net/ice/base: support L4 for QinQ switch filter
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_hw_access.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 #ifndef _OTX_CRYPTODEV_HW_ACCESS_H_
5 #define _OTX_CRYPTODEV_HW_ACCESS_H_
6
7 #include <stdbool.h>
8
9 #include <rte_branch_prediction.h>
10 #include <rte_cryptodev.h>
11 #include <rte_cycles.h>
12 #include <rte_io.h>
13 #include <rte_memory.h>
14 #include <rte_prefetch.h>
15
16 #include "otx_cryptodev.h"
17
18 #include "cpt_common.h"
19 #include "cpt_hw_types.h"
20 #include "cpt_mcode_defines.h"
21 #include "cpt_pmd_logs.h"
22
23 #define CPT_INTR_POLL_INTERVAL_MS       (50)
24
25 /* Default command queue length */
26 #define DEFAULT_CMD_QCHUNKS             2
27 #define DEFAULT_CMD_QCHUNK_SIZE         1023
28 #define DEFAULT_CMD_QLEN \
29                 (DEFAULT_CMD_QCHUNK_SIZE * DEFAULT_CMD_QCHUNKS)
30
31 #define CPT_CSR_REG_BASE(cpt)           ((cpt)->reg_base)
32
33 /* Read hw register */
34 #define CPT_READ_CSR(__hw_addr, __offset) \
35         rte_read64_relaxed((uint8_t *)__hw_addr + __offset)
36
37 /* Write hw register */
38 #define CPT_WRITE_CSR(__hw_addr, __offset, __val) \
39         rte_write64_relaxed((__val), ((uint8_t *)__hw_addr + __offset))
40
41 /* cpt instance */
42 struct cpt_instance {
43         uint32_t queue_id;
44         uintptr_t rsvd;
45         struct rte_mempool *sess_mp;
46         struct rte_mempool *sess_mp_priv;
47         struct cpt_qp_meta_info meta_info;
48         uint8_t ca_enabled;
49 };
50
51 struct command_chunk {
52         /** 128-byte aligned real_vaddr */
53         uint8_t *head;
54         /** 128-byte aligned real_dma_addr */
55         phys_addr_t dma_addr;
56 };
57
58 /**
59  * Command queue structure
60  */
61 struct command_queue {
62         /** Command queue host write idx */
63         uint32_t idx;
64         /** Command queue chunk */
65         uint32_t cchunk;
66         /** Command queue head; instructions are inserted here */
67         uint8_t *qhead;
68         /** Command chunk list head */
69         struct command_chunk chead[DEFAULT_CMD_QCHUNKS];
70 };
71
72 /**
73  * CPT VF device structure
74  */
75 struct cpt_vf {
76         /** CPT instance */
77         struct cpt_instance instance;
78         /** Register start address */
79         uint8_t *reg_base;
80         /** Command queue information */
81         struct command_queue cqueue;
82         /** Pending queue information */
83         struct pending_queue pqueue;
84
85         /** Below fields are accessed only in control path */
86
87         /** Env specific pdev representing the pci dev */
88         void *pdev;
89         /** Calculated queue size */
90         uint32_t qsize;
91         /** Device index (0...CPT_MAX_VQ_NUM)*/
92         uint8_t  vfid;
93         /** VF type of cpt_vf_type_t (SE_TYPE(2) or AE_TYPE(1) */
94         uint8_t  vftype;
95         /** VF group (0 - 8) */
96         uint8_t  vfgrp;
97         /** Operating node: Bits (46:44) in BAR0 address */
98         uint8_t  node;
99
100         /** VF-PF mailbox communication */
101
102         /** Flag if acked */
103         bool pf_acked;
104         /** Flag if not acked */
105         bool pf_nacked;
106
107         /** Device name */
108         char dev_name[32];
109 } __rte_cache_aligned;
110
111 /*
112  * CPT Registers map for 81xx
113  */
114
115 /* VF registers */
116 #define CPTX_VQX_CTL(a, b)              (0x0000100ll + 0x1000000000ll * \
117                                          ((a) & 0x0) + 0x100000ll * (b))
118 #define CPTX_VQX_SADDR(a, b)            (0x0000200ll + 0x1000000000ll * \
119                                          ((a) & 0x0) + 0x100000ll * (b))
120 #define CPTX_VQX_DONE_WAIT(a, b)        (0x0000400ll + 0x1000000000ll * \
121                                          ((a) & 0x0) + 0x100000ll * (b))
122 #define CPTX_VQX_INPROG(a, b)           (0x0000410ll + 0x1000000000ll * \
123                                          ((a) & 0x0) + 0x100000ll * (b))
124 #define CPTX_VQX_DONE(a, b)             (0x0000420ll + 0x1000000000ll * \
125                                          ((a) & 0x1) + 0x100000ll * (b))
126 #define CPTX_VQX_DONE_ACK(a, b)         (0x0000440ll + 0x1000000000ll * \
