63c199ea228f2b0428c123969a3d7a66bbeaf0fb
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_hw_access.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 #ifndef _OTX_CRYPTODEV_HW_ACCESS_H_
5 #define _OTX_CRYPTODEV_HW_ACCESS_H_
6
7 #include <stdbool.h>
8
9 #include <rte_branch_prediction.h>
10 #include <rte_cryptodev.h>
11 #include <rte_cycles.h>
12 #include <rte_io.h>
13 #include <rte_memory.h>
14 #include <rte_prefetch.h>
15
16 #include "cpt_common.h"
17 #include "cpt_hw_types.h"
18 #include "cpt_mcode_defines.h"
19 #include "cpt_pmd_logs.h"
20
21 #define CPT_INTR_POLL_INTERVAL_MS       (50)
22
23 /* Default command queue length */
24 #define DEFAULT_CMD_QCHUNKS             2
25 #define DEFAULT_CMD_QCHUNK_SIZE         1023
26 #define DEFAULT_CMD_QLEN \
27                 (DEFAULT_CMD_QCHUNK_SIZE * DEFAULT_CMD_QCHUNKS)
28
29 #define CPT_CSR_REG_BASE(cpt)           ((cpt)->reg_base)
30
31 /* Read hw register */
32 #define CPT_READ_CSR(__hw_addr, __offset) \
33         rte_read64_relaxed((uint8_t *)__hw_addr + __offset)
34
35 /* Write hw register */
36 #define CPT_WRITE_CSR(__hw_addr, __offset, __val) \
37         rte_write64_relaxed((__val), ((uint8_t *)__hw_addr + __offset))
38
39 /* cpt instance */
40 struct cpt_instance {
41         uint32_t queue_id;
42         uintptr_t rsvd;
43         struct rte_mempool *sess_mp;
44         struct rte_mempool *sess_mp_priv;
45         struct cpt_qp_meta_info meta_info;
46 };
47
48 struct command_chunk {
49         /** 128-byte aligned real_vaddr */
50         uint8_t *head;
51         /** 128-byte aligned real_dma_addr */
52         phys_addr_t dma_addr;
53 };
54
55 /**
56  * Command queue structure
57  */
58 struct command_queue {
59         /** Command queue host write idx */
60         uint32_t idx;
61         /** Command queue chunk */
62         uint32_t cchunk;
63         /** Command queue head; instructions are inserted here */
64         uint8_t *qhead;
65         /** Command chunk list head */
66         struct command_chunk chead[DEFAULT_CMD_QCHUNKS];
67 };
68
69 /**
70  * CPT VF device structure
71  */
72 struct cpt_vf {
73         /** CPT instance */
74         struct cpt_instance instance;
75         /** Register start address */
76         uint8_t *reg_base;
77         /** Command queue information */
78         struct command_queue cqueue;
79         /** Pending queue information */
80         struct pending_queue pqueue;
81
82         /** Below fields are accessed only in control path */
83
84         /** Env specific pdev representing the pci dev */
85         void *pdev;
86         /** Calculated queue size */
87         uint32_t qsize;
88         /** Device index (0...CPT_MAX_VQ_NUM)*/
89         uint8_t  vfid;
90         /** VF type of cpt_vf_type_t (SE_TYPE(2) or AE_TYPE(1) */
91         uint8_t  vftype;
92         /** VF group (0 - 8) */
93         uint8_t  vfgrp;
94         /** Operating node: Bits (46:44) in BAR0 address */
95         uint8_t  node;
96
97         /** VF-PF mailbox communication */
98
99         /** Flag if acked */
100         bool pf_acked;
101         /** Flag if not acked */
102         bool pf_nacked;
103
104         /** Device name */
105         char dev_name[32];
106 } __rte_cache_aligned;
107
108 /*
109  * CPT Registers map for 81xx
110  */
111
112 /* VF registers */
113 #define CPTX_VQX_CTL(a, b)              (0x0000100ll + 0x1000000000ll * \
114                                          ((a) & 0x0) + 0x100000ll * (b))
115 #define CPTX_VQX_SADDR(a, b)            (0x0000200ll + 0x1000000000ll * \
116                                          ((a) & 0x0) + 0x100000ll * (b))
117 #define CPTX_VQX_DONE_WAIT(a, b)        (0x0000400ll + 0x1000000000ll * \
118                                          ((a) & 0x0) + 0x100000ll * (b))
119 #define CPTX_VQX_INPROG(a, b)           (0x0000410ll + 0x1000000000ll * \
120                                          ((a) & 0x0) + 0x100000ll * (b))
121 #define CPTX_VQX_DONE(a, b)             (0x0000420ll + 0x1000000000ll * \
122                                          ((a) & 0x1) + 0x100000ll * (b))
123 #define CPTX_VQX_DONE_ACK(a, b)         (0x0000440ll + 0x1000000000ll * \
