = {
97         /* queue pairs which provide an asymmetric crypto service */
98         [QAT_SERVICE_ASYMMETRIC] = {
99                 {
100                         .service_type = QAT_SERVICE_ASYMMETRIC,
101                         .hw_bundle_num = 0,
102                         .tx_ring_num = 0,
103                         .rx_ring_num = 4,
104                         .tx_msg_size = 64,
105                         .rx_msg_size = 32,
106                 }
107         },
108         /* queue pairs which provide a symmetric crypto service */
109         [QAT_SERVICE_SYMMETRIC] = {
110                 {
111                         .service_type = QAT_SERVICE_SYMMETRIC,
112                         .hw_bundle_num = 0,
113                         .tx_ring_num = 1,
114                         .rx_ring_num = 5,
115                         .tx_msg_size = 128,
116                         .rx_msg_size = 32,
117                 }
118         },
119         /* queue pairs which provide a compression service */
120         [QAT_SERVICE_COMPRESSION] = {
121                 {
122                         .service_type = QAT_SERVICE_COMPRESSION,
123                         .hw_bundle_num = 0,
124                         .tx_ring_num = 3,
125                         .rx_ring_num = 7,
126                         .tx_msg_size = 128,
127                         .rx_msg_size = 32,
128                 }
129         }
130 };
131
132 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
133         uint32_t queue_size_bytes);
134 static void qat_queue_delete(struct qat_queue *queue);
135 static int qat_queue_create(struct qat_pci_device *qat_dev,
136         struct qat_queue *queue, struct qat_qp_config *, uint8_t dir);
137 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
138         uint32_t *queue_size_for_csr);
139 static void adf_configure_queues(struct qat_qp *queue);
140 static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
141         rte_spinlock_t *lock);
142 static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
143         rte_spinlock_t *lock);
144
145
146 int qat_qps_per_service(const struct qat_qp_hw_data *qp_hw_data,
147                 enum qat_service_type service)
148 {
149         int i, count;
150
151         for (i = 0, count = 0; i < ADF_MAX_QPS_ON_ANY_SERVICE; i++)
152                 if (qp_hw_data[i].service_type == service)
153                         count++;
154         return count;
155 }
156
157 static const struct rte_memzone *
158 queue_dma_zone_reserve(const char *queue_name, uint32_t queue_size,
159                         int socket_id)
160 {
161         const struct rte_memzone *mz;
162
163         mz = rte_memzone_lookup(queue_name);
164         if (mz != 0) {
165                 if (((size_t)queue_size <= mz->len) &&
166                                 ((socket_id == SOCKET_ID_ANY) ||
167                                         (socket_id == mz->socket_id))) {
168                         QAT_LOG(DEBUG, "re-use memzone already "
169                                         "allocated for %s", queue_name);
170                         return mz;
171                 }
172
173                 QAT_LOG(ERR, "Incompatible memzone already "
174                                 "allocated %s, size %u, socket %d. "
175                                 "Requested size %u, socket %u",
176                                 queue_name, (uint32_t)mz->len,
177                                 mz->socket_id, queue_size, socket_id);
178                 return NULL;
179         }
180
181         QAT_LOG(DEBUG, "Allocate memzone for %s, size %u on socket %u",
182                                         queue_name, queue_size, socket_id);
183         return rte_memzone_reserve_aligned(queue_name, queue_size,
184                 socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
185 }
186
187 int qat_qp_setup(struct qat_pci_device *qat_dev,
188                 struct qat_qp **qp_addr,
189                 uint16_t queue_pair_id,
190                 struct qat_qp_config *qat_qp_conf)
191
192 {
193         struct qat_qp *qp;
194         struct rte_pci_device *pci_dev = qat_dev->pci_dev;