127                                          ((a) & 0x1) + 0x100000ll * (b))
128 #define CPTX_VQX_DONE_INT_W1S(a, b)     (0x0000460ll + 0x1000000000ll * \
129                                          ((a) & 0x1) + 0x100000ll * (b))
130 #define CPTX_VQX_DONE_INT_W1C(a, b)     (0x0000468ll + 0x1000000000ll * \
131                                          ((a) & 0x1) + 0x100000ll * (b))
132 #define CPTX_VQX_DONE_ENA_W1S(a, b)     (0x0000470ll + 0x1000000000ll * \
133                                          ((a) & 0x1) + 0x100000ll * (b))
134 #define CPTX_VQX_DONE_ENA_W1C(a, b)     (0x0000478ll + 0x1000000000ll * \
135                                          ((a) & 0x1) + 0x100000ll * (b))
136 #define CPTX_VQX_MISC_INT(a, b)         (0x0000500ll + 0x1000000000ll * \
137                                          ((a) & 0x1) + 0x100000ll * (b))
138 #define CPTX_VQX_MISC_INT_W1S(a, b)     (0x0000508ll + 0x1000000000ll * \
139                                          ((a) & 0x1) + 0x100000ll * (b))
140 #define CPTX_VQX_MISC_ENA_W1S(a, b)     (0x0000510ll + 0x1000000000ll * \
141                                          ((a) & 0x1) + 0x100000ll * (b))
142 #define CPTX_VQX_MISC_ENA_W1C(a, b)     (0x0000518ll + 0x1000000000ll * \
143                                          ((a) & 0x1) + 0x100000ll * (b))
144 #define CPTX_VQX_DOORBELL(a, b)         (0x0000600ll + 0x1000000000ll * \
145                                          ((a) & 0x1) + 0x100000ll * (b))
146 #define CPTX_VFX_PF_MBOXX(a, b, c)      (0x0001000ll + 0x1000000000ll * \
147                                          ((a) & 0x1) + 0x100000ll * (b) + \
148                                          8ll * ((c) & 0x1))
149
150 /* VF HAL functions */
151
152 void
153 otx_cpt_poll_misc(struct cpt_vf *cptvf);
154
155 int
156 otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name);
157
158 int
159 otx_cpt_deinit_device(void *dev);
160
161 int
162 otx_cpt_get_resource(const struct rte_cryptodev *dev, uint8_t group,
163                      struct cpt_instance **instance, uint16_t qp_id);
164
165 int
166 otx_cpt_put_resource(struct cpt_instance *instance);
167
168 int
169 otx_cpt_start_device(void *cptvf);
170
171 void
172 otx_cpt_stop_device(void *cptvf);
173
174 /* Write to VQX_DOORBELL register
175  */
176 static __rte_always_inline void
177 otx_cpt_write_vq_doorbell(struct cpt_vf *cptvf, uint32_t val)
178 {
179         cptx_vqx_doorbell_t vqx_dbell;
180
181         vqx_dbell.u = 0;
182         vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
183         CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
184                       CPTX_VQX_DOORBELL(0, 0), vqx_dbell.u);
185 }
186
187 static __rte_always_inline uint32_t
188 otx_cpt_read_vq_doorbell(struct cpt_vf *cptvf)
189 {
190         cptx_vqx_doorbell_t vqx_dbell;
191
192         vqx_dbell.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
193                                    CPTX_VQX_DOORBELL(0, 0));
194         return vqx_dbell.s.dbell_cnt;
195 }
196
197 static __rte_always_inline void
198 otx_cpt_ring_dbell(struct cpt_instance *instance, uint16_t count)
199 {
200         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
201         /* Memory barrier to flush pending writes */
202         rte_smp_wmb();
203         otx_cpt_write_vq_doorbell(cptvf, count);
204 }
205
206 static __rte_always_inline void *
207 get_cpt_inst(struct command_queue *cqueue)
208 {
209         CPT_LOG_DP_DEBUG("CPT queue idx %u\n", cqueue->idx);
210         return &cqueue->qhead[cqueue->idx * CPT_INST_SIZE];
211 }
212
213 static __rte_always_inline void
214 fill_cpt_inst(struct cpt_instance *instance, void *req, uint64_t ucmd_w3)
215 {
216         struct command_queue *cqueue;
217         cpt_inst_s_t *cpt_ist_p;
218         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
219         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
220         cqueue = &cptvf->cqueue;
221         cpt_ist_p = get_cpt_inst(cqueue);
222         rte_prefetch_non_temporal(cpt_ist_p);
223
224         /* EI0, EI1, EI2, EI3 are already prepared */
225         /* HW W0 */
226         cpt_ist_p->u[0] = 0;
227         /* HW W1 */