124                                          ((a) & 0x1) + 0x100000ll * (b))
125 #define CPTX_VQX_DONE_INT_W1S(a, b)     (0x0000460ll + 0x1000000000ll * \
126                                          ((a) & 0x1) + 0x100000ll * (b))
127 #define CPTX_VQX_DONE_INT_W1C(a, b)     (0x0000468ll + 0x1000000000ll * \
128                                          ((a) & 0x1) + 0x100000ll * (b))
129 #define CPTX_VQX_DONE_ENA_W1S(a, b)     (0x0000470ll + 0x1000000000ll * \
130                                          ((a) & 0x1) + 0x100000ll * (b))
131 #define CPTX_VQX_DONE_ENA_W1C(a, b)     (0x0000478ll + 0x1000000000ll * \
132                                          ((a) & 0x1) + 0x100000ll * (b))
133 #define CPTX_VQX_MISC_INT(a, b)         (0x0000500ll + 0x1000000000ll * \
134                                          ((a) & 0x1) + 0x100000ll * (b))
135 #define CPTX_VQX_MISC_INT_W1S(a, b)     (0x0000508ll + 0x1000000000ll * \
136                                          ((a) & 0x1) + 0x100000ll * (b))
137 #define CPTX_VQX_MISC_ENA_W1S(a, b)     (0x0000510ll + 0x1000000000ll * \
138                                          ((a) & 0x1) + 0x100000ll * (b))
139 #define CPTX_VQX_MISC_ENA_W1C(a, b)     (0x0000518ll + 0x1000000000ll * \
140                                          ((a) & 0x1) + 0x100000ll * (b))
141 #define CPTX_VQX_DOORBELL(a, b)         (0x0000600ll + 0x1000000000ll * \
142                                          ((a) & 0x1) + 0x100000ll * (b))
143 #define CPTX_VFX_PF_MBOXX(a, b, c)      (0x0001000ll + 0x1000000000ll * \
144                                          ((a) & 0x1) + 0x100000ll * (b) + \
145                                          8ll * ((c) & 0x1))
146
147 /* VF HAL functions */
148
149 void
150 otx_cpt_poll_misc(struct cpt_vf *cptvf);
151
152 int
153 otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name);
154
155 int
156 otx_cpt_deinit_device(void *dev);
157
158 int
159 otx_cpt_get_resource(const struct rte_cryptodev *dev, uint8_t group,
160                      struct cpt_instance **instance, uint16_t qp_id);
161
162 int
163 otx_cpt_put_resource(struct cpt_instance *instance);
164
165 int
166 otx_cpt_start_device(void *cptvf);
167
168 void
169 otx_cpt_stop_device(void *cptvf);
170
171 /* Write to VQX_DOORBELL register
172  */
173 static __rte_always_inline void
174 otx_cpt_write_vq_doorbell(struct cpt_vf *cptvf, uint32_t val)
175 {
176         cptx_vqx_doorbell_t vqx_dbell;
177
178         vqx_dbell.u = 0;
179         vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
180         CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
181                       CPTX_VQX_DOORBELL(0, 0), vqx_dbell.u);
182 }
183
184 static __rte_always_inline uint32_t
185 otx_cpt_read_vq_doorbell(struct cpt_vf *cptvf)
186 {
187         cptx_vqx_doorbell_t vqx_dbell;
188
189         vqx_dbell.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
190                                    CPTX_VQX_DOORBELL(0, 0));
191         return vqx_dbell.s.dbell_cnt;
192 }
193
194 static __rte_always_inline void
195 otx_cpt_ring_dbell(struct cpt_instance *instance, uint16_t count)
196 {
197         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
198         /* Memory barrier to flush pending writes */
199         rte_smp_wmb();
200         otx_cpt_write_vq_doorbell(cptvf, count);
201 }
202
203 static __rte_always_inline void *
204 get_cpt_inst(struct command_queue *cqueue)
205 {
206         CPT_LOG_DP_DEBUG("CPT queue idx %u\n", cqueue->idx);
207         return &cqueue->qhead[cqueue->idx * CPT_INST_SIZE];
208 }
209
210 static __rte_always_inline void
211 fill_cpt_inst(struct cpt_instance *instance, void *req)
212 {
213         struct command_queue *cqueue;
214         cpt_inst_s_t *cpt_ist_p;
215         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
216         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
217         cqueue = &cptvf->cqueue;
218         cpt_ist_p = get_cpt_inst(cqueue);
219         rte_prefetch_non_temporal(cpt_ist_p);
220
221         /* EI0, EI1, EI2, EI3 are already prepared */
222         /* HW W0 */
223         cpt_ist_p->u[0] = 0;
224         /* HW W1 */
225         cpt_ist_p->s8x.res_addr = user_req->comp_baddr;