195         char op_cookie_pool_name[RTE_RING_NAMESIZE];
196         uint32_t i;
197
198         QAT_LOG(DEBUG, "Setup qp %u on qat pci device %d gen %d",
199                 queue_pair_id, qat_dev->qat_dev_id, qat_dev->qat_dev_gen);
200
201         if ((qat_qp_conf->nb_descriptors > ADF_MAX_DESC) ||
202                 (qat_qp_conf->nb_descriptors < ADF_MIN_DESC)) {
203                 QAT_LOG(ERR, "Can't create qp for %u descriptors",
204                                 qat_qp_conf->nb_descriptors);
205                 return -EINVAL;
206         }
207
208         if (pci_dev->mem_resource[0].addr == NULL) {
209                 QAT_LOG(ERR, "Could not find VF config space "
210                                 "(UIO driver attached?).");
211                 return -EINVAL;
212         }
213
214         /* Allocate the queue pair data structure. */
215         qp = rte_zmalloc_socket("qat PMD qp metadata",
216                                 sizeof(*qp), RTE_CACHE_LINE_SIZE,
217                                 qat_qp_conf->socket_id);
218         if (qp == NULL) {
219                 QAT_LOG(ERR, "Failed to alloc mem for qp struct");
220                 return -ENOMEM;
221         }
222         qp->nb_descriptors = qat_qp_conf->nb_descriptors;
223         qp->op_cookies = rte_zmalloc_socket("qat PMD op cookie pointer",
224                         qat_qp_conf->nb_descriptors * sizeof(*qp->op_cookies),
225                         RTE_CACHE_LINE_SIZE, qat_qp_conf->socket_id);
226         if (qp->op_cookies == NULL) {
227                 QAT_LOG(ERR, "Failed to alloc mem for cookie");
228                 rte_free(qp);
229                 return -ENOMEM;
230         }
231
232         qp->mmap_bar_addr = pci_dev->mem_resource[0].addr;
233         qp->enqueued = qp->dequeued = 0;
234
235         if (qat_queue_create(qat_dev, &(qp->tx_q), qat_qp_conf,
236                                         ADF_RING_DIR_TX) != 0) {
237                 QAT_LOG(ERR, "Tx queue create failed "
238                                 "queue_pair_id=%u", queue_pair_id);
239                 goto create_err;
240         }
241
242         qp->max_inflights = ADF_MAX_INFLIGHTS(qp->tx_q.queue_size,
243                                 ADF_BYTES_TO_MSG_SIZE(qp->tx_q.msg_size));
244
245         if (qp->max_inflights < 2) {
246                 QAT_LOG(ERR, "Invalid num inflights");
247                 qat_queue_delete(&(qp->tx_q));
248                 goto create_err;
249         }
250
251         if (qat_queue_create(qat_dev, &(qp->rx_q), qat_qp_conf,
252                                         ADF_RING_DIR_RX) != 0) {
253                 QAT_LOG(ERR, "Rx queue create failed "
254                                 "queue_pair_id=%hu", queue_pair_id);
255                 qat_queue_delete(&(qp->tx_q));
256                 goto create_err;
257         }
258
259         adf_configure_queues(qp);
260         adf_queue_arb_enable(&qp->tx_q, qp->mmap_bar_addr,
261                                         &qat_dev->arb_csr_lock);
262
263         snprintf(op_cookie_pool_name, RTE_RING_NAMESIZE,
264                                         "%s%d_cookies_%s_qp%hu",
265                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
266                 qat_qp_conf->service_str, queue_pair_id);
267
268         QAT_LOG(DEBUG, "cookiepool: %s", op_cookie_pool_name);
269         qp->op_cookie_pool = rte_mempool_lookup(op_cookie_pool_name);
270         if (qp->op_cookie_pool == NULL)
271                 qp->op_cookie_pool = rte_mempool_create(op_cookie_pool_name,
272                                 qp->nb_descriptors,
273                                 qat_qp_conf->cookie_size, 64, 0,
274                                 NULL, NULL, NULL, NULL,
275                                 qat_dev->pci_dev->device.numa_node,
276                                 0);
277         if (!qp->op_cookie_pool) {
278                 QAT_LOG(ERR, "QAT PMD Cannot create"
279                                 " op mempool");
280                 goto create_err;
281         }
282
283         for (i = 0; i < qp->nb_descriptors; i++) {
284                 if (rte_mempool_get(qp->op_cookie_pool, &qp->op_cookies[i])) {