228         cpt_ist_p->s8x.res_addr = user_req->comp_baddr;
229         /* HW W2 */
230         cpt_ist_p->u[2] = 0;
231         /* HW W3 */
232         cpt_ist_p->s8x.wq_ptr = 0;
233
234         /* MC EI0 */
235         cpt_ist_p->s8x.ei0 = user_req->ist.ei0;
236         /* MC EI1 */
237         cpt_ist_p->s8x.ei1 = user_req->ist.ei1;
238         /* MC EI2 */
239         cpt_ist_p->s8x.ei2 = user_req->ist.ei2;
240         /* MC EI3 */
241         cpt_ist_p->s8x.ei3 = ucmd_w3;
242 }
243
244 static __rte_always_inline void
245 mark_cpt_inst(struct cpt_instance *instance)
246 {
247         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
248         struct command_queue *queue = &cptvf->cqueue;
249         if (unlikely(++queue->idx >= DEFAULT_CMD_QCHUNK_SIZE)) {
250                 uint32_t cchunk = queue->cchunk;
251                 MOD_INC(cchunk, DEFAULT_CMD_QCHUNKS);
252                 queue->qhead = queue->chead[cchunk].head;
253                 queue->idx = 0;
254                 queue->cchunk = cchunk;
255         }
256 }
257
258 static __rte_always_inline uint8_t
259 check_nb_command_id(struct cpt_request_info *user_req,
260                 struct cpt_instance *instance)
261 {
262         uint8_t ret = ERR_REQ_PENDING;
263         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
264         volatile cpt_res_s_t *cptres;
265
266         cptres = (volatile cpt_res_s_t *)user_req->completion_addr;
267
268         if (unlikely(cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE)) {
269                 /*
270                  * Wait for some time for this command to get completed
271                  * before timing out
272                  */
273                 if (rte_get_timer_cycles() < user_req->time_out)
274                         return ret;
275                 /*
276                  * TODO: See if alternate caddr can be used to not loop
277                  * longer than needed.
278                  */
279                 if ((cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE) &&
280                     (user_req->extra_time < TIME_IN_RESET_COUNT)) {
281                         user_req->extra_time++;
282                         return ret;
283                 }
284
285                 if (cptres->s8x.compcode != CPT_8X_COMP_E_NOTDONE)
286                         goto complete;
287
288                 ret = ERR_REQ_TIMEOUT;
289                 CPT_LOG_DP_ERR("Request %p timedout", user_req);
290                 otx_cpt_poll_misc(cptvf);
291                 goto exit;
292         }
293
294 complete:
295         if (likely(cptres->s8x.compcode == CPT_8X_COMP_E_GOOD)) {
296                 ret = 0; /* success */
297                 if (unlikely((uint8_t)*user_req->alternate_caddr)) {
298                         ret = (uint8_t)*user_req->alternate_caddr;
299                         CPT_LOG_DP_ERR("Request %p : failed with microcode"
300                                 " error, MC completion code : 0x%x", user_req,
301                                 ret);
302                 }
303                 CPT_LOG_DP_DEBUG("MC status %.8x\n",
304                            *((volatile uint32_t *)user_req->alternate_caddr));
305                 CPT_LOG_DP_DEBUG("HW status %.8x\n",
306                            *((volatile uint32_t *)user_req->completion_addr));
307         } else if ((cptres->s8x.compcode == CPT_8X_COMP_E_SWERR) ||
308                    (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT)) {
309                 ret = (uint8_t)*user_req->alternate_caddr;
310                 if (!ret)
311                         ret = ERR_BAD_ALT_CCODE;
312                 CPT_LOG_DP_DEBUG("Request %p : failed with %s : err code :%x",
313                            user_req,
314                            (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT) ?
315                            "DMA Fault" : "Software error", ret);
316         } else {
317                 CPT_LOG_DP_ERR("Request %p : unexpected completion code %d",
318                            user_req, cptres->s8x.compcode);
319                 ret = (uint8_t)*user_req->alternate_caddr;
320         }
321
322 exit:
323         return ret;
324 }
325
326 #endif /* _OTX_CRYPTODEV_HW_ACCESS_H_ */