226         /* HW W2 */
227         cpt_ist_p->u[2] = 0;
228         /* HW W3 */
229         cpt_ist_p->s8x.wq_ptr = 0;
230
231         /* MC EI0 */
232         cpt_ist_p->s8x.ei0 = user_req->ist.ei0;
233         /* MC EI1 */
234         cpt_ist_p->s8x.ei1 = user_req->ist.ei1;
235         /* MC EI2 */
236         cpt_ist_p->s8x.ei2 = user_req->ist.ei2;
237         /* MC EI3 */
238         cpt_ist_p->s8x.ei3 = user_req->ist.ei3;
239 }
240
241 static __rte_always_inline void
242 mark_cpt_inst(struct cpt_instance *instance)
243 {
244         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
245         struct command_queue *queue = &cptvf->cqueue;
246         if (unlikely(++queue->idx >= DEFAULT_CMD_QCHUNK_SIZE)) {
247                 uint32_t cchunk = queue->cchunk;
248                 MOD_INC(cchunk, DEFAULT_CMD_QCHUNKS);
249                 queue->qhead = queue->chead[cchunk].head;
250                 queue->idx = 0;
251                 queue->cchunk = cchunk;
252         }
253 }
254
255 static __rte_always_inline uint8_t
256 check_nb_command_id(struct cpt_request_info *user_req,
257                 struct cpt_instance *instance)
258 {
259         uint8_t ret = ERR_REQ_PENDING;
260         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
261         volatile cpt_res_s_t *cptres;
262
263         cptres = (volatile cpt_res_s_t *)user_req->completion_addr;
264
265         if (unlikely(cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE)) {
266                 /*
267                  * Wait for some time for this command to get completed
268                  * before timing out
269                  */
270                 if (rte_get_timer_cycles() < user_req->time_out)
271                         return ret;
272                 /*
273                  * TODO: See if alternate caddr can be used to not loop
274                  * longer than needed.
275                  */
276                 if ((cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE) &&
277                     (user_req->extra_time < TIME_IN_RESET_COUNT)) {
278                         user_req->extra_time++;
279                         return ret;
280                 }
281
282                 if (cptres->s8x.compcode != CPT_8X_COMP_E_NOTDONE)
283                         goto complete;
284
285                 ret = ERR_REQ_TIMEOUT;
286                 CPT_LOG_DP_ERR("Request %p timedout", user_req);
287                 otx_cpt_poll_misc(cptvf);
288                 goto exit;
289         }
290
291 complete:
292         if (likely(cptres->s8x.compcode == CPT_8X_COMP_E_GOOD)) {
293                 ret = 0; /* success */
294                 if (unlikely((uint8_t)*user_req->alternate_caddr)) {
295                         ret = (uint8_t)*user_req->alternate_caddr;
296                         CPT_LOG_DP_ERR("Request %p : failed with microcode"
297                                 " error, MC completion code : 0x%x", user_req,
298                                 ret);
299                 }
300                 CPT_LOG_DP_DEBUG("MC status %.8x\n",
301                            *((volatile uint32_t *)user_req->alternate_caddr));
302                 CPT_LOG_DP_DEBUG("HW status %.8x\n",
303                            *((volatile uint32_t *)user_req->completion_addr));
304         } else if ((cptres->s8x.compcode == CPT_8X_COMP_E_SWERR) ||
305                    (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT)) {
306                 ret = (uint8_t)*user_req->alternate_caddr;
307                 if (!ret)
308                         ret = ERR_BAD_ALT_CCODE;
309                 CPT_LOG_DP_DEBUG("Request %p : failed with %s : err code :%x",
310                            user_req,
311                            (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT) ?
312                            "DMA Fault" : "Software error", ret);
313         } else {
314                 CPT_LOG_DP_ERR("Request %p : unexpected completion code %d",
315                            user_req, cptres->s8x.compcode);
316                 ret = (uint8_t)*user_req->alternate_caddr;
317         }
318
319 exit:
320         return ret;
321 }
322
323 #endif /* _OTX_CRYPTODEV_HW_ACCESS_H_ */