285                         QAT_LOG(ERR, "QAT PMD Cannot get op_cookie");
286                         goto create_err;
287                 }
288                 memset(qp->op_cookies[i], 0, qat_qp_conf->cookie_size);
289         }
290
291         qp->qat_dev_gen = qat_dev->qat_dev_gen;
292         qp->build_request = qat_qp_conf->build_request;
293         qp->service_type = qat_qp_conf->hw->service_type;
294         qp->qat_dev = qat_dev;
295
296         QAT_LOG(DEBUG, "QP setup complete: id: %d, cookiepool: %s",
297                         queue_pair_id, op_cookie_pool_name);
298
299         *qp_addr = qp;
300         return 0;
301
302 create_err:
303         if (qp->op_cookie_pool)
304                 rte_mempool_free(qp->op_cookie_pool);
305         rte_free(qp->op_cookies);
306         rte_free(qp);
307         return -EFAULT;
308 }
309
310 int qat_qp_release(struct qat_qp **qp_addr)
311 {
312         struct qat_qp *qp = *qp_addr;
313         uint32_t i;
314
315         if (qp == NULL) {
316                 QAT_LOG(DEBUG, "qp already freed");
317                 return 0;
318         }
319
320         QAT_LOG(DEBUG, "Free qp on qat_pci device %d",
321                                 qp->qat_dev->qat_dev_id);
322
323         /* Don't free memory if there are still responses to be processed */
324         if ((qp->enqueued - qp->dequeued) == 0) {
325                 qat_queue_delete(&(qp->tx_q));
326                 qat_queue_delete(&(qp->rx_q));
327         } else {
328                 return -EAGAIN;
329         }
330
331         adf_queue_arb_disable(&(qp->tx_q), qp->mmap_bar_addr,
332                                         &qp->qat_dev->arb_csr_lock);
333
334         for (i = 0; i < qp->nb_descriptors; i++)
335                 rte_mempool_put(qp->op_cookie_pool, qp->op_cookies[i]);
336
337         if (qp->op_cookie_pool)
338                 rte_mempool_free(qp->op_cookie_pool);
339
340         rte_free(qp->op_cookies);
341         rte_free(qp);
342         *qp_addr = NULL;
343         return 0;
344 }
345
346
347 static void qat_queue_delete(struct qat_queue *queue)
348 {
349         const struct rte_memzone *mz;
350         int status = 0;
351
352         if (queue == NULL) {
353                 QAT_LOG(DEBUG, "Invalid queue");
354                 return;
355         }
356         QAT_LOG(DEBUG, "Free ring %d, memzone: %s",
357                         queue->hw_queue_number, queue->memz_name);
358
359         mz = rte_memzone_lookup(queue->memz_name);
360         if (mz != NULL) {
361                 /* Write an unused pattern to the queue memory. */
362                 memset(queue->base_addr, 0x7F, queue->queue_size);
363                 status = rte_memzone_free(mz);
364                 if (status != 0)
365                         QAT_LOG(ERR, "Error %d on freeing queue %s",
366                                         status, queue->memz_name);
367         } else {
368                 QAT_LOG(DEBUG, "queue %s doesn't exist",
369                                 queue->memz_name);
370         }
371 }
372
373 static int
374 qat_queue_create(struct qat_pci_device *qat_dev, struct qat_queue *queue,
375                 struct qat_qp_config *qp_conf, uint8_t dir)
376 {
377         uint64_t queue_base;
378         void *io_addr;
379         const struct rte_memzone *qp_mz;
380         struct rte_pci_device *pci_dev = qat_dev->pci_dev;
381         int ret = 0;
382         uint16_t desc_size = (dir == ADF_RING_DIR_TX ?
383                         qp_conf->hw->tx_msg_size : qp_conf->hw->rx_msg_size);
384         uint32_t queue_size_bytes = (qp_conf->nb_descriptors)*(desc_size);
385
386         queue->hw_bundle_number = qp_conf->hw->hw_bundle_num;
387         queue->hw_queue_number = (dir == ADF_RING_DIR_TX ?
388                         qp_conf->hw->tx_ring_num : qp_conf->hw->rx_ring_num);
389
390         if (desc_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) {
391                 QAT_LOG(ERR, "Invalid descriptor size %d", desc_size);
392                 return -EINVAL;
393         }
394
395         /*
396          * Allocate a memzone for the queue - create a unique name.
397          */
398         snprintf(queue->memz_name, sizeof(queue->memz_name),
399                         "%s_%d_%s_%s_%d_%d",
400                 pci_dev->driver->driver.name, qat_dev->qat_dev_id,
401                 qp_conf->service_str, "qp_mem",
402                 queue->hw_bundle_number, queue->hw_queue_number);
403         qp_mz = queue_dma_zone_reserve(queue->memz_name, queue_size_bytes,
404                         qat_dev->pci_dev->device.numa_node);
405         if (qp_mz == NULL) {
406                 QAT_LOG(ERR, "Failed to allocate ring memzone");
407                 return -ENOMEM;
408         }
409
410         queue->base_addr = (char *)qp_mz->addr;
411         queue->base_phys_addr = qp_mz->iova;
412         if (qat_qp_check_queue_alignment(queue->base_phys_addr,
413                         queue_size_bytes)) {
414                 QAT_LOG(ERR, "Invalid alignment on queue create "
415                                         " 0x%"PRIx64"\n",
416                                         queue->base_phys_addr);
417                 ret = -EFAULT;
418                 goto queue_create_err;
419         }
420
421         if (adf_verify_queue_size(desc_size, qp_conf->nb_descriptors,
422                         &(queue->queue_size)) != 0) {
423                 QAT_LOG(ERR, "Invalid num inflights");
424                 ret = -EINVAL;
425                 goto queue_create_err;
426         }
427
428         queue->modulo_mask = (1 << ADF_RING_SIZE_MODULO(queue->queue_size)) - 1;
429         queue->head = 0;
430         queue->tail = 0;
431         queue->msg_size = desc_size;
432
433         /* For fast calculation of cookie index, relies on msg_size being 2^n */
434         queue->trailz = __builtin_ctz(desc_size);
435
436         /*
437          * Write an unused pattern to the queue memory.
438          */
439         memset(queue->base_addr, 0x7F, queue_size_bytes);
440
441         queue_base = BUILD_RING_BASE_ADDR(queue->base_phys_addr,
442                                         queue->queue_size);
443
444         io_addr = pci_dev->mem_resource[0].addr;
445
446         WRITE_CSR_RING_BASE(io_addr, queue->hw_bundle_number,
447                         queue->hw_queue_number, queue_base);
448
449         QAT_LOG(DEBUG, "RING: Name:%s, size in CSR: %u, in bytes %u,"
450                 " nb msgs %u, msg_size %u, modulo mask %u",
451                         queue->memz_name,
452                         queue->queue_size, queue_size_bytes,
453                         qp_conf->nb_descriptors, desc_size,
454                         queue->modulo_mask);
455
456         return 0;
457
458 queue_create_err:
459         rte_memzone_free(qp_mz);
460         return ret;
461 }
462
463 static int qat_qp_check_queue_alignment(uint64_t phys_addr,
464                                         uint32_t queue_size_bytes)
465 {
466         if (((queue_size_bytes - 1) & phys_addr) != 0)
467                 return -EINVAL;
468         return 0;
469 }
470
471 static int adf_verify_queue_size(uint32_t msg_size, uint32_t msg_num,
472         uint32_t *p_queue_size_for_csr)
473 {
474         uint8_t i = ADF_MIN_RING_SIZE;
475
476         for (; i <= ADF_MAX_RING_SIZE; i++)
477                 if ((msg_size * msg_num) ==
478                                 (uint32_t)ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) {
479                         *p_queue_size_for_csr = i;
480                         return 0;
481                 }
482         QAT_LOG(ERR, "Invalid ring size %d", msg_size * msg_num);
483         return -EINVAL;
484 }
485
486 static void adf_queue_arb_enable(struct qat_queue *txq, void *base_addr,
487                                         rte_spinlock_t *lock)
488 {
489         uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
490                                         (ADF_ARB_REG_SLOT *
491                                                         txq->hw_bundle_number);
492         uint32_t value;
493
494         rte_spinlock_lock(lock);
495         value = ADF_CSR_RD(base_addr, arb_csr_offset);
496         value |= (0x01 << txq->hw_queue_number);
497         ADF_CSR_WR(base_addr, arb_csr_offset, value);
498         rte_spinlock_unlock(lock);
499 }
500
501 static void adf_queue_arb_disable(struct qat_queue *txq, void *base_addr,
502                                         rte_spinlock_t *lock)
503 {
504         uint32_t arb_csr_offset =  ADF_ARB_RINGSRVARBEN_OFFSET +
505                                         (ADF_ARB_REG_SLOT *
506                                                         txq->hw_bundle_number);
507         uint32_t value;
508
509         rte_spinlock_lock(lock);
510         value = ADF_CSR_RD(base_addr, arb_csr_offset);
511         value &= ~(0x01 << txq->hw_queue_number);
512         ADF_CSR_WR(base_addr, arb_csr_offset, value);
513         rte_spinlock_unlock(lock);
514 }
515
516 static void adf_configure_queues(struct qat_qp *qp)
517 {
518         uint32_t queue_config;
519         struct qat_queue *queue = &qp->tx_q;
520
521         queue_config = BUILD_RING_CONFIG(queue->queue_size);
522
523         WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
524                         queue->hw_queue_number, queue_config);
525
526         queue = &qp->rx_q;
527         queue_config =
528                         BUILD_RESP_RING_CONFIG(queue->queue_size,
529                                         ADF_RING_NEAR_WATERMARK_512,
530                                         ADF_RING_NEAR_WATERMARK_0);
531
532         WRITE_CSR_RING_CONFIG(qp->mmap_bar_addr, queue->hw_bundle_number,
533                         queue->hw_queue_number, queue_config);
534 }
535
536 static inline uint32_t adf_modulo(uint32_t data, uint32_t modulo_mask)
537 {
538         return data & modulo_mask;
539 }
540
541 static inline void
542 txq_write_tail(struct qat_qp *qp, struct qat_queue *q) {
543         WRITE_CSR_RING_TAIL(qp->mmap_bar_addr, q->hw_bundle_number,
544                         q->hw_queue_number, q->tail);
545         q->csr_tail = q->tail;
546 }
547
548 static inline
549 void rxq_free_desc(struct qat_qp *qp, struct qat_queue *q)
550 {
551         uint32_t old_head, new_head;
552         uint32_t max_head;
553
554         old_head = q->csr_head;
555         new_head = q->head;
556         max_head = qp->nb_descriptors * q->msg_size;
557
558         /* write out free descriptors */
559         void *cur_desc = (uint8_t *)q->base_addr + old_head;
560
561         if (new_head < old_head) {
562                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, max_head - old_head);
563                 memset(q->base_addr, ADF_RING_EMPTY_SIG_BYTE, new_head);
564         } else {
565                 memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head - old_head);
566         }
567         q->nb_processed_responses = 0;
568         q->csr_head = new_head;
569
570         /* write current head to CSR */
571         WRITE_CSR_RING_HEAD(qp->mmap_bar_addr, q->hw_bundle_number,
572                             q->hw_queue_number, new_head);
573 }
574
575 uint16_t
576 qat_enqueue_op_burst(void *qp, void **ops, uint16_t nb_ops)
577 {
578         register struct qat_queue *queue;
579         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
580         register uint32_t nb_ops_sent = 0;
581         register int ret;
582         uint16_t nb_ops_possible = nb_ops;
583         register uint8_t *base_addr;
584         register uint32_t tail;
585
586         if (unlikely(nb_ops == 0))
587                 return 0;
588
589         /* read params used a lot in main loop into registers */
590         queue = &(tmp_qp->tx_q);
591         base_addr = (uint8_t *)queue->base_addr;
592         tail = queue->tail;
593
594         /* Find how many can actually fit on the ring */
595         {
596                 /* dequeued can only be written by one thread, but it may not
597                  * be this thread. As it's 4-byte aligned it will be read
598                  * atomically here by any Intel CPU.
599                  * enqueued can wrap before dequeued, but cannot
600                  * lap it as var size of enq/deq (uint32_t) > var size of
601                  * max_inflights (uint16_t). In reality inflights is never
602                  * even as big as max uint16_t, as it's <= ADF_MAX_DESC.
603                  * On wrapping, the calculation still returns the correct
604                  * positive value as all three vars are unsigned.
605                  */
606                 uint32_t inflights =
607                         tmp_qp->enqueued - tmp_qp->dequeued;
608
609                 if ((inflights + nb_ops) > tmp_qp->max_inflights) {
610                         nb_ops_possible = tmp_qp->max_inflights - inflights;
611                         if (nb_ops_possible == 0)
612                                 return 0;
613                 }
614                 /* QAT has plenty of work queued already, so don't waste cycles
615                  * enqueueing, wait til the application has gathered a bigger
616                  * burst or some completed ops have been dequeued
617                  */
618                 if (tmp_qp->min_enq_burst_threshold && inflights >
619                                 QAT_QP_MIN_INFL_THRESHOLD && nb_ops_possible <
620                                 tmp_qp->min_enq_burst_threshold) {
621                         tmp_qp->stats.threshold_hit_count++;
622                         return 0;
623                 }
624         }
625
626
627         while (nb_ops_sent != nb_ops_possible) {
628                 ret = tmp_qp->build_request(*ops, base_addr + tail,
629                                 tmp_qp->op_cookies[tail >> queue->trailz],
630                                 tmp_qp->qat_dev_gen);
631                 if (ret != 0) {
632                         tmp_qp->stats.enqueue_err_count++;
633                         /* This message cannot be enqueued */
634                         if (nb_ops_sent == 0)
635                                 return 0;
636                         goto kick_tail;
637                 }
638
639                 tail = adf_modulo(tail + queue->msg_size, queue->modulo_mask);
640                 ops++;
641                 nb_ops_sent++;
642         }
643 kick_tail:
644         queue->tail = tail;
645         tmp_qp->enqueued += nb_ops_sent;
646         tmp_qp->stats.enqueued_count += nb_ops_sent;
647         txq_write_tail(tmp_qp, queue);
648         return nb_ops_sent;
649 }
650
651 uint16_t
652 qat_dequeue_op_burst(void *qp, void **ops, uint16_t nb_ops)
653 {
654         struct qat_queue *rx_queue;
655         struct qat_qp *tmp_qp = (struct qat_qp *)qp;
656         uint32_t head;
657         uint32_t resp_counter = 0;
658         uint8_t *resp_msg;
659
660         rx_queue = &(tmp_qp->rx_q);
661         head = rx_queue->head;
662         resp_msg = (uint8_t *)rx_queue->base_addr + rx_queue->head;
663
664         while (*(uint32_t *)resp_msg != ADF_RING_EMPTY_SIG &&
665                         resp_counter != nb_ops) {
666
667                 if (tmp_qp->service_type == QAT_SERVICE_SYMMETRIC)
668                         qat_sym_process_response(ops, resp_msg);
669                 else if (tmp_qp->service_type == QAT_SERVICE_COMPRESSION)
670                         qat_comp_process_response(ops, resp_msg,
671                                 tmp_qp->op_cookies[head >> rx_queue->trailz],
672                                 &tmp_qp->stats.dequeue_err_count);
673                 else if (tmp_qp->service_type == QAT_SERVICE_ASYMMETRIC) {
674 #ifdef BUILD_QAT_ASYM
675                         qat_asym_process_response(ops, resp_msg,
676                                 tmp_qp->op_cookies[head >> rx_queue->trailz]);
677 #endif
678                 }
679
680                 head = adf_modulo(head + rx_queue->msg_size,
681                                   rx_queue->modulo_mask);
682
683                 resp_msg = (uint8_t *)rx_queue->base_addr + head;
684                 ops++;
685                 resp_counter++;
686         }
687         if (resp_counter > 0) {
688                 rx_queue->head = head;
689                 tmp_qp->dequeued += resp_counter;
690                 tmp_qp->stats.dequeued_count += resp_counter;
691                 rx_queue->nb_processed_responses += resp_counter;
692
693                 if (rx_queue->nb_processed_responses >
694                                                 QAT_CSR_HEAD_WRITE_THRESH)
695                         rxq_free_desc(tmp_qp, rx_queue);
696         }
697
698         return resp_counter;
699 }
700
701 __rte_weak int
702 qat_comp_process_response(void **op __rte_unused, uint8_t *resp __rte_unused,
703                           void *op_cookie __rte_unused,
704                           uint64_t *dequeue_err_count __rte_unused)
705 {
706         return  0;
707 }